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Abstract

Background: Inference of protein’s membership in metabolic pathways has become an important task in functional
annotation of protein. The membership information can provide valuable context to the basic functional annotation
and also aid reconstruction of incomplete pathways. Previous works have shown success of inference by using various
similarity measures of gene ontology.

Results: In this work, we set out to explore integrating ontology and sequential information to further improve the
accuracy. Specifically, we developed a neural network model with an architecture tailored to facilitate the integration
of features from different sources. Furthermore, we built models that are able to perform predictions from
pathway-centric or protein-centric perspectives. We tested the classifiers using 5-fold cross validation for all metabolic

pathways reported in KEGG database.

Conclusions: The testing results demonstrate that by integrating ontology and sequential information with a
tailored architecture our deep neural network method outperforms the existing methods significantly in the
pathway-centric mode, and in the protein-centric mode, our method either outperforms or performs comparably
with a suite of existing GO term based semantic similarity methods.

Keywords: Metabolic pathway prediction, Gene ontology, Neural network

Background

Metabolic pathways are series of biochemical reactions
occurring within the cell which involve catalytic reactions
of protein enzymes converting substrate compounds into
product compounds. Because each reaction in the path-
way requires a protein enzyme as catalysis in order to
happen, from an enzyme centric perspective, a metabolic
pathway can be represented as a list of these proteins.
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Identification of organism’s metabolism usually involves
laborious experimental techniques mainly in character-
ization of protein enzymes in metabolic pathways. It
requires advanced technologies, expensive equipments,
and highly skilled manpower to perform the experiments.
To shorten the steps required in the characterization
process, computational methods are often deployed for
modeling the pathway and inferring specific tasks. The
prediction step might provide a higher level of network
organization that facilitate human comprehension of the
system and aid in identifying the missing information
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such as missing proteins or reactions in the network.
One example of such prediction tasks is pathway mem-
bership inference, which is to determine whether a pro-
tein is a member in the enzyme list of a given pathway.
This is an important annotation task that can not only
provide context to the basic function annotation of pro-
teins but also more importantly aid reconstruction of
incomplete metabolic pathways, which can subsequently
help better understand metabolism and physiology of
cells and provide complementary perspective to study
evolutionary [1].

However, traditional sequence similarity-based homol-
ogy approaches to characterizing proteins for their enzy-
matic properties run into difficulties when sequence iden-
tity is lower than 60% [2]. Facing this challenge, various
efforts have been made to go beyond individual pro-
teins and their homologs to leverage the large amount of
annotations for proteins in their functional context, such
as from curated reference dataset or features extracted
from proteins. The example of curated reference dataset
is Gene Ontology (GO), which provide a hierarchy of con-
trolled terms defining protein functions with varied lev-
els of specificity for different cellular functions/processes
[3, 4]. The semantic similarity between two proteins can
be used to replace the sequence-based similarity method.

Various similarity measures have been developed to
quantify the semantic similarity of GO terms and applied
it in quantitative comparison of functional similarity of
gene products, although most of these methods are not
developed for metabolic pathway membership inference
[5-10]. Essentially, those measures mainly involve two
steps of calculation : 1) calculation of GO term similar-
ity, and 2) calculation of protein similarity, based on GO
term similarity. In the first step, the semantic similarity
between two GO terms is calculated to incorporate the
GO hierarchy, via information contains in the GO tree
such as node, edge or combination of the two. In the sec-
ond step, protein similarities are aggregated from their
terms’ similarities. To infer the protein’s membership in
the pathway, the similarity between the proteins are then
used [7, 11]. More recently, in [5], a hybrid approach to
take into account of both information content of individ-
ual GO terms and the whole GO hierarchy with a simple
Cosine similarity is shown to be advantageous in both
prediction accuracy and running time as compared with
other semantic similarity-based methods.

In general, however, the prediction task of proteins’
annotation, including the prediction of protein’s metabolic
pathway annotation, may come from two perspectives.
One perspective is the pathway centric perspective and
the other is protein centric perspective. In the path-
way centric perspective, the relevant question is: given
a pathway, predict the proteins participate in the path-
way, thus this perspective leads to prediction problem of

Page 2 of 10

association of pathway and its enzymatic reaction. On the
other hand, the protein centric problem asks a different
question: given a protein and its annotation, predict enzy-
matic reaction that they catalyzed. This question can be
translated into prediction of set of metabolic pathways
of which a given protein is likely to be a member. While
the protein centric perspective is more natural in protein
annotation, it turns out more computationally challeng-
ing as it is multi-class classification problem, as compared
to the binary classification problem for pathway centric
membership prediction.

