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The seasonal changes of the gut
microbiome of the population living in
traditional lifestyles are represented by
characteristic species-level and functional-
level SNP enrichment patterns
Xue Zhu†, Jiyue Qin†, Chongyang Tan and Kang Ning*

Abstract

Background: Most studies investigating human gut microbiome dynamics are conducted on humans living in an
urban setting. However, few studies have researched the gut microbiome of the populations living traditional
lifestyles. These understudied populations are arguably better subjects in answering human-gut microbiome
evolution because of their lower exposure to antibiotics and higher dependence on natural resources. Hadza
hunter-gatherers in Tanzania have exhibited high biodiversity and seasonal patterns in their gut microbiome
composition at the family level, where some taxa disappear in one season and reappear later. Such seasonal
changes have been profiled, but the nucleotide changes remain unexplored at the genome level. Thus, it is still
elusive how microbial communities change with seasonal changes at the genome level.

Results: In this study, we performed a strain-level single nucleotide polymorphism (SNP) analysis on 40 Hadza fecal
metagenome samples spanning three seasons. With more SNP presented in the wet season, eight prevalent species
have significant SNP enrichment with the increasing number of SNP calling by VarScan2, among which only three
species have relatively high abundances. Eighty-three genes have the most SNP distributions between the wet
season and dry season. Many of these genes are derived from Ruminococcus obeum, and mainly participated in
metabolic pathways including carbon metabolism, pyruvate metabolism, and glycolysis.
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Conclusions: Eight prevalent species have significant SNP enrichments with the increasing number of SNP, among
which only Eubacterium biforme, Eubacterium hallii and Ruminococcus obeum have relatively high species
abundances. Many genes in the microbiomes also presented characteristic SNP distributions between the wet
season and the dry season. This implies that the seasonal changes might indirectly impact the mutation patterns
for specific species and functions for the gut microbiome of the population that lives in traditional lifestyles
through changing the diet in wet and dry seasons, indicating the role of these variants in these species’ adaptation
to the changing environment and diets.
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Background
The advancement of next-generation sequencing and
bioinformatics techniques has made accessible the gen-
etic information of the entire microbial community. The
human gut microbiome has gained increasing research
interest because of its critical role in metabolism, host
nutrition, immune function, and central nervous system
[1, 2]. However, most studies investigating its dynamics
have mainly focused on the industrialized populations,
who are regularly exposed to antibiotics and whose
subsistence depends on artificially produced crops and
animal products [3–5]. In contrast, unindustrialized pop-
ulations living traditional lifestyles, with lower exposure
to antibiotics and higher dependence on natural re-
sources, are arguably better subjects in answering an-
cient human-gut microbiome relationship [6]. Recent
studies on Hadza hunter-gatherers have shed light on
the gut microbiome’s dynamics and adaptive versatility
to lifestyle changes [7, 8]. The Hadza gut microbial com-
munities exhibit a high degree of biodiversity [8] and a
pattern of seasonal cycling in microbiome composition,
where some taxa (at the family level) disappear in one
season and reappear at a later time [7]. The species in
Hadza individuals are the most seasonally volatile and
could differentiate industrialized and traditional popula-
tions [7, 9]. Although the SNP space associated with sea-
sonal changes of the Hadza gut microbial communities
have been profiled, the nucleotide changes remain unex-
plored at the genome level. It is unclear how microbial
communities change at the genome level under environ-
mental stressors caused by seasonal changes.
The genome-level variations of the gut microbial

communities can be examined by SNP calling tools (e.g.
GATK [10], BCFtools [11], VarScan2 [12]). As genomic
variations such as substitution, translocation, deletion
and insertion, can lead to changes in antibiotic resist-
ance [13] or pathogenicity [14], which can indicate the
response to selection pressures [15], it is interesting to
perform a high-resolution investigation into the Hadza
gut microbiome. Previously, genomic variants have been
investigated by Schloissnig [16] on studies about micro-
biomes [17] and their association with human diseases

[18] for the modern population. Here, we performed
a strain-level SNP analysis of Hadza gut metagenome
to decipher the microbiome dynamics from the per-
spective of SNP enrichment. We first evaluated the
SNP calling methods on simulated metagenome data-
sets, and selected the best method, namely VarScan2,
for SNP calling on Hadza gut metagenome. Then, we
performed an in-depth analysis of the SNP enrich-
ments in species and functions along with the sea-
sonal shifts for the Hadza population, and attempted
to interpret the enrichment profile and dynamic
patterns for such enrichments.

