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The Pectobacterium pangenome, with a
focus on Pectobacterium brasiliense, shows
a robust core and extensive exchange of
genes from a shared gene pool
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Abstract

Background: Bacterial plant pathogens of the Pectobacterium genus are responsible for a wide spectrum of
diseases in plants, including important crops such as potato, tomato, lettuce, and banana. Investigation of the
genetic diversity underlying virulence and host specificity can be performed at genome level by using a
comprehensive comparative approach called pangenomics. A pangenomic approach, using newly developed
functionalities in PanTools, was applied to analyze the complex phylogeny of the Pectobacterium genus. We
specifically used the pangenome to investigate genetic differences between virulent and avirulent strains of P.
brasiliense, a potato blackleg causing species dominantly present in Western Europe.

Results: Here we generated a multilevel pangenome for Pectobacterium, comprising 197 strains across 19 species,
including type strains, with a focus on P. brasiliense. The extensive phylogenetic analysis of the Pectobacterium
genus showed robust distinct clades, with most detail provided by 452,388 parsimony-informative single-nucleotide
polymorphisms identified in single-copy orthologs. The average Pectobacterium genome consists of 47% core
genes, 1% unique genes, and 52% accessory genes. Using the pangenome, we zoomed in on differences between
virulent and avirulent P. brasiliense strains and identified 86 genes associated to virulent strains. We found that the
organization of genes is highly structured and linked with gene conservation, function, and transcriptional
orientation.
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Conclusion: The pangenome analysis demonstrates that evolution in Pectobacteria is a highly dynamic process,
including gene acquisitions partly in clusters, genome rearrangements, and loss of genes. Pectobacterium species
are typically not characterized by a set of species-specific genes, but instead present themselves using new gene
combinations from the shared gene pool. A multilevel pangenomic approach, fusing DNA, protein, biological
function, taxonomic group, and phenotypes, facilitates studies in a flexible taxonomic context.

Keywords: Pectobacterium, Soft rot Pectobacteriaceae, Plant pathogen, Comparative genomics, Pangenome, Gene
repertoire, Phylogeny, Virulence, Pectobacterium brasiliense

Background
Bacteria from the Pectobacterium genus (formerly Erwi-
nia) are among the top ten economically most studied
plant pathogenic bacteria, reflecting its economic im-
portance [1]. They cause a broad spectrum of bacterial
soft rot diseases (soft rot, blackleg, and stem wilt) in a
wide host range of important crops [2, 3]. Considerable
crop losses with high economic impact have been attrib-
uted to the bacterium on all continents [4, 5]. Pectobac-
teria differ from other soft rot bacteria by their large
arsenal of pectinases that are used to degrade host tissue
to acquire nutrients for bacterial growth [6, 7]. The Pec-
tobacterium genus is a phylogenetically diverse group of
Gram-negative, motile bacteria, belonging to the Pecto-
bacteriaceae family [8]. In an era where the number of
sequenced strains is rapidly growing, improved tools for
comparative genomics are required to support phylogen-
etic and host pathogen research.
To assess genetic diversity and phylogeny of Pectobac-

teria, a comprehensive study involving isolates from dif-
ferent regions, different hosts and different species is
required. Using next generation sequencing (NGS), the
Pectobacterium taxonomy underwent major changes,
resulting in nineteen described Pectobacterium species
as of June 2020 [9]. The most recent additions to the
taxonomy are P. parvum and the genomospecies P. ver-
satile, which recently has been elevated to the species
level [9, 10]. Correct species identification is difficult,
and phylogenomic approaches that use the whole gen-
ome instead of a single phylogenetic marker prevent
misclassification [11, 12]. The improved comparative
methodologies also allow to correctly diagnose a number
of strains in culture collections that were previously
misclassified.
One of the most important Pectobacterium species

nowadays is P. brasiliense. P. brasiliense was initially de-
scribed as an atypical Erwinia carotovora strain causing
blackleg on potato tubers in Brazil [13], and was inval-
idly classified to be a subspecies of P. carotovorum [14].
Recently, it was elevated to the species level based on
whole genome sequence analysis [10]. Only a few years
after its identification, the species emerged as a global
problem, with many reports that indicate a broad range

of plant hosts associated with soft rot symptoms in loca-
tions across the world [15–18]. After P. brasiliense was
first discovered in Belgium in 2012, it quickly became a
dominant blackleg causing pathogen on the European
continent [16, 19]. However, several comparative field
studies showed high phenotypic variation in the viru-
lence among P. brasiliense isolates [13, 20, 21].
The comparison of genomes provides insights in gen-

etic mechanisms, evolution, and the translation of geno-
types into phenotypes [22]. Traditionally, genomes are
compared pairwise, or centered on a single reference.
However, advances in next-generation sequencing tech-
nologies (NGS) have made the reconstruction of ge-
nomes easier and more accessible. Computationally,
pairwise methods fail to scale to the large number of ge-
nomes currently available. Moreover, a single reference
genome cannot account for the intraspecific variability
found in nature. To reflect the notion of bacterial spe-
cies more accurately, the concept of a pangenome was
introduced [23]. The pangenome is an abstract represen-
tation of the genomes of all the strains that are present
in the population, species or genus.
In recent years, efficient methods to construct

sequence-level pangenomes were reported [24–27], as
well as tools for gene-level pangenome analyses [28–30].
However, the integration of whole genomes and func-
tional information for biological analysis in a scalable
platform, not limited to prokaryotes, remains challen-
ging. Our pangenomic analysis platform PanTools [31]
has a hierarchical data structure, including sequence
data (represented as a localized, compressed De Bruijn
graph), structural/functional annotations, and crosslinks
between DNA and protein sequences and annotations.
In addition to pangenome-graph construction, PanTools
includes a method for de novo detection of homology
groups that contain both orthologous and paralogous
sequences.
Aims of this study were (i) to extend the functionality

of PanTools inducing phylogenetic and phenotypic mod-
ules as well as a variety of downstream analysis methods,
(ii) to exploit the genomic information in the Pectobac-
terium genus, by constructing a comprehensive pangen-
ome of 197 genomes with a focus on P. brasiliense for
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which we isolated and sequenced a large set of add-
itional isolates, and (iii) within this phylogenetic context
we classified the gene repertoire into core, accessory,
unique, or specific to a certain clade or function or GO-
term. Finally (iv) field bioassays were performed to as-
sess the virulence of a set of 40 P. brasiliense isolates on
different potato varieties and we identified genes that are
associated to the virulent phenotype. Our pangenome
study underlines the benefits of such an integrated ap-
proach to understand genome function and evolution of
complex plant pathogens.

