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Abstract

Background: Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity
have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with
invertebrates.

Results: We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes)
and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic
potential, even among closely related strains. The isolates, which were initially identified as three distinct species based
on sequence variation in the 165 rRNA locus, could be distinguished as 41 different species based on genome-wide
average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide
synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14
distinct classes of BGCs (range = 9-20). Results also revealed large inter- and intra-species variation in gene content
(single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall
genetic diversity present in bat-associated Streptomyces. Finally, we show that genome-wide recombination has partly
contributed to the large genomic variation among strains of the same species.

Conclusions: Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to
prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize
within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery
efforts in Streptomyces.
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Background

Many of the drugs used against infectious diseases and
other medical disorders have been historically derived
from molecules synthesized by environmental microbes,
with the most notable belonging to the genus Streptomy-
ces (phylum Actinobacteria) [1-3]. The genotypic and

* Correspondence: dnorthup@unm.edu; candam@albany.edu

’Department of Biology, University of New Mexico, Albuquerque, NM, USA
*Department of Biological Sciences, University at Albany, State University of
New York, Albany, NY, USA

Full list of author information is available at the end of the article

K BMC

phenotypic diversity of Streptomyces is remarkably enor-
mous. The current, estimated number of known Strepto-
myces species is approximately 650 [4], thus making it
one of the largest genera in the bacterial domain. Strep-
tomyces are ubiquitous in the environment. They are
often found in soil and decaying vegetation [5, 6], as well
as in extreme environments such as polar regions [7, 8],
deserts [9], hypersaline sites [10] and the deep sea [11].
Some species form a symbiotic relationship with inverte-
brates [12], many of which use Streptomyces-produced
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antibiotics to protect themselves against infection [12,
13]. For example, beewolf digger wasps cultivate symbi-
otic Streptomyces species that produce a cocktail of mul-
tiple antibiotics for protection against infections [14].
Wasps then deposit a combination prophylaxis of nine
different antibiotics into the larval cocoon, a defensive
strategy similar to the combination treatment used in
human medicine [14]. This results in higher efficacy
against a broader spectrum of pathogens and reduces
the likelihood of a pathogen developing resistance [14].

The increasing public health burden caused by multi-
drug resistance and the continuing need to find new
treatments against communicable (infectious) and non-
communicable (chronic) diseases suggests that the
search for bioactive compounds with novel mechanisms
of action or with new cellular targets is greater than
ever. Unexplored or rarely visited sites, such as caves
that have unique physical and chemical characteristics
(e.g., high humidity, low light, limited nutrients), repre-
sent a fertile source of antibiotic-producing bacteria for
potential use in drug discovery efforts. For example, a
genetically diverse assembly of Streptomyces have been
identified in various volcanic, limestone and other cal-
careous caves, including those found on cave walls and
in guano [15-18]. When tested against a variety of fun-
gal and bacterial pathogens, some of these Streptomyces
exhibited antagonistic activity, thus providing a rich res-
ervoir of pharmaceutically relevant bioactive molecules.
Cave-dwelling animals such as bats have also been
shown to harbor diverse Streptomyces bacteria, many of
which have the ability to inhibit the invasive fungus
Pseudogymnoascus destructans [19]. This fungus is the
causal agent of white-nose syndrome that affects hiber-
nating bats and has resulted in reduced bat populations
in North America [20].

The ability of Streptomyces to successfully inhabit many
underexplored or overlooked environments suggests that
many novel bioactive compounds remain to be discovered.
In this study, we used genomic approaches to explore the
diversity of 73 Streptomyces isolates collected from mul-
tiple species of bats inhabiting caves in Arizona and New
Mexico [19]. Results indicate a remarkably diverse array of
Streptomyces species from bats, based on genome-wide
average nucleotide identity (ANI) [21]. We also report in-
ter- and intra-species variation in gene content and bio-
synthetic gene clusters, which further expands the
metabolic potential of these bacteria. Our findings provide
important insights on bats and caves as unique but poorly
studied environmental sources of antibiotic-producing
Streptomyces. This knowledge will be critical to addressing
the urgent need to discover commercial antibiotics with
novel cellular targets or novel molecular activity to inhibit
pathogens that threaten the health of humans, bats and
other animals.
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Results

