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Joonhyung Jung1, Changkyun Kim2 and Joo-Hwan Kim1*

Abstract

Background: Commelinaceae (Commelinales) comprise 41 genera and are widely distributed in both the Old and
New Worlds, except in Europe. The relationships among genera in this family have been suggested in several
morphological and molecular studies. However, it is difficult to explain their relationships due to high
morphological variations and low support values. Currently, many researchers have been using complete
chloroplast genome data for inferring the evolution of land plants. In this study, we completed 15 new plastid
genome sequences of subfamily Commelinoideae using the Mi-seq platform. We utilized genome data to reveal
the structural variations and reconstruct the problematic positions of genera for the first time.

Results: All examined species of Commelinoideae have three pseudogenes (accD, rpoA, and ycf15), and the former
two might be a synapomorphy within Commelinales. Only four species in tribe Commelineae presented IR expansion,
which affected duplication of the rpl22 gene. We identified inversions that range from approximately 3 to 15 kb in four
taxa (Amischotolype, Belosynapsis, Murdannia, and Streptolirion). The phylogenetic analysis using 77 chloroplast protein-
coding genes with maximum parsimony, maximum likelihood, and Bayesian inference suggests that Palisota is most
closely related to tribe Commelineae, supported by high support values. This result differs significantly from the current
classification of Commelinaceae. Also, we resolved the unclear position of Streptoliriinae and the monophyly of
Dichorisandrinae. Among the ten CDS (ndhH, rpoC2, ndhA, rps3, ndhG, ndhD, ccsA, ndhF, matK, and ycf1), which have
high nucleotide diversity values (Pi > 0.045) and over 500 bp length, four CDS (ndhH, rpoC2, matK, and ycf1) show that
they are congruent with the topology derived from 77 chloroplast protein-coding genes.

Conclusions: In this study, we provide detailed information on the 15 complete plastid genomes of Commelinoideae
taxa. We identified characteristic pseudogenes and nucleotide diversity, which can be used to infer the family
evolutionary history. Also, further research is needed to revise the position of Palisota in the current classification of
Commelinaceae.
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Introduction
Commelinaceae Mirb., commonly known as the day-
flower and spiderwort family, are the largest family of
Commelinales Mirb. ex Bercht. & J. Presl, including four
other families: Haemodoraceae, Hanguanaceae, Philydra-
ceae, and Pontederiaceae, [1, 2]. Commelinaceae consist
of 41 genera and approximately 730 species, widely dis-
tributed in both the Old and New Worlds, except in
Europe [2–4]. Genus Callisia Loefl. and Tradescantia L.
emend. M. Pell. are commonly used as ornamentals,
while Commelina L. is used as vegetables and more
commonly known as troublesome weeds. The species of
Commelinaceae are usually succulent herbs with closed
leaf-sheaths, raphide-canals, and three-celled glandular
microhairs [3, 4]. Additionally, flowers of Commelina-
ceae are mainly insect-pollinated, have short blooming
times, and lack any kind of nectaries [5, 6]. The flower-
ing unit (inflorescence) of Commelinaceae is a many-
branched thyrse, with each branch generally consisting
of a many-flowered cincinnus. The cincinni can some-
times be 1-flowered or, more rarely, the whole inflores-
cence can be reduced to a single flower [4, 7].
Previous classifications of Commelinaceae emphasized