Results
A novel collection of high-quality Pectobacterium
genomes capturing genetic diversity
To capture the genetic diversity in the genus Pectobac-
terium and to extend the limited collection of available
genomes, we sequenced 63 Pectobacterium isolates (55
P. brasiliense, 3 P. versatile, 1 P. aquaticum, 1 P. par-
mentieri, 2 P. polaris and 1 P. punjabense) de novo using
both Illumina and PacBio technologies (Additional file 1:
Table S1). The resulting genome assemblies varied in
size (4.3 to 5.3 Mbp), GC content (50.29 and 52.17%),
and fragmentation (1 to 601 contigs per genome, with a
median of 49; 19 strains were assembled into a single
contig). All genomes were annotated with Prokka [32],
which resulted in 3944 to 4719 predicted protein-coding
genes and 35 to 84 tRNA genes per genome. The num-
ber of predicted genes per genome strongly correlated to
the genome size (Pearson’s correlation coefficient of
0.88). Only minor differences were found in the number
of functional annotations per strain, including GO
terms, Pfam domains, and biosynthetic gene clusters.
This set of novel genomes was combined with 150

publicly available Pectobacterium genomes from Gen-
bank, resulting in a grand total of 213 strains (Table S1).
As comparative genomic approaches highly depend on
genome quality, we estimated genome completeness
using the BUSCO v3 data set Enterobacteriales odb9
(781 orthologs) [33]. The scores ranged from 73.6 to
99.7% with a median of 99.6%, indicating general near
completeness of the genomes and reliable protein anno-
tation. Interestingly, several genes were missing, frag-
mented or duplicated in up to 97.5% of all strains,
indicating that these genes are not truly universal in the
genus Pectobacterium. Aiming to compare high-quality
genomes only, we excluded all genomes with a BUSCO
score below 99%, resulting in a final set of 197 high-
quality genomes.
Subsequently, verification or assignment of the correct

species to each genome was performed using the average
nucleotide identity (ANI) score, a widely accepted
genome-based method, in combination with the type
strains to verify or correct the species identification. The

threshold for assigning a genome to a species was a
minimum of 95% identity to the type strain of that spe-
cies [34]. Of the publicly available data, a species name
could be assigned to 9 unclassified genomes while in 16
cases the species name was corrected (Additional file 1:
Table S2).
The lowest ANI score observed between genomes was

82.8%, confirming all genomes represent a single genus
given the threshold ANI score of 75.0% or higher, usu-
ally applied for the genus level (Additional file 1: Table
S3) [35]. Lowest ANI scores between members of the
same species were all above 95%, except for P. brasi-
liense, with the lowest being 93.9%. More than three
quarters (70 out of 92) of the low scores between P. bra-
siliense members were caused by strain IPO 0590, with
an ANI score of 95.2% to the type strain (LMG 21371).
The remaining low ANI scores were found in compari-
sons against strains NAK 468, NAK 470 and NAK 433.
After P. brasiliense, the lowest ANI distances observed
were in the species P. aquaticum 95.7% and P. polaris
96.8%. The highest ANI scores were found for species
for P. parmentieri (98.8%), P. atrosepticum (98.8%), P.
odoriferum (98.6%) and P. versatile (97.6%). Finally, one
strain (NAK 253) did not fall within any of the species,
indicating that this could be a new species.

A Pectobacterium pangenome across multiple species
The collection of 197 high-quality Pectobacterium ge-
nomes across 19 species served as input for construction
of the pangenome using PanTools v3. First, the genome
sequences were split into k-mer subsequences and com-
pressed into a De Bruijn graph. Next, the genome anno-
tations (mRNAs and their encoded proteins) were added
to the pangenome. Finally, phenotypic data, such as spe-
cies and virulence, were coupled to each strain.
Fundamental to a pangenome analysis is determining

the phylogenetic relationships between homologous se-
quences in all strains. Correctly inferring homology is
complex due to unknown evolutionary distances and dy-
namic remodeling of genome content through gain, loss,
duplication and transfer of genes. Therefore, we devel-
oped a novel strategy using BUSCO’s universal single-
copy orthologs to select the optimal settings for hom-
ology grouping in PanTools. We performed the grouping
using eight different settings, ranging from strict to re-
laxed, and applied BUSCO benchmarking to assess
which setting results in clusters that agree most with
670 BUSCO genes (Table 1). This benchmark showed a
clear trade-off between recall, which reflects the
method’s ability to cluster true homologs together, and
precision, showing the ability to separate non-homologs.
For this pangenome, the D4 setting (minimum sequence
similarity of 65%) was optimal with the highest F-score
(99.98%) and the largest number of correct groups (640),
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grouping all proteins into 22,347 homology groups of
which 1699 were single-copy (1 to 1) orthology groups.

Pangenome characterization
The gene repertoire in a pangenome can be separated
into core genes (present in all genomes), accessory genes
(present in some genomes, but not all), and unique
genes (present in a single strain). This labeling is done at
the level of homology groups, which shows the exact oc-
currence of each gene in all constituent genomes. In the
Pectobacterium pangenome, we classified 2032 (9.1%)
groups as core, 13,168 (58.9%) as accessory and 7147
(32.0%) as unique. An average Pectobacterium genome
consists of 46.9% (σ 1.9) core genes, 0.9% (σ 1.3) unique
genes, and 52.3% (σ 2.6) accessory genes (Additional file 2:
Figure S1). The distribution of homology group sizes
(Fig. 1a) shows that the majority of genes were either
conserved across the entire genus or specific to one or
few genomes. This is confirmed by calculating that 2853
groups (12.8%) belong to the so-called softcore (contain-
ing genes from more than 95% of the genomes), and 10,
077 groups (45.1%) can be classified as ‘cloud’ (repre-
sented by less than 1% of the genomes) (Additional file
2: Figure S2).
We tested the impact of annotation mistakes on the

core genes by BLASTing the genes of 364 homology
groups that were present in all but one genome, against
the genome where the gene was not found. For 20
groups (5.5%) the gene was found fully in the genome
sequence but was missed by the gene annotation. The
validity of unique genes was assessed by taking genes
present in a single genome that lack a function or do-
main and BLASTing these against NCBI’s nr database.
Over 90% of the total unique homology groups had an
assigned function or significant BLAST hit (E-value <
1.0e-5). Based on these findings the effect of the annota-
tion quality on our analysis was shown to be minimal
and loosening the thresholds for calling genes core and
unique was not deemed necessary.