Discordance in species boundaries between 16S rRNA
gene and genome-wide nucleotide identity

We obtained whole genome sequences of 73 Streptomy-
ces isolates that were sampled from the skin and fur sur-
faces of healthy bats (i.e., free of white-nose syndrome)
that were collected from multiple caves in Arizona and
New Mexico, USA (Additional file 1: Table S1). These
isolates were selected from a culture collection compris-
ing 632 isolates, which were initially identified using se-
quence variation in the 16S rRNA locus [19]. The 73
isolates came from nine bat species: pallid bat (Antro-
zous pallidus), Townsend’s big-eared bat (Corynorhinus
townsendii), big brown bat (Eptesicus fuscus), silver-
haired bat (Lasionycteris noctivagans), western small-
footed bat (Myotis ciliolabrum), long-eared bat (Myotis
evotis), fringed bat (Myotis thysanodes), cave bat (Myotis
velifer) and long-legged bat (Myotis volans). All of these
bats are insectivorous, but some have different food
preferences depending on when those food items are
available. For example, C. townsendii prefers to feed on
moths compared to beetles [22], whereas the remaining
bats in this study consume a variety of hard-bodied ar-
thropods such as beetles. However, when seasonally
abundant and energetically worthwhile, these bats will
also feed on moths. Herein, the feeding strategies of the
bats include aerial hawking or gleaning of arthropods
from different surfaces. Of these bats, only A. pallidus,
M. evotis and M. thysanodes are considered occasional
gleaners and are capable of gleaning insects from plants
and other substrates [23-25]. Differences in food prefer-
ences and wide foraging ranges provide opportunities
for bats to come in contact with a variety of microbes,
which may partly explain the genetic variation in Strep-
tomyces we observed.

The number of contigs per genome ranged from 69 to
500 and N50 values ranged from 31,031-643,063 bp
(Additional file 1: Table S1). We initially used sequence
variation in the 16S rRNA locus to delineate species
boundaries. These isolates can be grouped into three
large clusters (Fig. la), with each cluster representing a
distinct species based on the 97% sequence similarity
threshold in the 16S rRNA gene (Fig. 1b and Add-
itional file 2: Fig. S1). This threshold value has been pre-
viously used for taxonomic classification of Streptomyces
[4]. Within each of the three clusters, sequence similar-
ities between isolates ranged from 99.41-99.79%, 96.86—
98.47% and 98.76-99.43% in clusters 1, 2 and 3,
respectively.

Surprisingly, when we used the genome-wide ANI [21]
to compare isolates, the majority of isolates within each
of the three 16S rRNA-based clusters fell below the 95%
ANI threshold, which is often used to define a species
[21] (Fig. 1c and Additional file 3: Table S2). The ANI
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metric pertains to the average nucleotide identity of all
orthologous genes shared between any two genomes and
hence provides a more robust comparison in classifying
microbial strains [21]. The clustering into three groups
that we observed using 16S rRNA sequence variation
remained unchanged when we wused the 1149
concatenated core genes, which are genes present in
295% of the genomes (Additional file 4: Table S3 and
Additional file 5: Fig. S2). Within each of the 16S rRNA-
defined clusters, genomes exhibited ANI values ranging
from 85.53-99.99%, 87.72-99.99%, and 81.03-99.99% in
clusters 1, 2 and 3, respectively (Fig. 1a). These results
indicate that a species defined by the 16S rRNA gene is
made up of multiple species based on their genomic se-
quences. Overall, we can delineate 41 species of Strepto-
myces using the 95% ANI threshold in our dataset,
indicating a greater level of species diversity than was
initially recognized.

Distribution of biosynthetic gene clusters (BGCs)

Streptomyces are best known for their prolific ability to
produce antibiotics and other useful compounds com-
monly used in human medicine, animal health, industry,
and agriculture [1, 26]. These compounds are derived
from the production of secondary metabolites, which are

encoded by a set of physically linked genes called BGCs
[3, 27]. The genes in a BGC function in peptide assem-
bly, regulation, resistance and synthesis of a secondary
metabolite [28, 29]. Secondary metabolites are com-
pounds that are not required for growth but may confer
a certain advantage to their producers in a given envir-
onment. A previous study of bat-associated Streptomyces
reported potent antagonistic activity against the fungal
pathogen P. destructans [19]. Hence, we hypothesized
that Streptomyces bacteria from southwestern bat species
harbor an abundant and diverse suite of BGCs.