floral and anatomical characters. In the first classifica-
tion, Commelinaceae were divided into two tribes, Com-
melineae and Tradescantieae, based on the number of
stamens and their fertility [8]. Then, Bruckner [9] used
flower symmetry, and Pichon [10] used anatomical char-
acters to exclude Cartonema R. Br. from Commelina-
ceae. In 1966, 15 genera of Commelinaceae were defined
using various floral characters [11]. In the current classi-
fication, Commelinaceae were divided into two subfam-
ilies, Cartonematoideae (Pichon) Faden ex G. C. Tucker
and Commelinoideae Faden & D. R. Hunt, based on the
presence of raphide-canals and glandular microhairs [4].
Cartonematoideae consists of two genera (Cartonema
and Triceratella Brenan), whereas Commelinoideae in-
cludes 39 genera, divided into two tribes, Commelineae
(Meisn.) Faden & D. R. Hunt and Tradescantieae
(Meisn.) Faden & D. R. Hunt, based on palynological
characters. The latter tribe was arranged into seven sub-
tribes based on morphological and cytological characters
[4, 12]. However, it is difficult to interpret relationships
among genera due to their morphological variation. The
morphology-based phylogeny was highly homoplasy and
incongruent with the current classification [13]. In order
to clarify the relationships within Commelinaceae, sev-
eral phylogenetic studies have been conducted [14–20].
Based solely on the plastidial rbcL marker, Cartonema
was recovered in a basal clade, and both Commelineae
and Tradescantieae were monophyletic, except for the
position of Palisota Rchb., which had low support values
[15]. Furthermore, the plastidial ndhF suggested that
subtribe Tradescantiinae was paraphyletic, whereas

Thyrsantheminae and Dichorisandrinae were polyphyl-
etic [16]. Combined data of nuclear 5S NTS and plastid
trnL-F regions resulted in a well-supported relationship
between Commelineae and Tradescantieae. However,
the position of Palisota and Spatholirion Ridl. were am-
biguous [17].
Chloroplast genome or plastid genome (cpDNA) is

highly conserved and has a typical quadripartite struc-
ture containing a large single copy (LSC) and a small
single copy (SSC) separated by two inverted repeats
(IRs). The size of cpDNA ranges from 19,400 bp (Cyti-
nus hypocistis) to 242,575 bp (Pelargonium transvaa-
lense) and generally contains 120–130 genes, which
perform important roles in photosynthesis, translation,
and transcription [21, 22]. The rapid development of
next-generation sequencing (NGS) has enabled many
studies with high-quality complete plastid genomes with
raw reads at low costs. Due to its conserved characteris-
tics, chloroplast protein-coding genes were used to re-
construct the phylogenetic relationships in other
monocot groups [23–25]. Furthermore, these data are
useful to infer biogeography, molecular evolution, and
age estimation [26–28]. The aims of this study are to 1)
explore the genome evolution in Commelinaceae sub-
family Commelinoideae through analyses of sequence
variation, and gene content and order; 2) find latent
phylogenetically informative genes through high nucleo-
tide diversity; 3) reconstruct the phylogenetic relation-
ships among members of Commelinoideae with other
monocot groups using 77 chloroplast protein-coding
genes data, especially the relationships among the six
subtribes of Tradescantieae.

Results
Chloroplast genome assembly and annotation
We completed 15 new plastid genomes in this study
listed in Table 1 through 9 to 21 million raw reads for
each species (Fig. S1, Table S1). A total of 16 plastid ge-
nomes, including Belosynapsis ciliata, exhibit the typical
quadripartite structure containing LSC and SSC regions
separated by two inverted repeats (Fig. 1). Plastid gen-
ome sequences of Murdannia edulis and B. ciliata are
over 170 kb in length whereas that of Commelina com-
munis is 160,116 bp in length (Table 1). In addition, M.
edulis has the lowest GC content (34.4%), whereas Pali-
sota barteri has the highest GC content (36.2%)
(Table 1). The highest length difference (about 8801 bp)
was observed in the LSC region, between B. ciliata and
C. communis. GC content in the SSC region was about
3.4% between Dichorisandra thyrsiflora and M. edulis
(Table 1). Plastid genomes of Commelinoideae have 131
genes, of which 111 are unique, and 20 are duplicated in
the IR regions (Table 2), except for the rpl22 gene,
which was not duplicated in tribe Tradescantieae. There
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are 77 protein-coding genes (CDS), 30 transfer RNA
(tRNA) genes and four ribosomal RNA (rRNA) genes in
examined Commelinoideae taxa (Table 2). In these
genes, three CDS (rps12, clpP, and ycf3) have two in-
trons, while nine CDS (atpF, ndhA, ndhB, petB, petD,
rpl2, rpl16, rpoC1, and rps16) and six tRNA (trnK-UUU,
trnG-UCC, trnL-UAA, trnV-UAC, trnI-GAU, and trnA-
UGC) have one intron (Table 2). The rps12 gene was
trans-spliced, which has the 5′ exon in the LSC region
and the 3′ exon and intron in the IR regions. Three
pseudogenes (accD, rpoA, and ycf15) were identified
from all Commelinoideae species, one (ycf15) of which
was duplicated in the IR regions (Table 2). These three
genes contained several internal stop codons due to in-
sertions and deletions, thus are identified as pseudo-
genes. Also, we identified ndhB as a pseudogene in two
species (Pollia japonica and Rhopalephora scaberrima)
due to point mutation.