The comprehensiveness of the available information in
the pangenome is assessed by noting the shifts in the
number of core, accessory, and unique groups upon the
addition of genomes to the pangenome. Figure 1b illus-
trates that core and unique groups have nearly stabilized
and reached a plateau, while the number of accessory
groups still increases. Figure 1c shows the average group
gain and loss caused by increasing the number genomes.
The core genome stabilized after approximately 15 ge-
nomes, although it slightly decreased for every genome
added. This pattern was similar for the identification of
unique genes. The high increase in the number of
accessory groups slowed quickly, but the gain is still sig-
nificant even near the full pangenome size. We fitted
Heaps’ law [36] to the number of newly discovered
unique genes per additional genome which resulted in a
decay rate (α) of 0.53. According to Heaps’ Law, when
α < 1, the pangenome can be considered open, thus the
α of 0.53 indicates the Pectobacterium pangenome is
open. Adding a final genome to a pangenome of the
remaining 196 on average leads to an increase of 6.5 (σ
50.9) unique and 29.8 (σ 35.1) accessory groups, with a
loss of 1.9 (σ 13.9) core groups. Nearly half (87) of the
strains were P. brasiliense. To assess the impact of such
a large subsample on the openness of the pangenome,
we estimated the size of the P. brasiliense pangenome
and of the remaining Pectobacterium spp. separately.
Both pangenomes showed a similar open pangenome
structure which were supported by a Heaps’ law decay
rate below 1. The pangenome of 18 Pectobacterium spp.
had a decay rate of 0.69, but more interestingly, the
P. brasiliense pangenome gained more new genes per
additional genome and had a lower decay rate of
0.51 (Additional file 2: Figures S3-S6).
To enable the biological interpretation of the various

homology groups, we integrated information found in
the Gene Ontology (GO), InterPro and Pfam databases
into the pangenome. At least one type of functional an-
notation was assigned to 16,073 homology groups: 99.9%

Table 1 General and BUSCO benchmark statistics for homology grouping performed under setting D1 to D8

Clustering
setting

Minimum sequence
similarity

Homology
groups

Single copy
groups

Correct
groups a

True
Positives

False
Positives

False
Negatives

Recall Precision F-
score

D1 95% 49,290 812 395 128,085 14 3905 0.9704 0.9999 0.9849

D2 85% 28,896 1615 629 131,795 24 195 0.9985 0.9998 0.9992

D3 75% 24,650 1690 638 131,952 35 38 0.9997 0.9997 0.9997

D4 65% 22,347 1699 640 131,975 38 15 0.9999 0.9997 0.9998

D5 55% 20,636 1683 639 131,975 44 15 0.9999 0.9997 0.9998

D6 45% 19,234 1653 633 131,985 245 5 0.9981 0.9981 0.9991

D7 35% 17,908 1612 623 131,985 508 5 0.9962 0.9962 0.9981

D8 25% 16,486 1486 607 131,986 7002 4 1.0000 0.9496 0.9741
a Correct groups are defined as the number of groups that correctly organize one out of 670 ‘complete’ and ‘non-duplicated’ Enterobacteriaceae BUSCO genes.
Calculations of recall, precision, and F-score explained in Methods
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Fig. 1 The Pectobacterium pangenome. a The distribution of sizes of all (22,347) homology groups. The size of a homology group is determined
by the number of distinct genomes. b Simulation of increase of the pangenome size and the decrease of core-genome size on gene level using
random sampling of genomes over 10,000 iterations. Colored dots represent the number of classified homology groups for random genome
combinations, black dots indicate the median of each category. c Average gene gain and loss by the addition of genomes to the pangenome. d
Proportion of COG functional categories assigned to homology groups. The asterisk above bars denotes the COG category is significantly (p <
0.05) more abundant in that class than other gene classes (core, accessory, unique). COG categories A, B, W, Y, Z were excluded considering their
abundance below 1%
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of the core, 74.4% of the accessory and 59.5% of the
unique groups. Furthermore, we compared the protein
sequences in the pangenome to the Clusters of Ortholo-
gous Groups (COG) database to which one third of the
proteins had a significant hit (> 65% identity, E-value <
1.0e-5). The percentage abundance of COG categories
was used to identify differences between the core,
accessory and unique protein sets (Fig. 1d). As expected,
the core was enriched for housekeeping COG functions:
Nucleotide transport and metabolism (COG category F),
Coenzyme transport and metabolism (H), and Transla-
tion, ribosomal structure and biogenesis (J). Interest-
ingly, Amino acid transport and metabolism (E) was
high in abundance for core and unique groups, but low
for accessory groups. Overrepresented functions for
accessory genes were: Transcription (K), Secondary me-
tabolites biosynthesis, transport and catabolism (Q),
Defense mechanisms (V), and Mobilome: prophages,
transposons (X).

Phylogenomics based on core genome single-nucleotide-
polymorphisms
To understand the relationships of sequenced strains
within the Pectobacterium genus, a phylogenetic tree
was constructed from 452,388 parsimony informative
sites of single-copy orthologous genes (1699 in total)
present in all genomes. The inferred maximum likeli-
hood (ML) phylogeny is presented in Fig. 2, a rectangu-
lar version of the phylogeny was added as Additional file
2: Figure S8. All species clustered in a separate clade, in-
cluding the newly characterized P. aquaticum, P. versa-
tile and P. parvum. Strain NAK 253, which could not be
assigned to a species, was placed between the P. brasi-
liense, P. polaris and P. parvum species. In addition,
some clades within the P. brasiliense species were identi-
fied. High bootstrap (> 90) support was found for all spe-
cies clades. Only one subclade of 33 genetically closely
related P. brasiliense strains had low bootstrap support
due to the very limited number of single nucleotide
polymorphisms (SNPs) that differentiate these strains.
Strain P. cacticida (ATCC 49481) was most distant to all
strains based on shared gene content and was therefore
selected as outgroup to root the tree. To validate the
outgroup, the core SNP method was applied to a separ-
ate pangenome with Pectobacterium and Dickeya strains
(D. dadantii 3937, D. paradisiaca Ech703 and D. zeae
Ech586) which confirmed the phylogenetic position of P.
cacticida(Additional file 2: Figure S6).

A robust phylogeny using distinct methods
From an initial set of 17 housekeeping genes commonly
used for multilocus sequence analysis (MLSA) [16, 37–
39], we selected five genes that were present in single
copy in all genomes and showed the highest genetic

diversity: acnA, dnaX, gyrA, gyrB and mtlD (Additional
file 1: Table S4). The commonly used marker gene gapA
[40] was not included since each of our selected genes
had a 3-to-9-fold higher number of SNPs. The inferred
phylogeny (based on a total of 2996 informative sites)
showed that this method could accurately separate all
species into distinct clades, using only 5 genes out of
1699 single copy orthologs (Additional file 2: Figure S9).
However, bootstrap values between 40 and 60 indicated
moderate to high levels of uncertainty within the P. par-
mentieri, P. aquaticum and P. brasiliense clades. The
placement of the P. fontis (M022) and P. aroidearum
(PC1) genomes was likewise ambiguous due to insuffi-
cient bootstrap support (value of 59).
In addition to the implemented ML methods,