From our analyses, we detected a total of 32 major clas-
ses of BGCs (excluding BGCs identified as others and
fused; Fig. 2 and Additional file 6: Table S4), which is con-
sistent with previous studies of Streptomyces from other
environmental sources [6, 27, 30]. On average, a genome
carried 14 distinct classes of BGCs (range = 9-20). Of the
32 BGC classes detected, we found non-ribosomal peptide
synthetases (NRPS), siderophores, and terpenes present in
all genomes. Other BGCs that were commonly found in
Streptomyces included bacteriocin (present in 72 ge-
nomes), type 1 polyketide synthase (t1PKS; 72 genomes),
butyrolactone (71 genomes) and type 3 PKS (t3PKS; 70
genomes). In contrast, some BGCs were present in only a
handful of genomes. These included oligosaccharide (8
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genomes), linaridin (8 genomes), resorcinol (6 genomes),
phosphonate (4 genomes), aminoglycoside (3 genomes),
bottromycin (1genome), cyanobactin (1 genome), beta-
lactam (1 genome) and homoserine lactone (1 genome).
We also note that a genome may harbor multiple copies
of a BGC class. For example, the number of NRPS in a
single genome ranged from 2 to 18 (mean=7.5). The
number of siderophore copies in a single genome ranged
from 1 to 4 (mean = 2.1). The number of terpene copies in
a single genome ranged from 3 to 14 (mean =5.9). We did

not identify any specific class of BGC that is unique to any
of the three ANI clusters nor to any of the nine bat
species.

Genome variation between strains in three select species

We wanted to further investigate the extent of genomic
variation among strains within a species. There were
three sub-clusters that can be considered as distinct spe-
cies based on the ANI threshold and that consists of
multiple strains. These are tentatively labeled as species
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20, 29 and 38 in Fig. 2. These three subclusters each had
five, seven and five genomes, respectively (Fig. 3a). We
first estimated the pan-genome of each species, which
consisted of 13,461, 20,342 and 20,474 genes in species
20, 29 and 38, respectively (Fig. 3b and Additional file 7:
Table S5). The total number of core genes were 6591,
5125 and 5979, while the total number of accessory
genes were 6870, 15,217 and 14,495 for species 20, 29
and 38, respectively.

We found differences in the number and classes of BGCs,
including hybrid BGCs (i.e, BGCs with genes that code for
more than one type of scaffold-synthesizing enzymes [28,
31]), between strains of the same species (Fig. 3c). Some
major classes of BGCs were present in all genomes across all
three species, such as bacteriocin, butyrolactone, ectoine,
NRPS, siderophore, types 1, II and III PKS and terpene.
However, we also identified BGCs that were strain-specific
(lassopeptide, phenazine, and phosphonate in species 29) and
species-specific (nucleoside and resorcinol in species 20, and
ladderane, linaridin, phenazine, phosphonate and transAT-
PKS in species 29). If we further classify the hybrid BGCs
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based on their individual BGC components, we can further
observe greater diversity among strains. For example, we
found species-specific cases of butyrolactone-arylpolyene-
NRPS (species 20), butyrolactone-other KS (species 20),
melanin-ladderane-arylpolyene-NRPS (species 29), melanin-
NRPS (species 29), t1PKS-butyrolactone-NRPS (species 29),
t1PKS-other KS (species 20), t2PKS-butyrolactone, (species
38) t2PKS-terpene (species 38), t3PKS-t1PKS, (species 29)
t3PKS-terpene (species 20), and terpene-linaridin (species
29). We also found strain-specific presence of t1PKS-
linaridin, t2PKS-otherKS and  t2PKS-t3PKS-otherKS-
phenazine.