Comparative chloroplast genome structure and
nucleotide diversity
The aligned data of whole plastid genomes showed high
similarities in coding genes, and high variations in non-
coding genes (Fig. 2). We found several genome struc-
ture variations among Commelinoideae species. M. edu-
lis and Streptolirion volubile had one inversion from
rbcL to psaI intergenetic spacer (approximately 3 kb)
and petN to trnE-UUC (approximately 2.8 kb), respect-
ively. Amischotolype hispida and B. ciliata had two large
inversions from trnV-UAC to rbcL and psbJ to petD
about approximately 5 kb and 16 kb, respectively. The
IR-SSC boundary was similar among species of Comme-
linoideae (Fig. 3). All plastid genomes have an incom-
pletely duplicated ycf1 gene in the IRB-SSC junctions.
We also found an expansion of IR regions in tribe Com-
melineae, which resulted in the duplication of the rpl22
genes (Fig. 3).

Table 1 Comparison of the features of plastomes from 16 genera of Commelinaceae

Taxa Tribe Subtribe Length and G + C content GenBank
accession
number

Voucher

LSC bp
(G + C%)

SSC bp
(G + C%)

IR bp
(G + C%)

Total bp
(G + C%)

Gibasis geniculata Tradescantieae Tradescantiinae 89,154
(33.3)

18,278
(30.5)

26,953
(42.5)

161,338
(36.1)

MW617987 JH200402001

Tradescantia virginiana Tradescantieae Tradescantiinae 91,991
(32.7)

18,462
(30.2)

27,236
(42.3)

164,925
(35.6)

MW617994 JH170813001

Callisia repens Tradescantieae Tradescantiinae 89,446
(33.2)

18,252
(30.3)

27,078
(42.5)

161,854
(36.0)

MW617982 JH190318001

Weldenia candida Tradescantieae Tradescantiinae 95,029
(32.6)

19,024
(30.3)

27,233
(42.6)

168,519
(35.5)

MW617995 JH190730001

Amischotolype hispida Tradescantieae Coleotrypinae 94,525
(32.9)

19,255
(30.4)

27,385
(42.4)

168,550
(35.7)

MW617981 JH191109002

Belosynapsis ciliata Tradescantieae Cyanotinae 96,164
(31.3)

20,224
(28.0)

27,241
(42.6)

170,870
(34.5)

MK133255.1 –

Cochliostema odoratissimum Tradescantieae Dichorisandrinae 92,560
(33.2)

18,856
(30.4)

27,276
(42.5)

165,968
(35.9)

MW617983 JH190310001

Geogenanthus poeppigii Tradescantieae Dichorisandrinae 94,583
(32.8)

18,612
(30.7)

27,098
(42.5)

167,391
(35.7)

MW617986 JH190803001

Dichorisandra thyrsiflora Tradescantieae Dichorisandrinae 94,347
(32.9)

18,348
(31.1)

27,194
(42.6)

167,083
(35.8)

MW617985 JH190616001

Siderasis fuscata Tradescantieae Dichorisandrinae 94,389
(32.9)

18,606
(31.0)

27,196
(42.6)

167,387
(35.8)

MW617992 XX-0-GENT-19822394

Streptolirion volubile Tradescantieae Streptoliriinae 91,528
(33.1)

19,595
(29.3)

27,447
(42.0)

166,017
(35.6)

MW617993 JH180919003

Palisota barteri Tradescantieae Palisotinae 93,315
(33.5)

18,905
(30.8)

27,074
(42.7)

166,368
(36.2)

MW617989 JH190222001

Pollia japonica Commelineae – 90,295
(33.2)