Neighbor-Joining (NJ) based methods were applied that
use the features stored in the pangenome graph data-
base. First, we converted the scores from the ANI spe-
cies identification analysis into distance values (d = 1-
ANI), from which a tree was inferred that accurately dis-
tinguished all species (Additional file 2: S10). For our
second NJ tree we exploited the De Bruijn graph data
structure of the pangenome to calculate the distance be-
tween two genomes based on shared k-mers. This
alignment-free method ignored the genome structure
and only considered the absence or presence of 17 bp k-
mer sequences. The k-mer based phylogeny was congru-
ent to the core SNP tree (Additional file 2: Figure S11).
Our final phylogeny was inferred from gene distances

based on the shared number of genes that were identi-
fied through the homology groups. Nearly all strains
grouped according to their species, except for six P. bra-
siliense strains that were placed distantly in two distinct
clades. (Additional file 2: Figure S12). The first clade,
represented by strains NAK 433, NAK 468, NAK 470,
was closely related with short branch lengths and ANI
scores of 99.0–99.6%. These three genomes shared be-
tween 81.4 and 94.6% of their gene content while they
had respectively, 53, 5 and 21 unique homology groups.
In contrast, the second clade, represented by strains
CFIA1033, IPO 0590, and S1.15.11.2D, showed high
variability with long branch lengths in the phylogeny
and ANI scores of 94.8–96.1%. Comparison of the three
genomes showed they had little in common; only 67.4 to
71.2% of their gene content was shared and genomes
had a relatively high number of unique genes (102, 207,
and 106, respectively).
We compared the phylogenies resulting from the dif-

ferent methods in terms of accordance and resolution.
Four out of the five methods (ANI, MLSA, k-mer, core
SNP tree) were able to distinguish all species in separate
clades. For the method using gene content this was pos-
sible for 97% of the genomes, as described above. The
resolution as observed from the branch lengths and
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bootstrap values varied for the different methods, with
the core SNP phylogeny providing the highest reso-
lution. For the four phylogenies that correctly clustered
the species we observed some incongruities inside cer-
tain clades, mostly located at the base of the P. brasi-
liense clade. To estimate the concordance of the tree
topologies, the IQ-tree AU-test was applied two con-
secutive times to calculate the log-likelihood of trees
based on the alignment and model parameters of an ML

tree. First, with the MLSA phylogeny as reference, the
gene content tree was rejected based on the estimated
parameters of the ML tree. Using the SNP tree as refer-
ence model, only the k-mer distance phylogeny was
within the confidence limit of the selected topology.
To further examine how robust phylogenetic compari-

sons are, we plotted the pairwise distances found by the
core SNP, k-mer, and gene content methods against the
ANI distance (Fig. 3). Distances from the MLSA were

Fig. 2 Maximum likelihood core SNP phylogenetic tree. The tree was inferred on a total of 452,388 SNPs extracted from the alignments of 1699
single copy orthologous genes. The tree was rooted using P. cacticida (ATCC 49481) as outgroup. Branches are colored according to their
bootstrap support value obtained from 1000 bootstrap replications
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excluded, as this method is in fact a low-resolution ver-
sion of the core SNP tree based on a preselection of
genes. The plot revealed a strong linear relationship be-
tween the ANI, SNP and k-mer distances (Additional file
1: Table S5). In sharp contrast, the genome content
showed a relatively wide variation at nearly any distance.
Moreover, the plot reveals that two highly similar Pecto-
bacterium strains with an ANI score over 99% can vary
from 5% up to 25% in gene content whereas two strains
at the species boundary (ANI ~ 95.0%) vary between 25
and 40%.

Discovery of species-specific genes
To study evolution of a trait, speciation or niche/host
adaptation it is of interest to identify genes that are spe-
cific for a species or phylogenetic branch of the Pecto-
bacterium pangenome. We used our comprehensive set
of genomes together with ANI verified species names for
identification of such species-specific genes. We ex-
cluded species with less than 5 genomes from this ana-
lysis, leaving eight species which were subsequently
assessed. We identified 9 species-specific homology
groups for P. aquaticum, 52 for P. atrosepticum, 53 for
P. parmentieri, 46 for P. odoriferum and a single group
was specific to P. carotovorum (Additional file 1: Table
S6, S7). No species-specific homology groups were

identified for the two best sampled species, P. brasiliense
(87 genomes) and P. versatile (24 genomes). Further-
more, the analysis indicates that the identification of
species-specific genes or homology groups largely de-
pends on the genetic diversity of the sequenced isolates
and not so much on the number of isolates. This is ex-
emplified by P. polaris, which was represented by only
five genomes that originate from different geographic lo-
cations across the world: Morocco, Canada, Russia and
Pakistan. These five strains displayed high genetic diver-
sity (reflected in an ANI score of 95.9–97.0%, shared
gene content between 73.7 and 80.1% and high SNP dis-
tance) and no species-specific genes could be identified.

Tracing virulence in P. brasiliense
We searched for genetic differences between genomes of
virulent and avirulent strains using our pangenome ap-
proach. Virulence was assessed by field tests and pheno-
typic assays in two consecutive years for a selection of P.
brasiliense, P. punjabense, and P. aquaticum strains sam-
pled across the Netherlands (Additional file 1: Table S1).
For some of the publicly available strains virulence infor-
mation was reported; however, this information was not
included as the bioassays performed were very different.
Fifteen P. brasiliense strains were assessed as virulent,
while 25 showed either marginal or no virulence. The

Fig. 3 Difference in phylogenetic distances. The ANI score between two genomes is plotted against the calculated SNP (blue), gene (red) and k-
mer (green) pairwise distances. The red horizontal line highlights an ANI score of 95.0, a frequently used threshold for species delineation
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virulent strains were highly similar (ANI ≥ 99.93%) and
shared at least 94.1% of their genes. In contrast, aviru-
lent strains did not cluster together in the phylogeny;
their ANI scores ranged from 95.5 to 99.9% and they
shared at least 63.2% of their gene content.
We searched the pangenome for candidate genes asso-