Results and discussions
Assessment of SNPcalling tools
To select the most suitable variant-calling tool for the
strain-level SNP analysis, we first evaluated three main-
stream tools (GATK [10], BCFtools [11], VarScan2 [12])
based on their performance in terms of sensitivity and
selectivity (Materials and Methods). A SNP list containing
10,786 sites from 5 major species residing in human gut
(Faecalibacterium prausnitzii (reference genome size: 3,
080,849 bp), Prevotella copri (3,507,873 bp), Methanobrevi-
bacter smithii (1,853,160 bp), Eubacterium biforme (2,415,
920 bp), Treponema succinifaciens (2,731,853 bp)) was used
to generate a mutated reference genome set (Materials and
Methods). Comparing the SNP identified by the three tools
with the true SNP (Table 1 and Fig. 1), VarScan2 showed
the highest selectivity (100%) at all sequencing depths,
followed by BCFtools and GATK. In terms of sensitivity, at
around 8x sequencing depth, VarScan2 showed the lowest
sensitivity. Starting from the sequencing depth of 10x,
GATK showed relatively lower sensitivity at all depths,
while BCFtools and VarScan2 had almost the same sensitiv-
ity (approach 100%, except for 5x). Though we have
acknowledged the limitations of this attempt to mimic
human gut microbiome variation (e.g. the simplification by
using only five species), we deem this evaluation as a useful
guidance for the following Hadza gut microbiome analysis.
Considering both selectivity and sensitivity, we chose VarS-
can2 for the Hadza gut metagenome SNP analysis.
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Community compositions and seasonal changes of Hadza
gut microbiome
A total of 116 species, including 16 unclassified species,
were identified (Fig. 2), and the main species were Faecali-
bacterium prausnitzii, Prevotella copri, Methanobrevibacter
smithii, Eubacterium biforme, Treponema succinifaciens.
This result was in line with the previous report about
the high abundance of Prevotella and Treponema [7, 8].
Although Treponema is famous for one species, namely

Treponema pallidum, which could cause syphilis [19],
here we found that Treponema in Hadza gut was domi-
nated by Treponema succinifaciens, which plays a role
in the hydrolysis of cellulose and xylose [20].
From 116 identified species, we selected 33 species

(Supplementary Table 1), which were present in at least
8 samples from at least one season, to analyze their
abundance differences. Among which, the abundance of
12 species (Fig. 3, Supplementary Table 1) was significantly

Table 1 Comparison of the SNP identification results by the three tools. In these simulated data, the SNP coverages (defined as the
number of SNPs identified by the software on these five genomes, divided by the sum of the five genome sizes) were also shown
for different tools and different sequencing depths

Tool Depth Match # Mismatch # False positive # False negative # All
SNPs

SNP
Coverage (%)

Sensitivity (%) Selectivity (%)