19,151
(29.7)

27,604
(42.2)

164,654
(35.8)

MW617990 JH180805001

Rhopalephora scaberrima Commelineae – 87,602
(33.2)

18,354
(29.5)

27,487
(42.1)

160,930
(35.8)

MW617991 JH191109014

Commelina communis Commelineae – 87,363
(33.0)

18,561
(29.1)

27,096
(42.3)

160,116
(35.7)

MW617984 JH180709001

Murdannia edulis Commelineae – 96,248
(31.4)

20,798
(27.7)

27,464
(42.1)

171,974
(34.4)

MW617988 JH191110010
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We analyzed nucleotide divergences of CDS, tRNA,
and rRNA to explain variant characteristics among the
16 Commelinoideae plastid genomes (Fig. 4, Table S3).
Nucleotide diversity (Pi) for each CDS ranges from
0.00427 (psbL) to 0.09543 (ycf1) with an average of
0.03473. Nine CDS (rps3, ndhG, ndhD, ccsA, rps15,
rpl32, ndhF, matK, and ycf1) have remarkably high
values (Pi > 0.05) and seven CDS (psbL, rpl23, rps19,
ndhB, rpl2, rps7, rps12) have low values (Pi < 0.01; Fig. 4).

Compared with tribe Tradescantieae, Commelineae have
higher values in 59 out of 77 CDS (Fig. 4). The rpl22
gene has the highest difference of values between
Commelineae (Pi = 0.01499) and Tradescantieae (Pi =
0.04655). In the tRNA and rRNA regions, Pi values
range from 0 (trnT-UGU, trnH-GUG, trnV-GAC, and
trnI-GAU) to 0.02697 (trnQ-UUG), with an average of
0.006. Commelineae has the highest value in the trnL-
UAA (Pi = 0.02941), while Tradescantieae has no value

Fig. 1 Representative chloroplast genome of Commelinaceae. The colored boxes represent conserved chloroplast genes. Genes shown inside the
circle are transcribed clockwise, whereas genes outside the circle are transcribed counter-clockwise. The small grey bar graphs inner circle shows
the GC contents
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in this gene. We tried to find latent phylogenetically in-
formative genes for the Commelinoideae by checking in-
dividual CDS with high values (Pi > 0.045) and over 500
bp length. Ten CDS (ndhH, rpoC2, ndhA, rps3, ndhG,
ndhD, ccsA, ndhF, matK, and ycf1) were checked with a
ML analysis and compared positions among 16 genera
of Commelinoideae (Fig. 5). Four CDS (ndhH, rpoC2,
matK, and ycf1) have similar topology in Commelinoi-
deae even though the other monocot groups were
unclear.

Phylogenetic analysis
The aligned 77 chloroplast protein-coding genes had 65,
481 bp, of which 16,380 were parsimony informative.
The MP analysis produced single most-parsimonious
tree (tree length = 72,586, CI = 0.488, RI = 0.626). The
tree topologies of the MP, ML, and BI analyzes were
found to be congruent with 100% bootstrap (PBP, MBP)
values and 1.00 Bayesian posterior probabilities (PP) in
almost all nodes, except for Palisota, which was unre-
solved in MP analysis (not shown) (Fig. 5). The result
suggested that Palisota was sister to the group consisting
of the rest of Commelinoideae (Fig. 5). In Tradescan-
tieae, Streptoliriinae was positioned at the basal node.
Then, Dichorisandrinae divided into two clades

((Dichorisandra, Siderasis), (Cochliostema, Geogen-
anthus)) with relatively low support values in both MP
and ML analysis (PBP = 77, MBP = 84, PP = 1) (Fig. 5).
Among the remaining three subtribes, where two clades
((Coleotrypinae and Cyanotinae), (Tradescantiinae))
were formed with high support values (PBP = 100,
MBP = 100, PP = 1), respectively (Fig. 5).

