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Abstract

Background: The red panda (Ailurus fulgens) is a riddle of morphology, making it hard to tell whether it is an ursid,
a procyonid, a mustelid, or a member of its own family. Previous genetic studies have given quite contradictory
results as to its phylogenetic placement.

Results: A recently developed whole genome-based algorithm, the Whole Genome K-mer Signature algorithm was
used to analyze the genomes of 28 species of Carnivora, including A. fulgens and several felid, ursid, mustelid, one
mephitid species. This algorithm has the advantage of holistically using all the information in the genomes of these
species. Being a genomics-based algorithm, it also reduces stochastic error to a minimum. Besides the whole
genome, the mitochondrial DNA from 52 mustelids, mephitids, ursids, procyonids and A. fulgens were aligned to
draw further phylogenetic inferences.

The results from the whole genome study suggested that A. fulgens is a member of the mustelid clade (p =910~ %"). A
fulgens also separates from the mephitid Spilogala gracilis. The giant panda, Ailuropoda melanoleuca also clusters away
from A. fulgens, together with other ursids (p = 1.2-10 ®%). This could be due to the geographic isolation of A. fulgens
from other mustelid species. However, results from the mitochondrial study as well as neighbor-joining methods based
on the sequence identity matrix suggests that A. fulgens forms a monophyletic group. A Maximum Likelihood tree
suggests that A. fulgens and Ursidae form a monophyletic group, although the bootstrap value is weak.

Conclusions: The main conclusion that we can draw from this study is that on a whole genome level A. fulgens
possibly belongs to the mustelid clade, and not an ursid or a mephitid. This despite the fact that previously some
researchers classified A. fulgens and A. melanoleuca as relatives. Since the genotype determines the phenotype,
molecular-based classification takes precedence over morphological classifications. This affirms the results of some
previous studies, which studied smaller portions of the genome. However, mitochondrial analyses based on neighbor-
joining and maximum likelihood methods suggest otherwise.
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Background

The red panda (Ailurus fulgens) is an enigmatic animal
and is hard to classify based on its morphology. It lives
in parts of India, Nepal and China, and has a distinct
red-white coloration, and a striped, bushy tail. It goes by
several nicknames, such as the ‘bear-cat’, the ‘cat-bear’,
the ‘lesser panda’ or the ‘fire-fox’. Some researchers think
A. fulgens is a relative of the giant panda (Ailuropoda mela-
noleuca) based on several physical characteristics. These in-
clude an almost exclusive diet of bamboo (both species eat
meat on occasion), and have an enlarged radial sesamoid
bone, which they use to process bamboo [1, 2].

Because of these similarities, the giant panda even re-
ceived its name from the red panda. According to other
opinions, A. fulgens has been classified as a member of
the family Procyonidae (raccoons). Yet others put the
red panda into its own family (Ailuridae) [3]. A. fulgens
also has some unique characteristics: a large zygomatic
arch, a powerful jaw, and complex cheek teeth, following
a P2-3 pattern [1].

According to new genetic evidence, there are two
species of red panda, the Himalayan red panda (A. ful-
gens), and the Chinese red panda (A. styani) [4]. Due to
reduced numbers, the red panda is an endangered spe-
cies. Previous studies based on different combinations of
nuclear and mitochondrial genes have given contradict-
ory results as to the taxonomic relationship of A. fulgens
with other carnivores. This may be because only several
mitochondrial and/or nuclear genes were analyzed, and
not the entire whole genome sequence (WGS).

The red panda’s classification as a procyonid or pro-
cyonid-relative is based on immunological, DNA-DNA
hybridization, and isozyme evidence [5]. A phylogenetic
tree based on Bayesian analysis of cytochrome-b put
A. fulgens next to Canidae [6].