GATK 5x 10,567 0 52 218 10,619 0.078 98.0 99.5

VarScan2 5x 10,283 0 0 502 10,283 0.076 95.3 100.0

BCFtools 5x 10,635 0 24 150 10,659 0.078 98.6 99.8

GATK 10x 10,590 0 6 195 10,596 0.076 98.2 99.9

VarScan2 10x 10,647 0 0 138 10,647 0.078 98.7 100.0

BCFtools 10x 10,656 0 0 129 10,656 0.078 98.8 100.0

GATK 20x 10,599 0 0 186 10,599 0.078 98.3 1.000

VarScan2 20x 10,661 0 0 124 10,661 0.078 98.9 100.0

BCFtools 20x 10,663 0 0 122 10,663 0.078 98.9 100.0

GATK 40x 10,607 0 0 178 10,607 0.078 98.3 100.0

VarScan2 40x 10,667 0 0 118 10,667 0.078 98.9 100.0

BCFtools 40x 10,665 0 0 120 10,665 0.078 98.9 100.0

Fig. 1 Comparison of selectivity and sensitivity of three SNP-calling tools (BCFtools, GATK and VarScan2) based on simulated reads with different
sequencing depths. The x-axis represents the sequencing depth, and the y-axis displays the selectivity and the sensitivity of BCFtools, GATK
and VarScan2
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different (P < .05, Wilcoxon rank-sum test; Fig. 3) between
the dry season of 2013 (2013dry) and the wet season of
2014 (2014wet) seasons, as well as between the dry season
of 2014 (2014dry) and 2014wet seasons, but the abundance
of 12 species was similar between 2013dry and 2014dry
seasons. Among these 12 species, only the abundance of
Prevotella copri and Prevotella stercorea decreased in
2014wet, which accords with the previous report of less
Prevotellaceae in 2014wet [7]. Prevotella copri has been
proved to act in glucose metabolism [21]. and its decreased
abundance in the wet season may be associated with the
Hadza population’s seasonal dietary changes. In contrast,
the other 10 species showed higher abundance in 2014wet
(Fig. 3), including Ruminococcus obeum (genome size: 2,
607,950 bp) and Ruminococcus lactaris (2,729,735 bp),

which belong to Firmicutes. Since a previous report has
found that Firmicutes showed relatively stable abundance
across seasonal succession [7]. The results suggested that in
2014wet, there might exist species belonging to Firmicutes
that offset this difference.

Strain-level SNP enrichment with the seasonal succession
To explore SNP changes with the seasonal succession,
we selected 55 most prevalent species from 116 species
to be included in the reference genome set. After thresh-
old filtering (>10x sequencing depth, and sequencing
quality score > 15), we identified 765,106 SNP (8 sam-
ples, avg. 95,638 SNP) in samples collected in the dry
season of 2013 (2013dry samples), 3,647,990 SNP (19
samples, avg. 191,999 SNP) in samples collected in the

Fig. 2 Heatmap of Hadza gut microbial community composition at the species level. Drawn by MetaPhlAn2 based on the species-abundance
(log value) table, each row represents a species and each column represents a sample. Three colors were used to distinguish the samples from
different seasons (red: samples collected in the dry season of 2013 (2013dry); green: samples collected in the dry season of 2014 (2014dry); blue:
samples collected in the wet season of 2014 (2014wet)). Only the top 40 species with the highest abundance were shown here. The main species
in Hadza gut include Faecalibacterium prausnitzii, Prevotella copri, Methanobrevibacter smithii, Eubacterium biforme, Treponema succinifaciens, which
were represented in bright color (e.g., red, orange, yellow). The gradient color bar indicates, from left (dark blue) to right (yellow), the increasing
abundance of these 40 species
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wet season of 2014 (2014wet samples), and 1,892,342
SNP (13 samples, avg. 145,564 SNP) in samples collected
in the dry season of 2014 (2014dry samples) (Table 2).
This result demonstrated that there were more SNP in
the wet season, which motivated us to investigate where
these genome variations mainly originated from 15 spe-
cies, whose average sequencing depth was above 10x in
at least 3 samples (Fig. 4 and Supplementary Table 2),
were selected for further analysis. Computing their SNP
density (namely SNP occurrence frequency) in each
sample, we found that all species showed indistinguish-
able SNP density between dry seasons, while eight spe-
cies (Anaerostipes hadrus (genome size: 3,172,613 bp),
Catenibacterium mitsuokai (2,671,313 bp), Coprococcus

comes (3,238,915 bp), Eubacterium biforme, Eubacterium
hallii (2,722,180 bp), Roseburia inulinivorans (4,048,462
bp), Ruminococcus bromii (2,539,482 bp) and Rumino-
coccus obeum) showed SNP enrichment (P < .05, Wil-
coxon rank-sum test) in the wet season compared to
both dry seasons.
The enrichment of SNPs in these species in the wet