Discussion
Chloroplast genome structure
In this study, we completed 15 new plastid genomes of
Commelinoideae taxa (Table 1). Plastid genomes have
typical quadripartite structures, including LSC, SSC and
two IR regions. Plastid genomes of Commelinoideae
have variable total length and GC content. The LSC and
SSC regions are relatively longer and higher AT-content
than the IR region (Table 1). The functions of AT-rich
sequences in the plastid genome were known as enhan-
cing gene transfer success by making stable transcripts
[29]. However, AT-rich sequences caused structural vari-
ations like inversions by their weak hydrogen bonding.
In this study, we identified small to large inversions in
four species (Fig. 2). There is one inversion in M. edulis
and S. volubile, and two inversions in A. hispida and B.
ciliata (Fig. 2). Inversions are known as common

Table 2 Gene composition within chloroplast genomes of Commelinaceae species

Groups of genes Names of genes No.

RNA genes Ribosomal RNAs rrn4.5 X2, rrn5 X2, rrn16 X2, rrn23 X2 8

Transfer RNAs trnK-UUU a, trnQ-UUG, trnS-GCU, trnG-UCC a, trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-
UUC, trnT-GGU, trnS-UGA, trnG-GCC, trnfM-CAU, trnS-GGA, trnT-UGU, trnL-UAA a, trnF-GAA,
trnV-UACa, trnM-CAU, trnW-CCA, trnP-UGG, trnH-GUG X2, trnI-CAU X2, trnL-CAA X2, trnV-GAC
X2, trnI-GAU a X2, trnA-UGC a X2, trnR-ACG X2, trnN-GUU X2, trnL-UAG

38

Protein genes Photosystem I psaA, psaB, psaC, psaI, psaJ 5

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ 15

Cytochrome petA, petB a, petD a, petG, petL, petN 6

ATP synthases atpA, atpB, atpE, atpF a, atpH, atpI 6

Large unit of Rubisco rbcL 1

NADH dehydrogenase ndhA a, ndhB a X2, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 12

ATP-dependent protease subunit
P

clpP b 1

Envelope membrane protein cemA 1

Ribosomal
proteins

Large units of ribosome rpl2 a X2, rpl14, rpl16 a, rpl20, rpl22 X2, rpl23 X2, rpl32, rpl33, rpl36 12

Small units of ribosome rps2, rps3, rps4, rps7 X2, rps8, rps11, rps12 X2, rps14, rps15, rps16 a, rps18, rps19 X2 15

Transcription/
translation

RNA polymerase rpoA⍦, rpoB, rpoC1 a, rpoC2 3

Initiation factor infA 1

Miscellaneous protein accD⍦, ccsA, matK 2

Hypothetical proteins and
conserved reading frames

ycf1, ycf2 X2, ycf3 b, ycf4, ycf15⍦ 5

Total 131
agene with one intron; bgene with two introns; X2: duplicated gene; ⍦: pseudogene
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genomic rearrangement events and provide informative
infrageneric relationships. In previous studies, inversions
were caused by microhomology-driven recombination
via short repeats and suggested the monophyly of tribe
Desmodieae (Fabaceae) [30]. Our results also suggest
that both Amischotolype and Belosynapsis have two large
inversions in the same loci and formed a clade sister to
subtribe Dichorisandrinae (Fig. 5).
We identified an IR expansion in members of Comme-

lineae (Commelina, Murdannia, Pollia, and Rhopale-
phora). Four species have one more rpl22 gene, which is
duplicated in the terminal IR regions (Fig. 3). Although
IR expansion affected gene composition, the IR region’s
total length is similar among 16 Commelinoideae spe-
cies. IR expansion and contraction are important events
in several families. In Ranunculaceae, IR expansion was
detected as a synapomorphy of tribe Anemoneae [31].
Likewise, IR expansion lent further support to the rela-
tionship between two subfamilies Ehrhartoideae and
Pooideae (Poaceae) [32]. This event also may be phylo-
genetically informative in Commelinoideae since only
members of tribe Commelineae sharing this genome
variation (Fig. 5).
Within Commelinoideae plastid genomes, three