For example, Peng et al. classify A. fulgens either as a
mustelid, placing them next to the American marten
(Martes americana), or as a mephitid, next to the striped
skunk (Mephitis mephitis). This was based on the
analysis of 13 concatenated mitochondrial proteins,
based on neighbor-joining (NJ) and maximum likelihood
(ML) phylogenetic methods, respectively [7]. In a study
of three mtDNA genes (12S rRNA, 16S rRNA and cyto-
chrome b) and intron 1 of the nuclear transthyretin
gene, Flynn et al. also found that A. fulgens is neither an
ursid, nor a procyonid, nor a mephitid, but a mustelid
[1]. Another study including three mitochondrial and
three nuclear genes by Fulton and Strobeck, based on 16
arctoid species, with Canis lupus as an outlier, placed
A. fulgens in close relationship to M. mephitis [8].

Yu and Zhang studied introns 4 and 7 from the
nuclear gene f{-fibrinogen (FGB) as well as the mito-
chondrial gene NADH dehydrogenase subunit 2 (ND2)
in 17 species from the order Carnivora. In their results,
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these researchers found that A. fulgens is most closely
related to procyonids based on analysis of intron 4 of
the FGB gene. But when intron 7 was analyzed, it clus-
tered towards ursids. Classification based on the ND2
gene A. fulgens clustered with mustelids, but these
results had poor bootstrapping support. When the two
introns were combined with analysis of the genes IRBP
and TTR, A. fulgens was closest to mustelids [9].

Sato et al. analyzed a 5.5 Kbp segment of DNA coding
for five genes, AOPB, BRCA1, RAG1, RBP3, and VWE,
and found that A. fulgens clusters together with procyo-
nids and mustelids, and not with mephitids (skunks and
stink badgers) [10]. An earlier, similar result was attained
when studying a 3.2 Kbp segment containing the genes
APOB, RAG1 and IRBP [11]. Genomically, A. fulgens shares
several apomorphic chromosome fusions with mustelids,
namely F2 + Clp and Alp + Clq [12]. However, A. fulgens
differs in several other chromosomal rearrangements
indicating that it diverged early from other mustelids.

Interestingly, several genes have been found in both
species which show convergent development. For
example, changes in the amino acid composition of the
DYNC2H1 and PCNT proteins lead to polydactyly in
humans and mice, but to the pseudo-thumb in the giant
and red pandas. Three other convergent genes (PRSSI,
PRSS36, and CPB1) are responsible for more efficient
uptake of nutrients from bamboo, which makes up a
large part of their diet as well. Four other genes,
ADHIC, CYP3A5, CYP4F2, and GIF also enable the
more effective utilization in the giant and red pandas of
vitamins A and B12 as well as arachidonic acid, which
are absent or very low in bamboo [2].

Intron analysis is useful, since these sequences are not
under selection pressure. An analysis of 22 Kbp of nu-
clear intron sequences from 16 carnivore species groups
A. fulgens with Musteloidea sensu stricto (Mustelidae+
Procyonidae) to the exclusion of mephitids [13]. These
results, however, contradict results coming from mtDNA
analyses [14].

Since morphology-based classification of A. fulgens is
ambiguous, it would be helpful to determine the precise
taxonomic status of this species based on a whole gen-
ome-based algorithm. To this end, the Whole Genome K-
mer Signature (WGKS) algorithm [15] is used to analyze
the genomes of five bear species, eleven cat species and
ten species from the family Mustelidae (weasels, otters,
martens, and badgers), Spilogala gracilis, a mephitid spe-
cies, as well as A. fulgens, making 28 species in total.

The advantages of using a genomics-based algorithm
to analyze the WGS of these organisms is that it takes
all the information present in the WGS, as opposed to
just a handful of genes, utilized in gene studies. Deciding
which genes are important is subjective and may vary
between investigators. Whole genome-based algorithms
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also have the advantage that they greatly reduce stochas-
tic error, due to the vast number of characters (DNA
bases) that they analyze [16]. Using this algorithm can
provide additive results as to the phylogenetic classifica-
tion of A. fulgens.