ciated to virulence based on their presence in virulent
strains and their absence in avirulent ones. For this ana-
lysis, strains without pathogenicity data were ignored.
No virulence-specific genes were initially identified.
Comparing the virulence phenotype and the phylogeny
of the strains revealed that two strains (NAK 223 and
NAK 259) that appeared avirulent in the field tests clus-
tered inside the virulent group. Possibly, the pathogen-
icity of these two strains was affected by secondary
mutations. When we ignored these two genomes, 86
homology groups were identified that were present in all
virulent strains and absent in the avirulent strains. Vice
versa, 12 homology groups were found absent in all viru-
lent strains and present in the avirulent ones (Additional
file 1: Table S7). There were 86–88 virulence-specific
genes per genome as some genomes had additional cop-
ies of specific groups. Most genes (66 out of 86) were
co-localized, i.e. had at least one neighbor that was also
virulence specific. The gene order of these co-localized
genes was conserved among all virulent strains: two gene
clusters of six genes, four clusters each of four and three
genes and 13 gene pairs (Additional file 1: Table S8).
Functional annotations connected to the identified
genes, included a Lysozyme inhibitor, Toll/interleukin-1
receptor, ABC-type siderophore export system, as well
as multiple effector proteins and nonribosomal peptide
synthetases. Statistically significant enrichment was ob-
served for GO terms related to recombination and DNA
modification with, in particular DNA methylation (Add-
itional file 3). In addition, the virulent strains have four
additional Pfam protein domains not present in any of
the avirulent strains.
As we were unable to differentiate the two avirulent

strains (NAK 223 and NAK 259) from virulent strains
based on gene content, we aligned the sequences of sin-
gle copy groups from the 15 highly similar (ANI ≥ 99.93)
genomes to identify non-synonymous mutations. A total
of 4237 single-copy groups were determined, which rep-
resents more than 95% of the individual gene content of
a strain. Only inside the chaperone protein dnaK, a ly-
sine was substituted by asparagine on position 92 in one
avirulent and two virulent strains; however, a single vari-
ant that could discriminate the two avirulent strains
from the virulent group could not be identified.
A circular genome plot was created to visualize gen-

ome organization and to incorporate the identified genes
using strain NAK 240 as a validated and representative
example for all virulent P. brasiliense strains (Fig. 4).

Previous results of the gene classification, association of
COG function and genome characteristics such as GC
content and gene orientation were integrated into the
overview. The figure shows how nearly all virulent genes
seem to coincide with negative skews in the GC content.
To support this observation, we compared the GC ratio
of the virulence-specific genes to the rest of the genome;
81 of the 88 genes were below the average GC content
(52.1%) of protein coding sequences in strain NAK 240.
Finally, virulence was assessed by identifying pectolytic
enzymes in the pangenome, based on the study of Li
et al., (2018) [41] and Duprey et al., (2019) [42]. Out of
the range assessed, ten pectin degradation genes (ogl,
pehX, pehA, pemA, pel1, pel3, pelX, pelW, pelA, pelL)
were found in all 197 genomes, some had duplicated
copies in nearly all genomes (Fig. 4; Additional file 2:
S7).

Discussion
Pangenomes are becoming widely used to represent,
analyze and predict the genomic diversity for large pop-
ulations of a single species or genus. In this study we
have integrated phylogenetic tools, the possibility to add
functional and phenotypic annotations as well as quality
control and selection procedures in PanTools to perform
such pangenome analyses effectively. We applied these
new functionalities on the complex genus Pectobacter-
ium to build a comprehensive phylogeny that can guide
Pectobacterium research and identified genes and muta-
tions that are specific for clades or phenotypes that
could be used as diagnostic markers.

Quality assurance for a reliable pangenome
To ensure the quality of data analysis, we checked ge-
nomes before inclusion in the pangenome and optimized
the clustering settings to assign proteins to the correct
homology group. We used BUSCO [33] to verify com-
pleteness and used genomes that had a BUSCO score of
at least 99%. The highest score was 99.7% and the me-
dian score was 99.6% of the original set. A closer analysis
of the BUSCO output revealed that some genes were not
found in specific lineages of the Pectobacterium set; re-
moving these genes from the dataset increased the me-
dian score to 99.9%.
Classifying individual genes into homology groups is a

crucial step in pangenomic analysis. The composition of
homology groups is affected by several parameters, of
which protein similarity cut-off is the most influential.
The appropriate setting depends on the genomic diver-
sity of included genome sequences. For the genus Pecto-
bacterium we applied a new strategy for verification of
the settings using a BUSCO reference set based on
orthologs from OrthoDB [43]. As BUSCO genes should
cluster separately in single-copy orthology groups, we
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found the optimal grouping was obtained in the Pecto-
bacterium pangenome using a 65% similarity cut-off,
yielding recall and precision scores of 99.9%. These re-
sults were further corroborated by the fact that the 2032
core homology groups in Pectobacterium are highly
enriched in functions that relate to the maintenance of
basal cellular functions. The size of the core genome is
much smaller compared to the largest Pectobacterium
pangenome found to date, which was estimated to con-
tain 3171 core genes [41]; however, their study included
less species (7 instead of 19) and less genomes (84 in-
stead of 197).
A pangenomic approach relies on correct homology

grouping. Care should be taken in the interpretation of
gene classification, as both the core and unique parts of

the pangenome are very sensitive to low genome and an-
notation quality. By applying rigid quality control set-
tings and validating the correctness of core and unique
homology groups, we could set strict core and unique
cut-offs where in other studies, to circumvent the impact
of genome and annotation quality, thresholds are loos-
ened to allow for discovery of core and unique genes
[44, 45]. Furthermore, we examined the exceptional
cases in which genes appear to be absent or present in
only one of the 197 genomes. Based on BLAST searches
we demonstrate that genes can indeed be absent in a
single strain and were not missed due to misannotation,
while unique genes are likely to be true genes as over
90% share significant homology with genes outside the
Pectobacterium genus. As the size of pangenomes will

Fig. 4 Circular chromosome map with genomic features of P. brasiliense NAK 240. Ring 1 displays three rows with blocks of neighboring genes in
the same orientation, forward (black) or reverse (orange). Ring 2 holds genes colored by their classification: core (green), accessory (blue) or
unique (red). Genes in the third ring are colored by COG category, genes without a significant hit to the COG database are white. Ring 4 displays
88 genes (86 groups) specific to virulent strains (red), secreted proteins identified by Phobius (grey), and pectinases (blue): pelA, pelL, pelW, pelX,
pelZ, pel1, pel2, pel3, pemA, pemB, ogl, rhiE, ganB and pnl. Ring 5 shows GC content within the range of 25 to 75% (red line at 50%). Percentage of
GC was calculated for blocks of 1000 bp
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only expand in the future, quality assurance of the data
will gain further importance.