season was speculated to associate with the environmen-
tal and dietary changes in wet and dry seasons. The
Hadza’s activities largely focus on food acquisition. In
the wet season, berry foraging and honey consumption
are more frequent, whereas hunting is more successful
during the dry season [7]. For example, the high protein
diet in the dry season can affect acetate fermentation,
which can be the reason behind the reduced SNP dens-
ity of Ruminococcus bromii in the dry season as Rumino-
coccus bromii is known as an acetate producer [22].
Moreover, five out of the eight species with more SNP
in the wet season didn’t differ in abundance across
seasons, which indicated that the increased genome
variation we observed was not due to an increased abun-
dance. In other words, SNP characteristics might be

Fig. 3 Abundance in certain gut microbial species differed among seasons. The changes in abundance across different seasons were shown with
each panel representing one species. 2013dry samples (samples collected in the dry season of 2013; n = 8), 2014wet samples (samples collected
in the wet season of 2014; n = 19), 2014dry samples (samples collected in the dry season of 2014; n = 13) were denoted by red, green and blue
color, respectively. These 12 species have different (P < 0.05, Wilcoxon rank-sum test) abundance between wet and dry seasons, but they have
indistinguishable abundance between adjacent dry seasons

Table 2 Overview of the number of SNPs distributed in
2013dry, 2014wet and 2014dry

# of SNP # of Sample Average

2013dry 765,106 8 95,638

2014wet 3,647,990 19 191,999

2014dry 1,892,342 13 145,565
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independent of species abundance, thus provided us
with a new perspective for studying microbial commu-
nity dynamics.
To understand whether SNP characteristics change

among seasons, for each of the eight identified species
mentioned above, phylogenic trees were constructed by
RAxML [23] based on whole genome SNP sites with
mutated allele frequency bigger than 0.5 (see Materials
and Methods) and visualized by R package “ggtree”. Two
example trees for Eubacterium hallii and Eubacterium
biforme were shown (Fig. 5). Clear clustering could be
observed in Fig. 5, where most of the wet-season sam-
ples were restricted in one cluster, and the dry-season
samples) in the other (Fig. 5). Eubacterium hallii was
present in all the 40 samples (Fig. 5a). Among them, 13
wet-season samples (68.42% of total wet-season samples)
were in one cluster (red box) and 18 dry-season samples
(85.71% of total dry season samples) were in the other
cluster (green box) (Fig. 5a). Similarly, Eubacterium hal-
lii was present in 37 samples (Fig. 5a). Among them, 14
wet-season samples (73.68%) were in one cluster (red
box) and 16 dry-season samples (88.89%) were in the
other (green box) (Fig. 5b). The phylogenic trees for the
remaining six species were shown in Supplementary
Fig. 1 and a similar clustering could be observed. Inter-
estingly, we found that one dry-season sample (SRA run:
SRR5763465) was mixed with other wet-season samples
for most of the species. Looking into its subject informa-
tion revealed that this sample was from a 5-year-old
child, who might have special SNP characteristics.

We also extracted the SNP sites with the mutated al-
lele frequency > 0.5, and calculated the pairwise distance
between samples using Manhattan distance. Hierarchical
clustering was then used to cluster all the samples. The
results for Eubacterium biforme and Eubacterium hallii
were shown in Fig. 6 and the other six species (Ruminococ-
cus bromii, Ruminococcus obeum, Anaerostipes hadrus,
Coprococcus comes, Catenibacterium mitsuokai, Roseburia
inulinivorans) were shown in Supplementary Fig. 2.
Consistent with the above results in phylogenic trees, wet-
season samples (blue) were separable from dry-season sam-
ples, while 2013dry samples (red) were mixed with 2014dry
samples (green). The results also indicated the different
SNP enrichment patterns in the wet season.