While the WGKS algorithm may not be a sensu stricto
phylogenetic algorithm, it can still be used to classify
species, based on their WGS into different groups. There
are several metagenomics methods that use k-mer
analysis to map Next-Generation read sequences to
species represented by whole genome sequences, such as
kraken [17], the Naive Bayes Classifier (NBC) [18], and
PhymmBL [19]. For example, kraken splits read sequences
into k-mers, which it then maps to a taxonomic tree. The
leaf node/species which has the most reads assigned to it
is the designated as the species that the read came from.
The NBC also splits a read into constituent N-mers, and
then calculates the a posteriori probability of a given N-
mer belonging to a specific strain, species, genus, or other
taxon.

The NBC algorithm and the WGKS algorithm are
similar in that they both utilize the k-mer signature of a
DNA sequence in order to classify it. One could view
the whole genome sequence as a very extended read
sequence. Using k-mer methods on whole genome
sequences (WGS) should give even more accurate results
than on read sequences because the WGS represents a
much larger search space. Individual k-mers occur in much
larger numbers than in short reads, which are between 75
and 300 bp or so. In other words, the k-mer ‘coverage’ is
much, much higher in a WGS than a single read.

Besides a whole genome approach, it would also be useful
to complement the results from the whole genome analysis
using a multiple alignment of several genes. To this end the
mitochondrial DNA of 52 ursid, mephitid, mustelid, pro-
cyonid species along with the ailuronids, A. fulgens and A.
fulgens styani were analyzed. Not only does the mtDNA
contain more than a dozen conserved genes, these genes
are localized to the same part of the genome and also
largely follow the same order. The mtDNA also contains
non-coding DNA, which is not under selection pressure,
and thus better reflects species relationships. Mitochondrial
genes would be more conducive to this kind of analysis as
opposed to artificially concatenating together genes from
different parts of the genome. These mtDNA sequences
were aligned using the online MUSCLE tool at the EBI
website. Species relationships were also examined using the
Neighbor-joining (NJ) method as well as the Maximum
Likelihood (ML) method using bootstrap values.

Results and discussion

Pre-clustering analysis of WGS

The list of species used in this analysis, the resulting
PCC matrix, clusters and statistics can be seen in
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Additional File 1 online. The Hopkins statistic is 0.9,
which means that the data set is of very good quality for
clustering. The silhouette plot (Supplementary figures 1
and 2) gave a maximum average silhouette width of 0.82
for three clusters and 0.8 for four clusters. The average
silhouette width was studied for two to seven clusters.
The only difference was the placement of the mephitid,
S. gracilis into its own group (cluster 4 in Supplemental
figure 2).

Whole genome analysis

In Fig. 1 we can see three visible clusters, felids, ursids
and mustelids, with S. gracilis in between the mustelids
and the ursids. Based on the results in Table 1, A. fulgens
clearly clusters together with the mustelids, although on
average, it has a lower mean PCC value compared to all
the other species, 0.89 +0.03, whereas mustelids have a
mean PCC value of 0.95 + 0.04.

This difference is not too significant. If we compare
Felis nigripes (the black-footed cat) with other cats, it
has a mean PCC value of 0.89 +0.02, whereas felids
having an even greater mean PCC of 0.97 + 0.03. Yet we
know that cats are a monophyletic group. Table 2 shows
the minimum, mean, maximum PCC for all three puta-
tive clades, as well as the p-value, which is statistically
significant for all three groups.

Based on this evidence, A. fulgens would belong to
mustelids as a monophyletic group. Since it has such a
low mean PCC is because it may have diverged early
from other mustelids, possibly due to its isolated moun-
tainous habitat in parts of Myanmar, Burma and China.
This can also be seen well in Fig. 2, which shows the
UPGMA-based phylogenetic tree for the 28 species in
the whole genome analysis.

Also important is that the skunk species S. gracilis
does not cluster with mustelids. When compared with
mustelids, S. gracilis has a mean PCC value of 0.78 +
0.02. A. fulgens has a PCC value of 0.79 with this species
as opposed to a mean PCC value of 0.89 with mustelids,
reported previously. This also indicates that mustelids
and mephitids form separate clades.

The giant panda, Ailuropoda melanoleuca is a clearly a
member of a clade which includes the ursids, as shown
in Fig. 2. It has a mean PCC value of 0.97 + 0.003 with
the other ursids. Other genetic evidence classifies the
giant panda as a member of Ursidae. This includes
mtDNA, chromosome banding patterns, and serological
and immunological evidence [20, 21].