Effect of an uneven distribution of genetic diversity
Due to the large and diverse collection of Pectobacter-
ium genomes presented in this study, the size and open-
ness of the pangenome can be assessed. The
Pectobacterium pangenome of 197 strains comprising 19
species seems to be closing, because on average only 6.5
(σ 50.9) new genes were gained on the last added gen-
ome in the pangenome size estimation. Remarkably, the
strongly represented P. brasiliense subset of 87 genomes
still gained more new genes on the last added genome
compared to the pangenome with 110 genomes from 18
different species. Thus, although nearly half of the
strains belong to the same species, relatively more novel
genes are likely obtained by adding more P. brasiliense
genomes to the pangenome. This correlates with the
genomic diversity of P. brasiliense being the highest of
all Pectobacterium species. The lowest ANI score within
P. brasiliense is > 93.9%, followed by > 95.7% in P. aqua-
ticum and > 96.8% in P. polaris. Accordingly, these three
species also have the highest gene distance between spe-
cies members: 41.3, 28.9, and 26.3%, respectively. In con-
trast, most other species show a much higher genetic
similarity with an ANI score close to 99%: P. atrosepti-
cum > 98.8%, P. odoriferum > 98.6% and P. parmentieri >
98.8%. The Pectobacterium pangenome does not have an
infinite gene pool but given the Heaps’ law decay rate
(0.53) and an uneven distribution of genomic diversity it
should not be considered closed, which is in line with
the open pangenome structure observed in other bac-
teria [41, 46]. For some species or clades within species
such as the virulent P. brasiliense accessions (ANI ≥
99.96), the available diversity may be largely covered in
the current Pectobacterium pangenome and these parts
can be considered saturated.

Phylogeny relationships revealed in the Pectobacterium
pangenome
Phylogenetic reconstruction is an essential part of all
comparative genomic approaches. In our pangenomic
analysis we applied and compared five different com-
monly used tree-reconstruction approaches: ANI,
MLSA, a SNP tree derived from single-copy groups, k-
mer and gene content. The five methods are distinct in
strategy, exploiting alignment-based methods, known
genes or the complete genomic content. Despite these
differences, results were found to be largely in accord-
ance and represented the taxonomic relationships
accurately.
Of the five constructed (phylogenetic) trees, a phyloge-

nomic approach based on the SNPs from all single copy
orthologous genes had the highest resolution. This core

SNP tree provides an accurate representation of evolu-
tionary relationships within the Pectobacterium genus
and was congruent to the phylogeny reported by Pasa-
nen et al. (2020) [9]. The core SNP tree topology was
compared using the AU-test [47, 48], which rejected
similarity to all other phylogenies except for the k-mer
distance tree. Given that the core SNP tree was inferred
from 452,388 SNPs and only a few branches within P.
brasiliense are ambiguous, the confidence interval for
the AU-test was likely to be narrow, as only minor dif-
ferences were found with the ANI and MLSA tree top-
ologies. Considering that the number of genomes in a
pangenome will continue to grow, the SNP method has
a clear downside, which is the runtime. For aligning se-
quences and the ML inference we used MAFFT [49] and
IQ-tree [47], respectively, two highly efficient tools that
handle large datasets and scale accordingly to the num-
ber of genomes. However, when a pangenome contains
thousands of genomes, this alignment-based method will
eventually become too time consuming. Therefore, the
k-mer based method offers a good alternative, since it is
computationally the most efficient and showed the high-
est match to our core SNP phylogeny. Similarly, many
alignment-free techniques were developed to address
such issues with scalability [50, 51].
Species-level identification is required for the discov-

ery of species-specific genes; however, incorrect species
names in public datasets are a common phenomenon
[52, 53]. Therefore, we used an ANI score of ≥95% with
respect to a type strain for classifying strains into species
[35, 54, 55]. In this way, we could prevent inconsisten-
cies in the downstream analysis. Only one strain, NAK
253, could not be classified into any of the known Pecto-
bacterium species. We hypothesize that this could be a
new species most related to P. polaris, P. brasiliense and
P. parvum. Our analysis also indicates a high genetic di-
versity among P. brasiliense. Genomes of P. brasiliense
consistently grouped in three to four distinct clades in
the k-mer and core SNP trees and may represent sub-
species. Another interesting strain was NAK 467, identi-
fied as P. aquaticum, isolated in the Netherlands from a
side channel of the river Meuse that springs in France.
So far P. aquaticum was only reported in France [56],
where it was found to spread via river waters.

Species-specific genes, search for a ghost?
One of the initial intents of this study was to exploit the
pangenome to identify species-specific genes and larger
regions of colocalized genes. Previous attempts to iden-
tify these were often confounded by the diversity found
when more ecological niches or geographic regions were
sampled. We envisioned that a comprehensive pangen-
ome approach would eliminate this pitfall and would
allow for a better selection of genes. As the vast majority
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of proteins and homology groups are present only in
certain genomes in the pangenome and accessory genes
represent the highest percentage in each individual gen-
ome, there are numerous candidates that could be spe-
cific for a species. However, our study demonstrates that
for a particular species, such as P. brasiliense, none of
these accessory genes is specific for a species. As we
verified that the correct identification at the species and
sub-species level by ANI and all phylogenies is consist-
ent with the correct classification of strains to species,
we conclude that for the best-sampled species in the
Pectobacterium pangenome, P. brasiliense, species-
specific genes do simply not exist. Similar results were
found for P. carotovorum, P. versatile, and P. polaris. For
the species P. aquaticum, P. atrosepticum, P. parmentieri
and P. odoriferum several candidate species-specific
genes persisted, we hypothesize that increasing the num-
ber of genomes will further reduce this number and that
species-specific genes are essentially not a constructive
concept for Pectobacterium.
Horizonal gene transfer (HGT) is one of the main

mechanisms in prokaryotic evolution for the lateral ex-
change of genes. That Pectobacterium species can adapt
to environmental changes through HGT events has been
observed in several studies [57–59]. Although the fre-
quency of recombination events is hypothesized to sig-
nificantly drop below ANI 95% [34, 60], these events are
still likely to occur and exchange genes throughout a
population. The notion that a shared gene pool, foster-
ing new combinations of homology groups, drives evolu-
tion, further emphasizes the need for a pangenomic
approach. In addition, loss of genes seems an important
driver of evolution: it is common even in genetically
closely related isolates (ANI > 99%) [61, 62].

Virulence in P. brasiliense
One of our aims was to identify functional markers that
could be used for detection purposes by comparing the
genomes of virulent and avirulent strains. We therefore
exploited the flexibility of the graph database in Pan-
Tools to link different levels of annotation while retain-
ing all information. This allowed us to link the
phenotype (virulence) with annotations such as hom-
ology groups, GO annotation or Pfam domains. Aviru-
lent isolates appeared to be scattered throughout the
phylogenetic tree; in contrast, all virulent P. brasiliense
strains form a coherent group of highly similar genomes
or a clonal lineage. Finally, two avirulent strains in this
lineage were found to be genetically nearly identical to
the virulent isolates. To differentiate these two avirulent
strains from the highly similar virulent strains, we fo-
cused on the variation of single copy genes which repre-
sent around 95% of the individual genome gene content.
We found no gene that was either extra or lost nor a