In this work, we set out to develop new computa-
tional approach based on neural networks for predicting
pathway membership from both directions: the protein
centric and pathway centric problems. In doing so, we also
explore integrating both ontology and sequential infor-
mation to further improve the accuracy. Specifically, we
develop a neural network model with an architecture tai-
lored to facilitate the integration of features from different
sources.

Results and discussion

Table 1 shows the performance of our method for pathway
membership prediction, in comparison to using a suite
of different ontology-based gene similarity methods men-
tioned in the Methods. Because GO has three separate
hierarchies: BP, CC, and MF, we thus evaluated the predic-
tion performance for using each hierarchy. In addition, we
also evaluated the performance of different featured used
in this experiment separately.

We developed a method to include the graph structure
information of gene ontology and the information contain
in ontology terms as feature representation of proteins.
The inclusion of both graph structure and information
content in our method can significantly improve perfor-
mance of pathway prediction membership. When a simple

Table 1 NN is neural network model, NN 1/0 is neural network
model that use binary representation of GO terms as features.
The number of layers in neural network are three and the
dimension of neurons in each layer are 256,64, and 1. tnot
significantly different than cosine method in each ontology

Methods BP CcC MF

NN 0953 0.849 0.895
NN 1/0 0.941 0.847 0.870
cosine 0.931 0.762 0.677
SYM 0.920 0.768" 0.843
RF 0.935% 0.837 0.887
KNN 0.830 0.780 0.806
Resnik 0.829 0.667 0.790
SimGIC 0.902 0.735 0.717
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approach of binary vector 1 or 0 to represent the presence
of GO term for a given protein, the performances of pre-
diction are lower than our method for all ontologies, for
example when BP ontology is used the performances are
.941 and .953 respectively (statistically significant, p <0.05)

In comparison across three ontologies, the best results
are obtained when BP ontology terms are used as features
to predict the membership of metabolic pathway for all
methods. It is clear that the neural network model outper-
formed other methods. For example, when BP terms are
used, the ROC score for neural network, ,cosine, SVM, RE,
and KNN are .953, .931, .920, .935, and .830 respectively.
When cosine method is used as a baseliner method, our
method’s performance is statistically significant higher (p
<0.05), while other machine learning methods such as
KNN and SVM are lower. However, it is interesting to note
that the performance of methods that are designed specif-
ically to use the ontology-based semantic similarity such
as SimGIC, and Resnik, are mostly the worst performance
in all ontologies, even below the baseline cosine method.
The reason behind this may be explained by the fact that
most of ontology-based semantic similarity methods are
based on calculating the similarity distance between the
proteins only, without the learning process such as SVM
classifier.

The good performances of prediction methods when
using GO terms ontology are expected since the GO terms
are curated data. The BP terms are especially information
rich of protein function dataset. Other ontology terms,
i.e. MF and CC, are not as rich as the BP in terms of
function information, thus the performance of methods
in predicting protein membership of pathway when using
these ontologies are below the BP ontology. This pattern
is consistent with our intuition that metabolic pathways
are better characterized as biological processes (BP). Real-
izing this, we tested the performances of neural network
method and base classifier when using non function based
curated data, such as k-mer which transform the sequence
information into frequency of k-mer amino acids, as input
features to the models. Compared to the performances
when GO terms are used as features, the sequence-based
features are less effective in pathway membership pre-
diction task (Table 2). The top model performance when
using this feature are .786 for neural networks model.

We also tested the effect of multi modal features as
input to our neural network model. We tested two dif-
ferent possibilities of combining the multi modal features
in our NN model, by concatenating the features at early
stage and at later stage. Addition of information to the
method can improve the prediction performance of NN
model (Table 3), although in other models it can lower the
prediction performance. For example, compare to single
modal of GO term in NN architecture, the use of multi-
modal data can increase the performance from .952 to
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Table 2 ROC score of different methods when k-mer is used as
input features

Methods k-mer
NN 0.786
cosine 0.598
SVM 0.715
RF 0.774
KNN 0.687

957 (p=0.17), from .849 to .880 (p <0.05), and from .895
to .907 (p <0.05) when BP, CC, and MF ontologies are
used. However, in cosine method, the use of multi-modal
data of GO terms and k-mer frequency can deteriorate the
prediction performance. We believe this attributed to the
learning power of the neural network, in which individual
neurons can adjust their weights adapting to different type
of features, whereas the cosine method treats all features
equally.

When we considered the metabolic membership predic-
tion task as a pathway centric problem, we needed to build
many models, one for each pathway. Thus, for a given pro-
tein to be classified, we need to run it for every model and
obtained the predicted output. The protein centric predic-
tion task, on the other hand, will predict multiple classes
at once thus can be built from one model. Table 4 shows
the performance of neural network method in compari-
son to other methods by using either single modal or multi
modal features.