protein-coding genes (accD, rpoA, and ycf15) were

classified as pseudogenes (Fig. S2). The ycf15 gene has
several abnormal stop codons caused by insertions and
deletions (indel) of bases similar to other monocots. We
also identified that all examined species have indels at
the frontal part of the accD gene (until 400 bp) and the
terminal part of the rpoA gene (after 700 bp; Fig. S2).
The accD gene, encoding the beta-carboxyl transferase
subunit of acetyl-CoA carboxylase, is found in most
flowering plants and synthesizes fatty acids within the
chloroplast. It was suggested as an essential gene associ-
ated with maintaining chloroplast structure [33]. How-
ever, it was reported as a gene loss or pseudogenization
in Acoraceae and Poaceae [34, 35]. Recent studies sug-
gested that the accD gene was found to be nuclear origi-
nated in several eudicots [36, 37]. The rpoA gene, which
encodes the alpha subunit of RNA polymerase, is also
found in most flowering plants but was recorded to hav-
ing been lost in the chloroplast genome of mosses [38].
In one species, Physcomitrella patens (Funariaceae), the
rpoA gene was transferred to the nucleus [39]. We need
further studies to confirm whether these two genes have
been transferred to the nucleus or not in Commelina-
ceae. We identified that the pseudogened accD and rpoA
only appeared in Commelinoideae among Commeli-
nales. It might be a specific character of gene

Fig. 2 Plots of percent sequence identity of the chloroplast genomes of 16 Commelinaceae species with Hanguana malayana as a reference. The
percentage of sequence identities was estimated, and the plots were visualized in mVISTA
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composition in Commelinales. We also found a point
mutated base in the third codon of the ndhB gene in P.
japonica and R. scaberrima, which formed a clade in this
study (Fig. 5).

We measured the nucleotide diversity of CDS, tRNA,
and rRNA to identify the genetic divergence between 16
Commelinoideae plastid genomes. We found that the
CDS in the IR regions have lower nucleotide diversity

Fig. 3 Comparisons of LSC, SSC, and IR regions boundaries between 16 Commelinaceae species
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than that of the LSC and SSC regions (Fig. 4). This
result has also been identified in the other monocots
[40–42]. It is possibly attributed to a copy correction of
the IR regions via gene conversion [43]. Especially, we
can see this result in the rpl22 gene. Only Commelineae
species present a duplicated rpl22 gene due to the
above-mentioned IR expansion, while the remaining 12
taxa have one gene in the LSC or LSC-IR junction
(Fig. 3). Difference of nucleotide diversity in this gene
between Commelineae (Pi = 0.015) and Tradescantieae
(Pi = 0.0466) is 0.0316. It might be phylogenetically use-
ful information for Tradescantieae only.

Implications of plastomes data for phylogenetic
reconstructions
The first phylogenetic analysis of Commelinaceae based
on rbcL marker revealed a relationship of 32 species
representing 30 genera of Commelinaceae [15].
Cartonematoideae was in a basal clade, sister to Com-
melinoideae and all remaining species [15]. Aside from
Palisota, Commelinoideae was divided into two tribes,
Commelineae and Tradescantieae, with low bootstrap
support values due to insufficient information [15]. Al-
though several phylogenetic studies were conducted, the
relationships between the genera of Commelinaceae

Fig. 4 Nucleotide diversity (Pi) values in protein-coding genes, tRNA, and rRNA in 16 Commelinaceae species. The dashed lines are the borders of
the LSC, IR and SSC regions
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have remained unresolved. The position of Palisota had
been problematic, being recovered as: 1) sister to all gen-
era of Commelinoideae with high bootstrap values [15];
2) low bootstrap support value with other members of
Tradescantieae [16]; or 3) sister to tribe Commelineae
[19]. Subtribe Streptoliriinae was recovered as sister to
tribe Commelineae in the trnL-trnF analysis [17]. Finally,
subtribe Dichorisandrinae seemed polyphyletic in the
previous studies [15, 16, 19, 44]. These results are most
likely due to limited taxon sampling and/or used few in-
formative genetic markers. The aligned 77 chloroplast
coding genes in this study suggest a more well-
supported relationship between the genera (Fig. 5). We
identified that Commelinoideae divided into two clades,
tribe Commelineae and Tradescantieae, with high sup-
port values (Fig. 5). However, Palisota, which belongs to
Tradescantieae in the current classification [3], is recov-
ered by us as sister to tribe Commelineae (Fig. 5). The
ML and BI results present high support values, even
though this relationship is unresolved in MP (data not
shown). Compared with the current classification, it
seems like that subsidiary cells in the stomata and exine
morphology are homoplastic to divide two tribes in
Commelinoideae [3]. In the Commelinaceae, Palisota is
unusual genus for its unique morphological characters
like a fleshy berry as a fruit, stamen and staminode ar-
rangement, complex reproductive system, and a basic