SNP to discriminate these two genomes. However, gen-
omic differences that explain the different phenotypes
can possibly be found by looking into looking into the
non-single-copy genes or comparing the genome struc-
tures [63]. Another promising approach would be to in-
clude intergenic regions into the pangenomic analysis.
These regions account for approximately 15% of a Pecto-
bacterium genome and contain important regulatory ele-
ments which play a key role in transcriptional regulation
[64]. In addition to genetic or structural variation that
could explain the difference in virulence, epigenetic
modifications are known to result in different pheno-
types as well. Through epigenetic regulation, bacteria re-
spond quickly to environmental changes [65]. DNA
methylation in particular is known to play important
roles in bacterial pathogenicity [66].
We adjusted our approach to identify genes specific to

the clonal lineage, allowing us to identify 86 genes only
present in virulent isolates. This set of genes includes
several gene candidates with functions that could con-
tribute to the pathogenicity of P. brasiliense strains, such
as a Lysozyme inhibitor [67], a Toll/interleukin-1 recep-
tor [68], and a siderophore transport system [69]. More-
over, GO-terms associated, transposable elements and
recombination are enriched in these genes. Combined
with the fact that the 86 genes were found located
largely in pairs or clusters in the genomes this further
indicates that these additional genes were obtained by
HGT [70] and could involve consecutive steps in path-
ways [71]. Instead of a single gene one or more clusters
could be required for a fully virulent phenotype.

Conclusions
This study provides a comprehensive analysis of the
genus Pectobacterium, a diverse group of plant patho-
genic bacteria of great economic importance. We have
generated a pangenome from high-quality genomes
using the previously published software package Pan-
Tools that was further expanded by adding new func-
tionalities specifically designed for phylogeny and
phenotypic characterization. Different methods to create
phylogenies were applied that, although differing in reso-
lution, showed very similar topology except for the tree
based on gene content. This study demonstrates that
gene acquisition and loss are an important source of nat-
ural variation in the genus Pectobacterium that can dif-
ferentiate even closely related strains. In addition,
clusters of genes were identified that are linked to viru-
lence on potato under field conditions. Furthermore, we
found that Pectobacterium spp. typically lack species-
specific genes that are present in all its members, but in-
stead present themselves as new gene combinations
from the shared gene pool. The multilevel pangenomic
approach allowed by PanTools, fusing DNA sequence,
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protein content, biological function of predicted pro-
teins, taxonomic groups, and phenotypes, is a powerful
tool to study genetic diversity and evolution.

Methods
Collection of strains
New isolates were obtained from asymptomatic potato
tubers, symptomatic potato plants, surface water, flying
insects and horticultural crop. Non-symptomatic mater-
ial was ground or crushed and incubated in pectate buf-
fer [72] before spreading on single-layer Crystal Violet
Pectate (CVP) plates [73]. Characteristic colonies were
subcultured on CVP and Nutrient agar plates to obtain a
pure isolate. Isolates were stored at − 80 °C in 15% glycol
with half strength nutrient broth.

Phenotyping Pectobacterium isolates
Virulence of Pectobacterium isolates was assessed in
seed potatoes and minitubers of the variety Kondor ac-
cording to Van der Wolf et al., 2017 [19]. Pectobacter-
ium strains were grown on Nutrient Agar plates for 1
day at 28 °C. Suspensions of OD600 = 0.1 were prepared
in 10 mM phosphate buffer pH 7.2 and diluted an extra
100x, resulting in suspensions with about 106 CFU/ml.
Potato tubers were submerged in the solution and
brought under − 0.07 Pa vacuum. Vacuum was kept for
10 min, after which tubers were left submerged for an-
other 15 min. Tubers were left to air-dry before planting.
Virulence was scored as the development of typical plant
symptoms [19].

Genome sequencing
For the purpose of genome sequencing, DNA was ex-
tracted from pure bacterial cultures obtained by growing
the strains on TSA medium. Per isolate approximately
one inoculation loop (10 μl) of bacterial slime was col-
lected from multiple colonies. The DNA extraction for
Illumina sequencing was performed by using the Wiz-
ard® Magnetic DNA Purification System for Food (Pro-
mega, Leiden, the Netherlands) according to the
manufacturer’s protocol. DNA for PacBio sequencing
was obtained with the Gentra Puregene Yeast/Bact. Kit
(Qiagen, Hilden, Germany) following the manufacturer’s
protocol. Quantification was done by measuring the
samples with the Qubit Fluorometer, using the Qubit
dsDNA HS Assay Kit (ThermoFisher Scientific, Wal-
tham, USA). DNA samples were sequenced using short
read sequencing (Illumina, San Diego, USA) and long
read sequencing (Pacific BioSciences, Menlo Park, USA).
For Illumina sequencing a random sheared shotgun li-
brary preparation was performed using the Truseq Nano
DNA Library Prep kit (dual indexing) following the
manufacturer’s protocol. The samples were loaded on a
paired-end flowcell, using the Hiseq PE cluster kit V4. A

cBot (Illumina). One hundred twenty-five bp paired-end
sequences were generated on either a Hiseq 2500 or
NovaSeq 6000 device (Illumina, San Diego, USA). For
PacBio sequencing DNA was sheared to 6 Kb (gTubes,
Covaris) and pooled. SMRTbell™ libraries were prepared
using PacBio® Barcoded Adapters for Multiplex SMRT®
Sequencing according to the instructions of the
manufacturer.

De novo assembly, annotation and validation
The genomic sequences of 63 Pectobacterium genomes
were assembled using the CLC Genomics Workbench
11.0 (https://qiagenbioinformatics.com) or Canu version
1.6 [74]. Publicly available Pectobacterium genomes were
downloaded from NCBI Genbank [75] in July 2019.
Genome assemblies were annotated using the Prokka
pipeline (version 1.14) [32]. Very short contig sequences
(< 500 bp) without gene annotation were removed as
these were most likely assembly artifacts. Gene space
completeness was estimated with BUSCO v3 [33] using
the Enterobacteriales odb9 (781 orthologs) database. Ge-
nomes were removed from the dataset if the annotation
completeness was below 99%, resulting in a set of 197
genomes (Additional file 1, Table S1). Biosynthetic gene
clusters were predicted using antiSMASH v4.2 [76].
Functional domains and sites in protein sequences were
annotated by InterProScan-5.28-67.0) [77]. Phobius [78]
was used to predict transmembrane domains and signal
peptides. In addition, sequences were searched against
the Clusters of Orthologous Groups of proteins (COG)
database [79] using BLASTP. Proteins with a hit over
65% identity and E-value below 10–5 were assigned to
one of 26 COG categories [80].