Gene-level SNP enrichment with the succession of
seasons
From a total of 23,504 genes in the 15 selected species,
5959 genes whose SNP was present in at least 8 samples
were targeted for further analysis. Eight hundred twenty-
seven genes showed a significant difference in SNP dens-
ity between the wet season and the dry season (P < 0.05,
Wilcoxon rank-sum test), but no difference between
adjacent dry seasons. Considering multiple comparison,
we focused on the 83 genes, which achieved a signifi-
cance at P < 0.01 level (Supplementary Table 3). For each
of the 83 genes, the protein sequence was used to search
by BLAST against the KEGG, and we selected the best
hit as its pathway information. Thirty-six genes were an-
notated to 52 KEGG pathways (Supplementary Table 4),

Fig. 4 Certain species in the Hadza gut microbiome showed enrichment of SNPs in the wet season. a An overview of analysis workflow for both
species enrichment (left) and SNP enrichment (right) in samples, and the SNP density comparison among the samples from three seasons. b The
comparison of SNP density among the three seasons, with each panel representing one of the 15 prevalent species. Eight species showed more
SNP in the wet season but comparable SNP in adjacent dry seasons. All boxes were tested by Wilcoxon rank-sum tests. *P < 0.05, **P < 0.01,
***P < 0.001; SC: sample coverage; SD: sequencing depth; n.s.: not significant
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and the pathways that involve at least two genes were
shown in Fig. 7. Many of these genes were from Rumi-
nococcus obeum, concentrating on metabolic pathways,
such as carbon metabolism, pyruvate metabolism and
glycolysis (Fig. 7). This suggested that the seasonal
changes might indirectly affect the mutation patterns for
specific species, especially in core metabolic pathways,
indicating the role of these variants in their adaptation
to the changing environments and diets.

Conclusions
This work has implications from both technical and
microbiological viewpoints. Technically, we identified
that VarScan2 showed comparatively better performance
for SNP calling from the simulated metagenomic
dataset, in both selectivity and sensitivity.. This analysis
has provided a guidance for future investigation in vari-
ant calling and suggests that the direction to improve
variant-calling tools is to improve the identification effi-
ciency and reduce false-positive results at the same time.
From a microbiological viewpoint, we have identified

SNPs’ characteristic enrichment in species and functions
with the seasonal successions. Eight species (namely, Anae-
rostipes hadrus, Catenibacterium mitsuokai, Coprococcus
comes, Eubacterium biforme, Eubacterium hallii, Roseburia
inulinivorans, Ruminococcus bromii and Ruminococcus
obeum) showed higher SNP density in the wet season (Fig.
4), in which only three (Eubacterium biforme, Eubacterium
hallii and Ruminococcus obeum) (Fig. 3) had relatively high
abundance. Phylogenic trees and hierarchical clustering of
their whole genome SNP demonstrated the new strains
emerged in the wet season. Additionally, we identified 83
genes with a highly significant difference in SNP density
between the wet season and the dry season. Many of these
genes were from Ruminococcus obeum, and were involved
in metabolic pathways such as carbon metabolism, pyru-
vate metabolism and glycolysis. These results demon-
strated a cyclic pattern in species abundance, SNP density
at the species level, and SNP density at the genome level
across three successive seasons, where the dry season was
differentiated from the wet season, but the adjacent dry
seasons were similar. This could be linked to the cyclic
pattern in dietary and environmental factors across the
seasons in this population living a traditional lifestyle.
Highlighting the quantification and characterization of
SNP, this work has also laid a foundation for future investi-
gation of gut microbiome dynamics in response to changes
in lifestyle and other environmental stressors.