number of chromosome (x = 20) [13, 45]. Zygomorphic
androecium character places Palisota within the Com-
melineae clade in the morphological cladistic analysis
[13]. However, this character is also homoplastic within
Commelinoideae. Further research is needed to sug-
gest appropriate characters for Palisota. The four spe-
cies of Commelineae sampled by us are recovered
with a relationship similar to previous studies [15]:
(Murdannia, (Commelina, (Pollia, Rhopalephora))).
Within Tradescantieae, Streptoliriinae diverged first,
followed by Dichorisandrinae divided into two clades
with relatively low support values (PBP = 77/MBP =
84/PP = 1) (Fig. 5). The clade composed by Coleotry-
pinae and Cyanotinae is recovered following the di-
version of subtribe Dichorisandrinae, which is sister
to Tradescantiinae sensu Pellegrini, [46]. Interestingly,
the Asian and African subtribe Coleotrypinae and
Cyanotinae were nested well within the New World
subtribes (Fig. 5). This result is similar to previous
studies and support the hypothesis that one shift
from the Old World to the New World followed by
dispersal back to the Old World [15, 16].

Conclusions
Our study revealed genome structural characteristics,
nucleotide diversity, improved relationships between
genera using 15 newly complete chloroplast genomes of

Fig. 5 The Maximum Likelihood tree of 42 monocots inferred from 77 chloroplast protein-coding genes. Numbers indicate support (maximum
parsimony bootstrap (PBP)/maximum likelihood bootstrap (MBP)/posterior probability (PP)). Only support under PBP = 90/MBP = 100/PP = 1.00 is
shown. The dashes “-” indicate incongruence between MP and ML/BI trees
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Commelinoideae. Compared with other Commelinales,
we found two characteristic pseudogenes in all members
of Commelinoideae, which might be a synapomorphy
within the order. We also reconstruct the phylogenetic
relationships using 77 chloroplast protein-coding genes.
Although not being able to address the Commelinaceae
as a whole, due to not sampling of subfamily Cartone-
matoideae, we have been able to recover well-supported
relationships for the taxa of Commelinoideae, especially
between the subtribes of Tradescantieae. One interesting
result was that Palisota (subtribe Palisotinae) is more
closely related to tribe Commelineae than the remaining
members of tribe Tradescantieae. In the current classifi-
cation, Palisota is a member of Tradescantieae according
to the number of subsidiary cells in stomata and pollen
exine lacking spines [3]. However, it seems like that
these characters are homoplastic, so we need a further
study to suggest appropriate characters for two tribes in
Commelinoideae. We resolved the ambiguous position
of Streptoliriinae which was placed with Commelineae
group [17]. Also, Dichorisandrinae was monophyletic in
this study which was polyphyletic in the previous studies
[15, 16, 19]. Four genes (ndhH, rpoC2, matK, and ycf1)
are congruent with the tree estimated from the 77
protein-coding genes. These genes will be helpful to re-
construct relationships of the whole Commelinaceae in
the future. Future studies might use the information of
chloroplast genomes, relationship between genera to de-
fine new classification of Commelinaceae that we pro-
vided in this study. These data will make sure the
historical biogeography and genome evolution of
Commelinaceae.

Materials and methods
Taxon sampling and DNA extraction
Fresh leaf samples were collected in the field and dried
directly with silica gel in room temperature until DNA
extraction (Table 1). The samples covered four out of 14
genera in tribe Commelineae and 11 out of 25 genera,
including six subtribes of tribe Tradescantieae. We pre-
pared the voucher specimens for all used samples and
deposited them in the Gachon University Herbarium
(GCU) with their accession numbers. We used a
modified CTAB method to extract total DNA [47] and
checked quality using a spectrophotometer (Biospec-
nano; Shimadzu) and assessed by agarose gel
electrophoresis.