The total number of protein coding genes per genome
ranged from 8666—9364, 8932—9974, 8071-8513 in spe-
cies 20, 29 and 38, respectively. Species 38 had signifi-
cantly fewer genes than either species 20 or species 29
(Fig. 3d) (Mann-Whitney U pairwise test). However, we
did not find any significant differences in the number of
either accessory genes (Fig. 3e) or singleton genes (i.e.,
genes present only in a single genome) (Fig. 3f) between
species. These results indicate that inter-strain variation
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in gene content further contributes to the overall genetic
diversity present in bat-associated Streptomyces.

Recombination within a species

Streptomyces are known to frequently recombine [32—
34] which may partly explain the observed genomic vari-
ation between strains within each of species 20, 29 and
38. Using the core genome alignment of each of the
three species, we tested for evidence of recombination
using the.

Pairwise Homoplasy Index test and Splitstree network
analysis. The Splitstree analysis shows the reticulations
in the phylogenetic relationships between strains of each
species (Fig. 4). The networks also reveal that differences
in host species do not appear to hinder recombination
between strains. However, only species 20 and 38 show
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significant signal for recombination (p-value = 0.0), while
species 29 does not (p-value = 1.0).

Discussion

Antibiotic-producing Streptomyces bacteria are ubiqui-
tous in nature, yet most studies of its diversity have fo-
cused on those free-living strains inhabiting diverse soil
environments [5, 6] and those in symbiotic relationship
with invertebrates (e.g., insects, marine sponges) [14, 35,
36]. Most commercially used Streptomyces-derived anti-
biotics today, such as streptomycin [37], were originally
derived from strains collected from soils. However, in-
vestigations on the prevalence, diversity and contribu-
tions of Streptomyces to their vertebrate animal hosts
remain limited. A previous study reported the remark-
able species diversity of 20% of a large culture collection
of bat-associated Streptomyces at the University of New
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Fig. 4 A phylogenetic network of the core genome of Streptomyces species 20, 29 and 38 generated using SplitsTree4. The dots represent the
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Mexico (UNM) [19]. In that study, sequence variation in
the 16S rRNA and five other housekeeping genes were
used to characterize the phylogenetic diversity and rela-
tionships of Streptomyces, with isolates representing 15
novel species that exhibited antifungal activity [19].
Using 73 Streptomyces isolates from the UNM culture
collection, we uncovered large genomic variation and
biosynthetic potential, even among closely related
strains. Bats are therefore an important yet under-
appreciated source of antibiotic-producing microbes.
Our study provides an initial genomic assessment of bat-
associated Streptomyces that will be critical to prioritiz-
ing those strains with the greatest ability to produce
novel anti-fungal compounds.

It has long been recognized that species classification
in Streptomyces is problematic, being driven historically
more by the type of antibiotic produced and patent is-
sues rather than by genetic, ecological, or evolutionary
data [38]. Recent studies on different Streptomyces spe-
cies defined by the 16S rRNA locus revealed a striking il-
lustration of how traditional species classification can
complicate drug discovery schemes or overlook singular
bacterial strains. For example, two strains of Streptomy-
ces griseus from geographically disparate locations but
with identical 16S rRNA sequences, exhibited differences
in spore pigmentation, amount of spore formation, aerial
hyphae distribution on the colony, and production of
secondary metabolites [39]. These differences may be
partly explained by adaptive processes to specific envir-
onmental conditions. In another study, ten Streptomyces
strains from different lichen species but with 16S rRNA
gene sequences identical to the type strain Streptomyces
cyaneofuscatus JCM 4364 exhibited highly variable
phenotypic (colony morphology and color, halotoler-
ance, optimal pH growth), metabolic and genomic fea-
tures, such that they could be distinguished as five
different species [40].

The large amount of genomic and BGC variation be-
tween genomes, even between closely related isolates,
may reflect fine-scale differences in their adaptive poten-
tial. For example, the presence on all genomes of sidero-
phores, which are involved in the acquisition of ferric
ions, may reflect the need for Streptomyces to cope in
environments with limited iron supply [41]. However,
differences in the abundance of siderophores per gen-
ome may be due to interactions with specific bacterial
partners, as has been previously reported [42, 43]. Future
work should focus on investigating the functional role of
structurally distinct types of siderophores as well as
other BGCs in Streptomyces’ adaptation to different bat
species that harbor them and to the cave environment.