Pangenome construction and annotation
A pangenome was constructed from 197 high-quality ge-
nomes by using a modified version of PanTools [31]
using a k-mer size of 17 and Prokka annotations were
added. Protein sequences were clustered into homology
groups using the built-in ‘group’ functionality [81]. The
Gene Ontology (GO) version June 2019 (http://
geneontology.org), InterPro v74 (https://ebi.ac.uk/
interpro), the Pfam v32 protein family database (http://
pfam.xfam.org) and TIGRFAM release 15 (https://jcvi.
org/tigrfams) were integrated into the pangenome graph.
Using the output of InterProScan and Phobius, gene
nodes were annotated and linked to their corresponding
functional annotation. Species names as well as the viru-
lence scores were included into the pangenome as phe-
notypes. For the virulence phenotype, 40 P. brasiliense
genomes were labeled as virulent or avirulent and the
remaining genomes were set to unknown.
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Optimizing protein clustering and BUSCO benchmarking
The novel ‘optimal_grouping’ function of PanTools clus-
tered the protein content eight times independently
using different settings, and selected a grouping based
on correct placement using 670 ‘complete’ and ‘non-du-
plicated’ Enterobacteriaceae BUSCO genes in single-
copy orthology groups. Assuming each BUSCO is truly
single copy, the optimal clustering setting should place
each BUSCO gene in a separate homology group with
one representative gene per genome. For each BUSCO
gene, we checked whether its 197 members clustered
into a single or into multiple groups and if they clus-
tered with non BUSCO genes. The number of true posi-
tives (tp) and false negatives (fn) was fixed, where the
highest number of correctly clustered BUSCOs present
in one group are considered tp’s and the remaining
BUSCO genes outside this best group are considered fn.
Any other gene clustered inside BUSCO groups is con-
sidered a false positive (fp). The sums of tp’s, fp’s and
fn’s are defined as TP, FP and FN, respectively. We mea-
sured the accuracy of each grouping by calculating recall
as TP/(TP + FN), precision as TP/(TP + FP) and F-score
as 2x(RecallxPrecision)/(Recall+Precision) [31].

Establishing the core, accessory and unique part of the
genome
K-mers, homology groups, and associated annotations
were classified as core (present in all genomes),
accessory (present in two or more genomes but not all)
or unique (present in a single strain). Additional copies
of a gene were considered as the same class. We classi-
fied associated annotations, such as phenotype, as spe-
cific when present in all phenotype members but absent
in other genomes. Hypergeometric tests with Benjamini-
Hochberg (BH) multiple testing correction [82], imple-
mented in PanTools, were carried out on virulence asso-
ciated genes to identify over-represented GO-terms. In
addition, we classified k-mers and functional annotations
similarly by counting their occurrence in the graph. The
abundances of COG categories in a class (core,
accessory, unique) were calculated and compared to ob-
tain a fold-difference in relative abundance. We consid-
ered a COG category to be enriched for a class when the
log2 (relative abundance) was at least 1.0 higher than the
abundance of the other class.

Determining the openness of the pangenome
Iterations of random genome combinations according to
the models proposed by Tettelin et al. (2008) [36] were
used to determine the contribution of new genomes with
respect to the increase in core, accessory, and unique.
The global gene repertoire of the Pectobacterium genus
is represented by the total number of homology groups.
To simulate the overall pangenome size increase and

core genome size decrease, we iterated 10,000 times over
the homology groups. Each iteration started with three
random genomes from which core, accessory and unique
homology groups were identified. Subsequently, random
genomes were added and groups reclassified until the
maximum number of genomes was reached. Heaps’ law
(a power law) [36] was fitted to the number of new
genes observed when increasing the pangenome by one
random genome. The formula for the power law model
is n = k × N−α, where n is the newly discovered genes, N
is the total number of genomes, and k and α are the fit-
ting parameters. The pangenome is open when α < 1 and
closed if α > 1. To obtain the (average) increase in
groups per added genome, we calculated the average
number of (core, accessory and unique) groups for a cer-
tain size of the pangenome and subtracted this by the
average number of groups from the pangenome with
one genome less.

Sequence alignments of homology groups
To identify variation within gene and protein sequences,
nucleotide and protein sequences were extracted from
homology groups and subsequently aligned with MAFFT
v7.453 [49] using default settings. Edges of the initial
protein alignments were trimmed up until the longest
start and end gap. The original nucleotide and protein
sequences were trimmed according to the protein pre-
alignment and aligned a second time from which vari-
ants were extracted.

Phylogenetic analysis
We integrated five different phylogenetic strategies into
PanTools v3. All methods produce Newick formatted
tree files that were visualized with iTOL [83]. To test
whether the different methods were able to produce a
similar phylogeny, their topologies were compared using
an approximately unbiased (AU) test implemented in
IQ-tree v1.6.12 [47, 48].
The first method is a MultiLocus Sequence Analysis

(MLSA) that was applied to housekeeping genes: acnA,
dnaX, gyrA, gyrB and mtlD. The initial step of the pipe-
line is the individual alignment of protein sequences of
the five genes. Start and end gaps in the alignment were
used to trim the original nucleotide sequence. A single
contiguous sequence of five genes was created for each
genome which were aligned by MAFFT using default
settings. A maximum likelihood (ML) phylogeny was in-
ferred from the concatenated multiple sequence align-
ment using IQ-tree with default settings and 1000
bootstrap iterations.
Our second method was based on single nucleotide

polymorphisms (SNPs) from single-copy orthologous
homology. First, single copy-groups were aligned in two
consecutive rounds by MAFFT as described in the
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previous section. Parsimony informative positions from
the nucleotide alignments were concatenated into a sin-
gle contiguous sequence per genome from which IQ-
tree generated a ML tree with default parameters.
For the third distance tree, Average Nucleotide Iden-

tity (ANI) scores between genomes were estimated using
FastANI (version august 2019) [34]. ANI scores were
transformed by 1-(ANI/100) to a distance in the range
0–1. Distances were inserted into a matrix from which
we constructed a Neighbor-Joining (NJ) tree using the
ape R package [84]. Furthermore, we used the ANI
scores against the type strains in combination with the
core SNP phylogeny to identify misclassified strains. To
allow for the discovery of species-specific genes, strains
were renamed when placed in a clade with different spe-
cies and having an ANI score below 95% to its type
strain [35, 54, 55].
The last two trees were based on distances calculated

from shared gene and k-mer content. For this we re-
corded absence or presence of the genes or k-mers and
ignored their frequency. Homology groups were utilized
to identify shared genes between two genomes and k-
mer sequences were counted directly in the pangenome
graph. The gene distance between two genomes was ob-
tained by calculating the Jaccard index, dividing the
shared number of genes by the total number of genes.
For measuring the k-mer distance, we calculated the
MASH distance between two genomes as described by
Ondov et al., in 2016 [85]. K-mers were disregarded
when containing nucleotide codes other than the four
non-ambiguous ones (A, T, C, G). Subsequently, dis-
tances were arranged into matrices from which NJ trees
were inferred as described above.
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