Genome sequencing, assembly, and annotation
Next-generation sequencing (NGS) was conducted using
the Illumina MiSeq sequencing system (Illumina, Seoul,
Korea). We imported NGS raw data and trimmed the
ends limited to a 5% error probability to remove poor
quality reads using Geneious prime 2020.1.2 [48]. Then,

we performed ‘map to reference’ using the Hanguana
malayana chloroplast genome (GenBank accession =
NC_029962.1) as a reference to isolate cpDNA reads. De
novo assembly was implemented to reassemble reads
using Geneious prime 2020.1.2 [48]. We used newly gen-
erated sequences as a reference to reassemble raw reads.
We repeated this step until quadripartite structures were
completed. Gaps were filled by Sanger sequencing using
specific primers. Gene content and order were annotated
using H. malayana as a reference using 80% similarity to
identify genes in Geneious. All tRNAs were checked by
tRNAScan-SE [49] with default search mode. Illustra-
tions of plastomes were produced using OGDraw [50].

Comparative genome analysis
We compared genome structure, size, gene content
across all 16 species including B. ciliata (GenBank acces-
sion =MK133255.1), subtribe Cyanotinae. The GC con-
tent was calculated and compared using Geneious. The
whole chloroplast genome sequences of Commelinoi-
deae species were aligned using MUSCLE embedded in
Geneious and visualized using LAGAN mode in
mVISTA [51, 52]. For the mVISTA plot, we used the an-
notated cpDNA of H. malayana as a reference. We also
examined the nucleotide diversity (Pi) of chloroplast
protein-coding genes, transfer RNA genes and ribosomal
RNA genes among the 16 Commelinoideae species
through a sliding window analysis using DnaSP v. 6.0
[53]. For the sequence divergence analysis, we applied
the window size of 100 bp with a 25 bp step size. The IR
and SC boundaries of the 16 Commelinoideae species
were compared and illustrated using IRscope [54].

Phylogenetic analysis
A total of 42 chloroplast genome sequences (including
15 new chloroplast genomes of Commelinoideae) were
used (Table S2). We extracted 77 protein-coding genes
and aligned them using the MUSCLE embedded in Gen-
eious prime 2020.1.2 [48]. For the data set, Acorus cala-
mus (Acoraceae) was designated as an outgroup. We
performed maximum parsimony (MP), maximum likeli-
hood (ML), and Bayesian inference (BI) to infer relation-
ships of Commelinoideae and related taxa. The MP
analyses were carried out in PAUP* v4.0a [55] with all
characters equally weighted and unordered. Gaps were
treated as missing data. Searches of 1000 random taxon
addition replicates used tree-bisection-reconnection
(TBR) branch swapping, and MulTrees permitted ten
trees to be held at each step. Bootstrap analyses (PBP,
parsimony bootstrap percentages, 1000 pseudoreplicates)
were conducted to examine internal support with the
same parameters. We used jModelTest version 2.1.7 [56,
57] to find the best model with Akaike’s information cri-
terion (AIC) before running the ML and BI analyses.
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The GTR + I + G was the best model for the
concatenated data sets. We used the IQ-TREE web ser-
ver (http://iqtree.cibiv.univie.ac.at/) to make the ML
searches [58]. Support value (MBP, mean bootstrap per-
centage) was calculated with 1000 replicates of ultrafast
bootstrap [59]. MrBayes v3.2.7 [60] was used for BI ana-
lyses. Two simultaneous runs were performed starting
from random trees for at least 1,000,000 generations.
One tree was sampled every 1000 generations. In total,
25% of trees were discarded as burn-in samples. The
remaining trees were used to construct a 50% majority-
rule consensus tree, with the proportion bifurcations
found in this consensus tree given as posterior probabil-
ity (PP) to estimate the robustness of half of the BI tree.
The effective sample size values (ESS) were then checked
for model parameters (at least 200). The phylogenetic
trees were edited using FigTree v1.4.4 program [61].
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