Our study presents several limitations that need to be
recognized. First, only culturable isolates were used in
this study. Cultivation techniques, while effective in
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isolating individuals from a microbial community, can
unintentionally bias findings on community composition
and functions. This is because cultivation fails to dis-
cover novel strains that are recalcitrant to specific culti-
vation methods, media and laboratory conditions
commonly used because they do not precisely mimic the
ecological niche of the bacterium in nature. Hence, we
recognize that the extent of genomic diversity we found
in our dataset is likely an under-estimation of the true
scale of Streptomyces diversity in bats, suggesting that
additional species with unique genetic and phenotypic
features remain to be discovered. This will also hold true
for exploring BGC diversity. Second, we did not sample
Streptomyces from the cave walls, where bats may pick
up Streptomyces spores and hence influence their genetic
diversity. Another limitation of our study is the assembly
quality of our genomes. Illumina sequencing of large
bacterial chromosomes remains a challenge due to
chimeric sequences and sequencer errors. Furthermore,
genome regions with high G + C content [such as Strep-
tomyces, which typically has over 70% G+ C content
[44]] can be sequenced with lower coverage than the rest
of the genome due to biases in the amplification step
[45]. These challenges can exacerbate the amount of
gene content variation detected in genomes. In this
study, the assembly quality of our genomes could take
the form of erroneously large accessory genomes and/or
improperly characterized BGC content. Future studies
should utilize long-read sequencing technologies along-
side short-reads to generate more complete hybrid
assemblies which can overcome these common sequen-
cing challenges [46].

Conclusions

Overall, our study provides an initial genome-based as-
sessment of the bat-associated Streptomyces diversity
that will be critical to prioritizing those strains with the
greatest ability to produce novel bioactive compounds,
including those that can strongly inhibit P. destructans
and other mycotic diseases. We emphasize the value of
poorly explored settings, such as caves and bats, as im-
portant resources of antibiotic-producing bacteria for
current drug discovery efforts relevant to human and
veterinary medicine.

Methods

Collection and isolation of Streptomyces

Isolates in our study came from a culture collection of
which a subset was used in a previously published dataset
of Streptomyces sampled from the skin (wing and tail
membranes) and fur surfaces of bats [19]. Details on bat
collection protocols, sampling permits and bacterial isola-
tion procedures were described in reference [19]. Bats
were caught using mist nets or were hand plucked from
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cave walls, according to approved protocols under the fol-
lowing collection permits: 2014 Arizona and New Mexico
Game and Fish Department Scientific Collecting Permit
(SP670210, SCI#3423, and SCI#3350), National Park Ser-
vice Scientific Collecting Permit (CAVE-2014-SCI-0012,
CAVE-2015-SCI-0011 ELMA-2013-SCI-0005, ELMA-
2014-SCI-0001, CHIR-2015-SCI-0001, and PARA-2012-
SCI-0003), U.S. Geological Survey Fort Collins Science
Center Standard Operating Procedure (SOP) 2013-01,
and an Institutional Animal Care and Use Committee
(IACUC) permit from the University of New Mexico
(protocol #12—100835-MCC and Protocol 15101307MC)
and from the National Park Service (protocol #IMR-
ELMA.PARA Northup-Bat-2013.A2 and NPS Protocol
Number IMR_ELMA.PARA.CAVE.SEAZ _ Northup_Bats_
2015.A2). All experimental protocols were approved by
the institutions and licensing committees listed above.
Bats were swabbed from caves post-hibernation or from
netting on the surface near drinking sources. Sampling
was carried out in 2013-2015. Four actinobacterium-
selective media were used to isolate Streptomyces (Actino-
mycete isolation agar [Difco, Sparks, Maryland], gellan
gum agar, humic acid-vitamin agar and glucose yeast ex-
tract agar) supplemented with cycloheximide, nalidixic
acid, trimethoprim and a vitamin solution. Immediately
following swabbing of each bat, plates were inoculated
and kept at 4 °C during transport and at 20°C in the la-
boratory during initial growth. Initial Streptomyces identi-
fication was done by extracting and sequencing the 16S
rRNA locus using Sanger sequencing [19].