Analysis of mitochondrial genomes

The result of the analysis of the mitochondrial genomes
can be seen in Fig. 3. The Hopkins clustering statistic is
0.841, which means that the sequence identity matrix is
of good quality for clustering. Three larger clusters and
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Fig. 1 Heatmap depicting group relationships for 28 species based on results from the WGKS algorithm. Brighter colors represent species pairs which
are in the same group, with a PCC value closer to 1. Darker colors represent species pairs which are in different group, with a PCC less than 1
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two smaller clusters are visible in the heat map. The
clusters and statistics for these five groups are available
in the ‘clusters’ and ‘stats’ tab of Additional File 2, and
Table 3 respectively. The list of species, accession num-
bers, and the results from this analysis are also available
online at github in Additional File 2.

Figure 4 depicts a hierarchical tree, showing the pos-
ition of the different clades. Ursids and Musteloidea
form two large clades, with 15 and 37 species, respect-
ively. Within Musteloidea we have three smaller groups
besides Mustelidae. The first one consists of both species
of A. fulgens. The second is made up of three mephitids,
S. gracilis, M. mephitis, and Conepatus chinga. Lastly,
two procyonids, Procyon lotor (raccoon), and Nasua
nasua (ring-tailed coati) make up the third group.
Supplementary figure 3 shows the average silhouette
width according to the number of clusters, with an
average silhouette width of 0.51 for two clusters.

Figure 5 shows the hierarchical tree constructed using
the NJ method. Mustelidae forms a well-defined clade,
with almost all branch points supported with a bootstrap

value of 100. N. nasua and P. lotor form a smaller clade
right next to Mustelidae. The three mephitids, C. chinga,
M. mephitis and S. putorius also form a small clade, well
separated from the other clades. The NJ method places
Ailurus next to Ursidae, suggesting that they possibly form
a monophyletic group. However, the node connecting
Ailurus with Ursidae only has a bootstrap value of 45.

Figure 6 show the hierarchical tree constructed using
the ML method. Here Mustelide, Procyonidae, and
Mephitidae all form their own clades with a likelihood
value of at least 94%. As opposed to the NJ tree, here
Ailurus is separated from Ursidae suggesting that it
might form its own clade as well. Ledje et al. [3] also
found that A. fulgens was distinct from all other caniforms,
and placed it in its own monotypic family. However, this
analysis was based on the analysis of only the mitochon-
drial 12S rRNA gene. Flynn et al. also reached a similar
conclusion based on the analysis of three mitochondrial
genes [1]. On the other hand, Peng et al. [7] classified A.
fulgens as a mustelid, based on the analysis of thirteen
concatenated mitochondrial proteins.
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Table 1 Classification of the 28 species used in the WGKS
analysis

Species Group

Ailurus fulgens 1
Enhydra lutris 1
Gulo gulo 1
Lontra canadensis 1
Lutra lutra 1
Mellivora capensis 1
Mustela ermine 1
Mustela putorius furo 1
Neovison vison 1
Pteronura brasiliensis 1
Taxidea taxus 1
Ailuropoda melanoleuca
Ursus americanus

Ursus arctos

Ursus maritimus

Ursus thibetanus
Acinonyx jubatus

Felis catus

Felis nigripes

Lynx canadensis

Lynx pardinus

Panthera leo

Panthera onca
Panthera pardus
Panthera tigris
Prionailurus bengalensis

Puma concolor

AW W W W W W W W W W W NN N NN

Spilogala gracilis

These results may seem to contradict the results of the
WGKS analysis, by placing A. fulgens into a monophyletic
group, separated from mustelids. Let us bear in mind, that
even though the mitochondrial genome is a good way to
study multi-gene alignments, it is still only a fraction of
the entire genome. We must also remember that A. ful-
gens is a geographically isolated species, which may lead to
its genetic isolation from other mustelids as well. Fulton
and Strobeck analyzed four nuclear sequence-tagged sites