Similar to pathway-centric prediction task, the perfor-
mances of the protein-centric methods are best when BP
ontology is used as feature. The F measure of NN for

Table 3 The ROC score of methods for multi-modal data. NN is
neural network model, NN 1/0 is neural network model that use
binary representation of GO terms as features. (concat) is
approach where GO terms and k-mer is concatenated as single
vector to represent each protein, (multi-input) approach where
GO terms and k-mer are used as two input to the model. The
number of layers in neural network are three and the dimension
of neurons in each layer are 128,64, and 1

Methods BP+k-mer CC+k-mer MF+k-mer
NN (concat) 0.954 0.874 0.907
NN (multi-input) 0.957 0.880 0.907
NN 1/0 (concat) 0.943 0.883 0.894
NN 1/0 (multi-input) 0.940 0.882 0.888
cosine (concat) 0.920 0.768 0.687
SVM (concat) 0.933 0814 0.863
RF (concat) 0923" 0.840 0.844
KNN (concat) 0.829 0.784 0.790

"ot significantly different than cosine method in each ontology
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Table 4 The performance comparison of models in protein centric task. The table reports the true positive (TP), false negative (FN),
false positive (FP), number of proteins that have at least 1 prediction label (NP), the precision, recall, F measure, and Matthews
correlation coefficient (MCC) for different features used in the models. The features used are k-mer, GO terms (BP, CC, and MF), and
when both k-mer and GO terms are combined. The number of layers in neural network are three where the dimension of the first two
layers are 128 and 64, and the last layer dimension is equal to the number of metabolic pathways

Features Method TP FN FP NP Precision Recall F1 measure MCC
k-mer NN 1312 4183 3481 920 0216 0.178 0.195 0.246
SVM 206 5289 41 149 0.823 0.074 0.136 0.176
RF 201 5294 0 71 1.000 0.052 0.099 0.190
KNN 792 4703 457 332 0.624 0.132 0.217 0.300
BP NN 2773 2722 2256 984 0.646 0.513 0.572 0.521
SVM 2283 3212 711 888 0.796 0.449 0574 0.560
RF 1709 3786 170 623 0.906 0.375 0.531 0.529
KNN 1391 4104 424 787 0.755 0.374 0.500 0438
BP-+k-mer NN 2760 2735 1830 973 0.648 0.500 0.565 0.544
SVM 2301 3194 709 883 0.804 0.448 0.575 0.563
RF 1198 4297 42 371 0.970 0.227 0.368 0456
KNN 1430 4065 394 773 0.764 0.375 0.503 0.449
CcC NN 1945 3550 3616 926 0422 0.355 0.386 0.343
SVM 1117 4378 283 534 0.768 0.255 0.383 0.400
RF 1009 4486 267 445 0.736 0.215 0.333 0.379
KNN 966 4529 436 525 0627 0.204 0.308 0.346
CC+k-mer NN 2178 3317 2523 827 0.493 0.348 0.408 0421
SVM 1213 4282 302 551 0.784 0.270 0.401 0418
RF 659 4836 25 212 0977 0.132 0.232 0.338
KNN 1026 4469 450 535 0.675 0.224 0.336 0.358
MF NN 2429 3066 2950 844 0.545 0.400 0462 0439
SVM 1703 3792 423 646 0.785 0.306 0441 0.496
RF 1580 3915 454 604 0.786 0316 0451 0470
KNN 1313 4182 576 635 0.642 0.262 0.372 0.405
MF+k-mer NN 2520 2975 2900 868 0.580 0.399 0472 0454
SVM 1771 3724 449 665 0.783 0326 0.460 0.504
RF 985 4510 18 275 0.968 0.157 0.270 0417
KNN 1427 4068 533 612 0.697 0.272 0.391 0432

example, are .572, .386, and .462 when BP, CC and MF
ontology are used respectively. When NN model being
compared to other classifiers, it outperforms most of the
classifiers, especially when using the MF and CC dataset,
while when using BP dataset, it is second under SVM
classifier. However, it is important to note that of all
classifiers, neural network produced the highest number
of proteins that have at least one predicted label in all
ontologies and highest number of true positive, which
suggest that the neural network being more sensitive (thus
higher recall) in detecting the metabolic pathway to the
proteins, while other classifiers are more being specific
(hence higher precision). Consequently, NN produces
highest number of false positive and lowest number of
false negative of all methods, while SVM produces lower

false positive and higher false negative than NN. Over-
all, however, as measured by the F1 score that takes into
account both recall and precision, NN either outperforms
other methods (CC, CC+k-mer, MP, MP+k-mer)or per-
forms comparably with other methods (BP, BP+k-mer).
It is worth noting that, the protein-centric member-
ship prediction is a multi-class classification whereas the
pathway-centric membership prediction is a binary clas-
sification, which means that the former one is much more
challenging, as reflected in the prediction performance.
Therefore, while performance for protein-centric mem-
bership prediction may seem low, it should be assessed in
the context of multi-class (320 classes to be exact) clas-
sification with a 1/320 = 0.3% accuracy from a random
classifier.
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Conclusion