Methods
The process for creating the simulated datasets
containing the SNP list
For simulated data, we first generated a list containing
10,786 SNP sites from five major species

(Faecalibacterium prausnitzii, Prevotella copri, Methano-
brevibacter smithii, Eubacterium biforme, Treponema
succinifaciens), which commonly reside in human gut
and play specific functions [20, 24–27]. Then, a mutated
reference genome set was achieved by replacing corre-
sponding SNP sites. To create the SNP list for the five
major species, we used BBMap randomreads to simulate
the NGS data using muta_genome_combine.fna as “ref”
value, used “length” parameter (set as 75) to specify the
length of the reads, and used “reads” parameter (set as 1,
000,000) to specify the number of generated reads, and
set paired as true. The parameters “snprate”, “insrate”,
and “delrate” specify the sequencing error model, repre-
senting the SNP frequency (set as 0.002), insertion fre-
quency (set as 0.00002), and deletion frequency (set as
0.00002), “simplenames” specifies the reads name and
set as t, and “addslash” parameter specifies (set as t), and
it assigned using ‘/’ to distinguish the double-ended
reads. The number of reads depends on the sequencing
depth, with 1,000,000 reads for 5x, 2,000,000 reads for
10x, 4,000,000 reads for 20x, and 8,000,000 reads for
40x.

Collection of real datasets
Hadza gut microbiome dataset includes whole-genome
sequencing data that are described in [7]. The whole meta-
genomic sequencing data of Haza human gut microbiomes
were downloaded from the NCBI SRA database with acces-
sion number SRA582120. Among 40 samples, eight are
from the 2013dry season, 19 samples are from the 2014wet
season, and 13 samples are from the 2014dry season. We
first applied Trimmomatic [28] to remove the adapters and
the low-quality bases of the raw dataset. MetaPhlAn2 [29]
was utilized to determine the bacterial species and their
abundance in each sample, then hclust2 was used to draw
the heatmap of Hadza gut microbial community compos-
ition based on the merged abundance table.

SNP calling by BCFtools, GATK and VarScan2
The processed bam files were used for SNP calling by
three tools. The command for BCFtools was “samtools
mpileup -ugf genome_for_sim.fna dupfree_sim_meta.-
bam| bcftools call -vmO v -V indels -o bcftools_
meta.vcf”, where smtools -u specified uncompressed file,
−g specified output as bcf format, −f specified reference
sequence file, BCFtools -v specified only output variant
sites, −O v specified output file as uncompressed vcf
format and -V indels specified ignoring indel.
For GATK, SAMtools faidx and picard CreateSequence-

Dictionary were used to generate .fai file and .dict file,
respectively, to index the reference file. The command is
“java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R
genome_for_sim.fna -I dupfree_sim_meta.bam -o GATK_
meta.vcf”.
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For VarScan2, samtools mpileup was first used to out-
put mpileup file and the command is: “java -jar VarS-
can.v2.3.9.jar mpileup2SNP sim_meta.mpileup --min-
coverage 1 --output-vcf 1 --variants --min-reads2 1
--min-avg-qual 1 > varscan_meta.vcf, where --min-cover-
age specified the minimum sequencing depth,--variants
specified only output variants,--min-reads2 specified the
minimum number of reads that support the SNP,
−-min-avg-qual specified the minimum sequencing
quality.

Sensitivity and selectivity calculating
Comparing the SNP identified by the three tools with the
actual SNP (ground truth), we assessed their performance
from two aspects which were calculated as follows.

sensitivity ¼ match=all
selectivity ¼ 1 − false positiveþmismatchð Þ=all

Here, the ‘match’ represents the number of actual SNP
identified by the tool, while the ‘false positive’ represents

Fig. 5 Wet-season samples were separable from dry-season samples in phylogenic trees. Phylogenic trees based on whole-genome SNP sites for
two example species were shown here. Each branch represented a sample, and samples from different seasons were differentiated by three
colors (red: samples collected in the dry season of 2013 (2013dry); green: samples collected in the dry season of 2014 (2014dry); blue: samples
collected in the wet season of 2014 (2014wet)). Clear clustering could be observed in both trees where wet-season samples (red box) were
restricted in one cluster and dry-season samples in the other cluster (green box). a Eubacterium hallii species. Thirteen wet-season samples
(68.42% of total wet-season samples) were in one cluster (red box) and 18 dry-season samples (85.71% of total dry-season samples) were in the
other cluster (green box). b Eubacterium biforme species. Fourteen wet-season samples (73.68%) were in one cluster (red box) and 16 dry-season
samples (88.89%) were in the other cluster (green box)
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the number of SNP identified by the tool were non-
existent. ‘mismatch’ represents the number of actual
SNP identified as a wrong base by the tool. ‘all’ repre-
sents the number of all actual SNP.