Table 2 Statistical measures for each of the three clusters in the
WGKS analysis

Group Name No. species Min Mean Max stdev P-value
1 mustelids 11 0841 0954 0999 004 897E-97
2 ursids 5 0966 0983 0997 0012 1.23E-62
3 felids 1 0879 0965 0998 0032 6.17E-95
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Fig. 2 UPGMA-based hierarchical tree for the 28 species based on
PCC values. Ursids, felids, and mustelids form separate clades, with
S. gracilis in its own group

and one exon of the gene IRBP within 79 carnivore spe-
cies, and also found discordant results between the results
of the mitochondrial and nuclear analyses. In their study,
the mtDNA results supported the monophyly of Ailuridae
and Mephitidae, whereas the nuclear results suggested
otherwise [22].

Conclusion
In conclusion, A. fulgens possibly belongs to Mustelidae,
based on the analysis of the WGKS. This species also
clusters away from S. gracilis, indicating that mustelids
and mephitids belong to separate clades, which is rein-
forced by the mtDNA results as well. This is based on
whole genome data as opposed to the contradictory re-
sults in previous studies involving just a handful of
genes, one even in two different exons of the same gene.
This demonstrates the utility of the WGKS algorithm,
which takes a holistic approach of analyzing the WGS.
The mtDNA results as well as the maximum likelihood
tree appear to place A. fulgens into a monophyletic group.
A. melanoleuca, on the other hand, belongs to the ursids,
as shown consistently in both the WGS results as well as
the mtDNA results and the NJ and ML trees. Based on
neighbor-joining methods, it appears that Ailurus could
form a monophyletic group with ursids, but the bootstrap
value is too low to say this with certainty.
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Fig. 3 Heatmap depicting group relationships for 52 carnivore species based on alignment of the mitochondrial genome using the online
MUSCLE software. Brighter colors represent species pairs which are in the same group, with a sequence identity closer to 1. Darker colors
represent species pairs which are in different group, with a sequence identity closer to 0
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Methods

Data and programs used

The Python script motif_analysis_k-1.py at github.com/
csmatyi/motif_analysis was used to generate WGKS
profiles. Version 3.6.0. of R was used. The heatmap was
generated using the R command ‘heatmap’, using the
‘ward. D’ clustering algorithm for the WGKS analysis, and
the ‘single’ algorithm for the mitochondrial data. Clusters
were generated using the ‘cutree’ command and were
depicted in hierarchical trees using the UPGMA method

[23]. To determine the optimal number of clusters, the
‘cluster’ and ‘factoextra’ libraries and the fviz_nbclust
command were used, setting the method parameter to
‘wss’. The ‘fviz_silhouette’ plot was used to construct the
Silhouette plot. The WGS of the 28 species used in the
WGKS analysis and the 52 complete mitochondrial
genome Refseq sequences were downloaded from the
nucleotide database at NCBI. Additional Excel files and
figures as well as the mitochondrial genome fasta file can
be found online at github.com/csmatyi/ailurus.
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Table 3 Statistical measures for each of the five clusters in the mitochondrial analysis
Group Name No. species Min Mean Max stdev P-value
Ursidae
1 ursids 15 0811 0.880 0.989 0.048 5.0E-41
Musteloidea
2-5 Musteloidea 37 0.837 0.769 0.837 0.981 3.3E-185
2 mustelids 30 0.822 0.858 0.981 0.029 1.7E-201
3 ailuronids 2 0.980 0.980 0.980 NA 2.0E-122
4 procyonids 2 0.803 0.803 0.803 NA 1.9E-17
5 mephitids 3 0.830 0.838 0.849 0.01 0.012

Description of algorithm
The WGKS algorithm that was used in the analysis is an
alignment-free k-mer sequence comparison method
[24]. These methods involve the statistical comparison
of k-mers between species. A k-mer is a segment of
DNA k bp long, which can correspond to the core
segment of a transcription factor binding site, a repeat
element or other regulatory element. These elements
take part in protein binding and gene regulation and are
conserved across different species. The advantages of
using a k-mer based alignment-free algorithms over
alignment-based ones is that they process input much
faster and are unbiased by guide trees imposed upon the
data [25, 26].