In this work, we developed a neural network-based
method for pathway membership inference using both
gene ontology (GO) similarity and sequential features
between a query protein and proteins that are known
to the members of a given pathway. By replacing binary
vector of the GO term annotation for a gene with the
information content of individual GO terms and incorpo-
rating GO hierarchy with ancestor nodes that are directly
present in gene annotation, we can create information
rich vector representation for a gene. We built multilayer
forward feeding neural networks that are able to inte-
grate the GO term features and sequential features. We
demonstrated that our NN based method outperformed
other classifiers including SVM and random forest and
the methods that are specifically designed to use the GO
term features alone. Moreover, the NN based method is
also able to answer question from both the pathway cen-
tric and protein centric perspectives, which makes the
method more versatile in scaled up application for protein
annotation.

Methods

Dataset

We used the gene ontology and gene annotation from
GeneOntology (GO, http://geneontology.org), version
2019-07-01. The GO’s ontology consists of three ontolo-
gies, i.e. biological process (BP), cellular components (CC)
and molecular functions (MF). This version of GO con-
tains 31043 BP, 11973 MF, and 4397 CC terms. The anno-
tation provides association between proteins and their
corresponding GO terms either manually reviewed by
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curator or automatically generated by prediction tools.
Out all of available evidence codes, only IEA (Inferred
from Electronic Annotation) has not assigned manually
by a curator. Therefore, it is necessary to exclude the
IEA evidence code to prevent cyclic prediction: predict
the protein annotations by using predicted data. In this
experiment, we exclude annotations encoded by IEA.

We downloaded human KEGG pathway data set from
Kyoto Encyclopedia of Genes and Genomes database [12],
http://rest.kegg.jp. The database consists of 320 human
pathways. We excluded pathways that consists less than
10 proteins to ensure adequate training and testing in the
cross-validation scheme and mapped the NCBI gene id
to its corresponding Uniprot identifier. As a result, we
obtained 308 pathways and the number of proteins in the
pathways range from 10 to 521 proteins with most of the
pathways having proteins less than 100 proteins (Fig. 1).

Data representation

We used multimodal data as input to our model, includ-
ing the GO terms and k-mer information from protein
sequences. While a simplistic approach to represent GO
terms is a binary vector with 1 or 0 representing the pres-
ence or absence of GO terms in annotation of given gene,
our method adopts a scheme from [5], which considers
both of the structure of the GO graph and the information
content of the GO terms in building the vector of the gene
and their corresponding annotations (Fig. 2).

Specifically, before we build the gene vector, we first
calculated the semantic value (SV) for each GO term in
the annotation of a given protein. We used a normalized
information content of term ¢; by dividing the information
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Fig. 1 Distribution of pathways and the number of their proteins used in this experiment
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Fig. 2 Generation of vector representation from GO dataset. In this example, the protein is annotated with t3 and t4. To generate protein’s feature
vector, the normalized IC of t3 and t4 is used in the first stage. On second stage, the semantic value (SV) of all term ancestors of t3 and t4 are
calculated. Since t3 and t4 share common ancestor, t1 and t2, the semantic value for t1 and t2 are average semantic value (SV). See Material and

content of term #; with the maximum IC in whole set of
GO terms T as follows:
ICt)
IC,(t) = ————— 1
) = (1)
tieT
Then we expanded the annotation of a given protein
by including all of the ancestor terms: for each annota-
tion term ¢; in a given protein, we assigned the weighted
semantic value for all ancestor terms of term ¢;, defined as
follows:

SV (i) = wIC, (i), )

wherew is the weight, in this case we use a fix constant
of 0.5, t; is all ancestor terms of term #; and dp; is the
path length of term ¢; to its ancestor Z,;. The path length is
defined as the difference of the maximum depth between
the two terms in the GO tree.