DNA extraction and whole genome sequencing

Pure cultures were grown in R2B broth medium (Difco,
Sparks, Maryland) at 37 °C for 24 —72h. DNA was ex-
tracted and purified from cultures using the DNeasy Ex-
traction kit (Qiagen, Germantown, Maryland) following
manufacturer’s protocols. DNA concentration and qual-
ity were measured using a Nanodrop spectrophotometer
and Qubit 4 fluorometer. DNA libraries were prepared
using the NexteraXT protocol (as per the manufacturer’s
instructions) with 1 ng of genomic DNA per strain. Sam-
ples were sequenced as multiplexed libraries on the Illu-
mina HiSeq platform operated per the manufacturer’s
instructions to produce paired end reads of 250 nucleo-
tides in length. Sequencing was done at the University of
New Hampshire Hubbard Center for Genome Studies,
Durham, New Hampshire, USA.

Genome assembly and annotation

Reads were assembled into contigs using the de novo as-
sembler SPAdes v.3.13.1 that was developed specifically
for bacterial genomes [47]. Genome assembly quality
was assessed using QUAST [48]. We also selected only
those genomes with <500 contigs. In total, we used 73

Page 8 of 11

draft genomes for all downstream analyses. The resulting
contigs in each genome were annotated using Prokka, a
stand-alone tool that combines multiple feature predic-
tion tools to identify coding sequences, ribosomal and
transfer RNA genes, non-coding RNA and signal leader
peptides in bacterial genomes [49].

Pan-genome and phylogenetic analysis

To determine the degree of genomic relatedness and
hence clarify the taxonomic breadth within our dataset,
we calculated the genome-wide ANI for all possible pairs
of genomes using the program FastANI v.1.0 [21]. We
used the program Roary [50] to characterize the core
and accessory genes in the pan-genome of the 73 strains.
However, Roary’s default parameters assume a species
level relationship among genomes. To account for the
greater genomic variation in our genus-scale dataset, we
used the mean pairwise fastANI value for the entire
genus (81%) as the minimum percent identity between
orthologous genes (parameter “-i 81). For the species-
specific Roary analyses, we used the standard 95% that is
commonly used to define species boundaries [50]. Sig-
nificance in gene content between clusters was measured
using Mann-Whitney U pairwise test.

We aligned the sequences of the 16S rRNA gene ex-
tracted from the genomes using MAFFT [51] and
counted all pairwise single nucleotide polymorphism
(SNP) differences using snp-dists v0.6.3 (https://github.
com/tseemann/snp-dists). A 16S rRNA phylogenetic tree
was built using RAXML v.8.2.11 [52] with a general-time
reversible (GTR) nucleotide substitution model [53],
four gamma categories for rate heterogeneity and 100
bootstrap replicates. We also built a phylogenetic tree
using the concatenated sequence alignments of the core
genes using RAxML with the GTR model and four
gamma categories. All trees were visualized using the
Interactive Tree of Life [54].

BGCs encoding secondary metabolites were predicted
and annotated using the standalone version of anti-
SMASH v.4.1 with default parameters, which identifies
BGCs using a signature profile Hidden Markov Model
based on multiple sequence alignments of experimen-
tally characterized signature proteins or protein domains
[55]. Due to their high number, hybrid BGCs were split
and counted as individual BGC classes in the genus tree
(e.g., terpene-t1PKS BGC would count as both one ter-
pene and one t1PKS). In species-level comparisons, we
showed all unique hybrid BGCs.

Recombination analysis

Using the alignment of the concatenated core genes of
each of the three species as input, we ran the Pairwise
Homoplasy Index test for recombination with 100 per-
mutations using PhiPack [56]. The PHI test calculates a
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pairwise incompatibility score of each nucleotide site in
an alignment. The p-value for the PHI test was calcu-
lated under the null hypothesis of no recombination. Re-
combinations were visualized using SplitsTree v4.14.4
which integrates reticulations due to recombinations in
phylogenetic relationships [57].

All methods were carried out in accordance with rele-
vant guidelines and regulations at the National Park Ser-
vice, Arizona and New Mexico Game and Fish
Departments, U.S. Geological Survey, University of New
Mexico and University at Albany.
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