For a lengthy description of the algorithm, the
reader is referred to Cserhati et al. [15]. However, a

short description is provided here for better under-
standing. The WGKS algorithm is divided into three
steps.

First, all possible k-2, k-1, and k-mers in the genome
of a given species are enumerated to give the observed
occurrence O. Then, based on these observed occur-
rences, the expected occurrence E can also be calculated
with the following equation:

Ex = O1.k-1°02.x/O02 11 (1)

where Ei is the expected occurrence of the k-mer,
O; 1.1 is the observed occurrence of the k-1-mer
from positions 1 to k-1, O, i is the observed occur-
rence of the k-1-mer from positions 2 to k, and
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Fig. 4 UPGMA-based hierarchical tree for the 52 species analyzed in the mtDNA study, based on sequence identity metrics. Mustelids and ursids
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Fig. 5 Hierarchical tree constructed using the Neighbor-Joining method using the MEGA-X software. The bootstrap consensus tree was inferred
from 1000 replicates. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of
replicate trees in which the associated taxa clustered together in the bootstrap test are shown next to the branches. This analysis involved 52

O5 k.1 is the observed occurrence of the k-2-mer
from positions 2 to k-1.
The score value S can be calculated in the following way:
O-E

O+E @)

Sk - mer =
Score values can be interpreted in three ways:
O>E : Sk _ mer—1 (overrepresnted k-mer) (3)
O< E: Sk_mer— -1 (underrepresented k-mer)
(4)

O= E
2 Sk _mer ~0 (ramdomly occurring k-mer) (5)

Even if the genome is partially or completely dupli-
cated, then the score value will not change. This is

because both the Observed and Expected values will
increase by the proportion that the duplicated genome is
compared to the pre-duplication genome.

The next step involves comparing the k-mer signa-
ture between two species. The k-mer signature is sim-
ply a list of all k-mers ordered in lexicographical
order from AA ... A to TT ... T, together with their
score values. For a given value k, there are 4* possible
k-mers. Thus, the k-mer signature also corresponds
to a vector of 4 numbers. Since octamers were ana-
lyzed, this corresponds to 65,536 possible octamers.
Two of these vectors can be compared to one another
for two different species using the Pearson Correl-
ation Coefficient (PCC). PCC values closer to 1 repre-
sent a pair of closely related species, within the same
clade. Lower PCC values denote two unrelated spe-
cies. This step is performed between all possible pairs
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BioNJ algorithms to a matrix of pairwise distances estimated using the Tamura-Nei model, and then selecting the topology with superior log
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Mustelidae

Procyonidae
Mephitidae

Ursidae

This analysis involved 52 nucleotide sequences, with a total of 17,440 positions in the final dataset

of species to derive a square PCC matrix. P-values for
clusters were calculated by comparing the PCC values
for all species pairs within the cluster with all PCC
values for all species pairs where one species came
from the cluster, and the other species was outside
the cluster.

The last step involves visualizing the PCC in a heat-
map and using clustering algorithms to detect mono-
phyletic groups. Clustering can be done for example
using the k-means clustering algorithm, or the Parti-
tioning Among Medoids (PAM) algorithm.

Construction of hierarchical trees
Hierarchical trees were drawn with the Neighbour Joining
[27] and Maximum Likelihood [28] methodologies, using

bootstrap values. Both trees were constructed using the
MEGA-X software [29], with parameters set to default
values. For the NJ method, the Maximum Composite Likeli-
hood model was used. 1000 bootstrap replications were used
for the construction of both trees. For the ML method, the
Tamura-Nei model was used with uniform rates.