Variant calling procedure
Clean reads of 40 samples were aligned to the reference
genome set via BWA MEM with the parameter -R to
specify the header group in output sam files. SAMtools
view command was used with parameter -bS to
transform sam files into bam files, and its sort command
was used to sort bam files by the order of chromosomes.
Picard MarkDuplicates command was used with param-
eter REMOVE_DUPLICATES = true to remove PCR

duplicates. Samtools mpileup command was used with
parameter -Bf to specify the reference genome set and
output mpileup files. VarScan mpileup2SNP command
was used with parameter --min-coverage 10 --output-vcf
1 --variants --min-avg-qual 15 to identify SNP from
mpileup files and output vcf format files. The variant
calling procedure was illustrated in Fig. 8.

Assessment of SNP-calling tools
To select the most suitable variant-calling tool for the
strain-level SNP analysis, we first evaluated three repre-
sentative tools (GATK [10], BCFtools [11], VarScan2
[12]) based on their performance in terms of sensitivity
and selectivity (see Materials and Methods). A SNP list

Fig. 6 Wet-season samples were separable from dry-season samples based on their SNP profiles. a Eubacterium hallii species. b Eubacterium
biform species. Clustering results based on whole-genome SNP sites for these two species were shown here. Each branch represented one
sample, and samples from different seasons were differentiated by three colors (red: 2013dry; green: 2014dry; blue: 2014wet)

Fig. 7 Pathway analysis of genes with cyclic SNP density patterns across seasons. Each bar represents a specific biological pathway and the
number above it denotes the number of genes involved in this pathway. The genes have different SNP densities (P < 0.01, Wilcoxon rank-sum
test) between the wet season and the dry season, but no difference between adjacent dry seasons, they mainly participate in metabolic
pathways like carbon metabolism and ribosomes
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containing 10,786 sites from 5 major species residing
in human gut (Faecalibacterium prausnitzii (reference
genome size: 3,080,849 bp), Prevotella copri (3,507,873
bp), Methanobrevibacter smithii (1,853,160 bp), Eubac-
terium biforme (2,415,920 bp), Treponema succinifa-
ciens (2,731,853 bp)) was used to generate a mutated
reference genome set. Then, BBMap was applied to
generate paired-end simulated reads of length 75 with
the sequencing error: SNPrate = 0.002, insrate = 0.00002,
delrate = 0.00002. Different amounts of reads were gener-
ated to understand the effect of different sequencing depth,
with 1,000,000 reads for 5x, 200,000 reads for 10x, 4,000,
000 reads for 20x and 8,000,000 reads for 40x. We then
used Burrows-Wheeler Aligner (BWA) to index the original
reference genome set and MEM algorithm to align the sim-
ulated reads with the reference. The result files (in sam for-
mat) were converted to bam files by SAMtools [30], then
sorted according to the header of the file and sequence in
the file from left to right by the sort command. After that,
we used Picard to remove PCR duplicates.

Phylogenic tree construction and clustering
The parameters used for RAxML to construct phylo-
genic trees based on whole-genome SNP sites were
-m ASC_GTRGAMMA -p 12345 --asc-corr = lewis -f
a -× 12,345 -#100 and other parameters were set as
default, where -m represents the specified nucleotide
substitution model, −-asc-corr indicates the ascertain-
ment bias correction method, and -# means the boot-
strap numbers. The SNP sites whose mutated allele
frequency is larger than 0.5 per sample were selected
and calculated the pairwise distance between samples
using Manhattan distance, and then clustered all the
samples using hierarchical clustering. The clustering
result was transformed into a tree file, then visualized
in a circle tree.

Wilcoxon rank-sum test
To detect whether the detected species or SNP between
2014dry and 2014wet, 2013dry and 2014dry, 2013dry
and 2014wet, respectively, Wilcoxon rank-sum test was
applied using R default package, wilcox.test function.
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