Mitochondrial DNA analysis

The 52 complete mitochondrial genome sequences for
the ursid, mephitid, mustelid, procyonid species and the
two A. fulgens species were aligned using the online
MUSCLE tool [30], version 3.8 at ebi.ac.uk/Tools/msa/
muscle using default parameters. The sequence identity
matrix was derived from the alignment using BioEdit,
version 7.2.5 [31].
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Accession numbers of the 28 WGS from the National Center for
Biotechnology Information (NCBI):

Acinonyx jubatus

Felis catus

Felis nigripes

Lynx canadensis

Lynx pardinus

Panthera leo

Panthera onca
Panthera pardus
Panthera tigris
Prionailurus bengalensis

Puma concolor

GCF_003709585.1
GCF_000181335.3
GCA_004023925.1
GCF_007474595.1
GCA_900661375.1
GCA_008795835.1
GCA_004023805.1
GCF_001857705.1
GCF_000464555.1
GCA_005406085.1
GCF_003327715.1
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Spilogale gracilis
Enhydra lutris

Gulo gulo

Lontra canadensis
Lutra lutra

Mellivora capensis
Mustela erminea
Mustela putorius furo
Neovison vison
Pteronura brasiliensis
Taxidea taxus
Ailurus fulgens
Ailuropoda melanoleuca
Ursus americanus
Ursus arctos

Ursus maritimus

Ursus thibetanus

GCA_004023965.1
GCF_002288905.1

GCA_900006375.2
GCA_900006375.2
GCA_902655055.1
GCA_004024625.1
GCF_009829155.1

GCF_000215625.1

GCA_900108605.1
GCA_004024605.1
GCA_003697995.1
GCA_002007465.1
GCF_000004335.2
GCA_003344425.1
GCF_003584765.1

GCF_000687225.1

GCA_009660055.1

Accession numbers of 52 mtDNA sequences from the National Center for

Biotechnology Information:

Ailuropoda melanoleuca
Ailurus fulgens

Ailurus fulgens styani
Aonyx cinerea isolate 16
Arctodus simus

Arctonyx collaris voucher YP6001
Arctotherium sp.
Conepatus chinga

Enhydra lutris

Gulo gulo

Helarctos malayanus

Lutra lutra

Lutra sumatrana isolate 49

Lutrogale perspicillata isolate 21

Martes americana voucher ROM116315

Martes flavigula

Martes foina voucher YP6135
Martes martes

Martes melampus

Martes pennanti isolate MP41
Martes zibellina

Meles anakuma

Meles leucurus

NC_009492.1
NC_011124.1
NC_009691.1
NC_035814.1
NC_011116.1
NC_020645.1
NC_030174.1
NC_042596.1
NC_009692.1
NC_009685.1
NC_009968.1
NC_011358.1
NC_035810.1
NC_035811.1
NC_020642.1
NC_012141.1
NC_020643.1
NC_021749.1
NC_009678.1
NC_020664.1
NC_011579.1
NC_009677.1
NC_039173.1
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Meles meles

Melogale moschata voucher YP6128
Melursus ursinus

Mephitis mephitis voucher YP2994
Mustela altaica

Mustela erminea

Mustela eversmannii

Mustela frenata voucher ROM101452
Mustela itatsi isolate ITOT

Mustela kathiah voucher YP6126
Mustela nigripes

Mustela nivalis voucher YP1

Mustela putorius voucher ROM117143
Mustela sibirica voucher YP6136
Nasua nasua voucher ROM108237
Neovison vison voucher ROM 102488
Procyon lotor

Spilogale putorius

Taxidea taxus voucher ROM111450
Tremarctos ornatus

Ursus americanus

Ursus arctos

Ursus maritimus

Ursus spelaeus

Ursus thibetanus

Ursus thibetanus formosanus

Ursus thibetanus mupinensis

Ursus thibetanus thibetanus

Ursus thibetanus ussuricus

NC_011125.1
NC_020644.1
NC_009970.1
NC_020648.1
NC_021751.1
NC_025516.1
NC_028013.1
NC_020640.1
NC_034330.1
NC_023210.1
NC_024942.1
NC_020639.1
NC_020638.1
NC_020637.1
NC_020647.1
NC_020641.1
NC_009126.1
NC_010497.1
NC_020646.1
NC_009969.1
NC_003426.1
NC_003427.1
NC_003428.1
NC_011112.1
NC_009971.1
NC_009331.1
NC_008753.1
NC_011118.1
NC_011117.1
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