When there are multiple GO terms in the annotation
of a given protein, it is possible that these GO terms
may have ancestor terms in common. Therefore, during
expansion of the annotation vector for a given protein, a
common ancestor term will have multiple semantic val-
ues, each for annotation term in the original annotation,
as the common ancestor term may receive a semantic
value from all of its descendants. Hence, we calculated

the average of these values (SV(¢,)) as the new seman-
tic values for a common ancestor term f,. Note that, in
GO hierarchy, there are other relationships such as “NOT”
and “contribute to’; between two GO terms; in this study,
however, we only include “is_a” relationship for calculat-
ing the semantic value, following the same practice as in
other method such as [7], which we compare with.

After this procedure, a gene is represented as a vector of
n-dimension, where n = |T'|, each dimension correspond-
ing to one GO term in the gene ontology hierarchy, with a
semantic value being either a) the normalized information
content if the GO term is present in the gene annota-
tion, or b) a value assigned as above for a GO term whose
descendant(s) is present, or c) a value of zero if a GO term
is not of either of the two former cases.

In addition to gene annotation data as input to our
model, we also used sequence-based features, such k-mer.
The k-mer feature represents the sequence information as
the frequency of k-mer, in this case we used k = 2.

Neural network architecture

Artificial neural network is inspired by biological pro-
cess [13]. It consists of layers of neurons that are fully
connected between layers, but no connection between
neurons in the same layer. Each neuron performs lin-
ear transformation operation of weighted information
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summation coming from all neurons in previous layer
adjusted by some biases followed by nonlinear activation
function f; as define by following equation:

x=f (Z wixi + b) 3)

While there are many activation options available for
neural network. The two most used activation functions
are ReLU and Sigmoid. The ReLu set the lower bound out-
put of neuron to 0 the output of neuron to be minimum
of 0, while sigmoid squashing the output of neuron and
bounded to be between 0 and 1. In this experiment, we
used the ReLU activation in the hidden layer, while Sig-
moid is used in the output layer. The formal definition of
ReLU (4) and Sigmoid (5) are:

y = max(0, x) (4)
1
STl ®

We implemented a multi-layer feed forward deep neural
network in our model. We stacked three fully connected
layers where the first layer is the input layer, the second
layer is hidden layer, and the last layer is output layer. The
input of the network is the n-dimensional vector of pro-
tein’s features (Fig. 4). We used multi-modal features, i.e.
GO terms and k-mer, and we either used a single modal or
multi-modal features. For a single modal feature, we adopt
architecture in Fig. 3. For multi-modal features, we com-
bined the features’ vectors at early stage or at later stage.
At early stage, we concatenate multiple vectors into one
vector as input to the model, thus the architecture similar
to single input vector (Fig. 3). On the other hand, the con-
catenation at later stage happens inside the model where
multi input model accept multiple input of vectors, then
the model combine it in hidden layer while processing
the inputs (NN multi input, Fig. 4). Note that convolution
neural networks were attempted and did not get good per-
formance, which we believe may be attributed to lack of
convoluted patterns/features in protein sequences, unlike
2d images. Depending upon the classification task, the
dimension of output layer is either 1 or n, where # is the
number of classes to be predicted (» = 308). In binary
classification, the dimension of output layer is 1, while
in multi-label classification the dimension of output layer
is n. For binary classification task, we built one model
for each class, while for multi-label classification task, we
built one model. We performed optimization by compar-
ing different number of neurons in each layer (data not
shown).

We implemented the Keras library to build our model.
We chose to minimize the binary cross entropy function
loss using the Adam optimizer with learning rate 0.001
for binary classification task. For multi label classifica-
tion task, we chose to minimize the F1 function loss. To
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prevent overfitting in our model, we implemented the
dropout (0.5) regularization. Note that unless explicitly
mentioned otherwise, the default values of the hyperpa-
rameters are used in this study, and it is conceivable that
better performance than reported in Tables 1, 2, and 3 can
be achieved should these hyperparameters be optimally
tuned.

Training

In our experiment, we trained individual model separately
for each pathway in the binary classification task. We
performed 5-fold cross validation for each pathway. For
each pathway, positive dataset consists of proteins that
belong to the pathway while negative dataset is gener-
ated by selecting equal number of random proteins that
do not belong to the pathway or interacting with proteins
in the pathway. We followed this procedure since proteins
in the pathway tend to interact each other, and by using
this approach we ensured that there are no proteins in
the negative dataset that are interacting with proteins in
the positive dataset. We used BioGrid dataset to deter-
mine the interacting protein. We also excluded proteins
that have no GO terms information in the pathways.

For multi-label classification task, we followed different
approach. Since in both multi class or multi label classi-
fication task a positive sample can be a negative sample
for other classes, we did not generate negative dataset.
We simply consider negative dataset of a given pathways
are proteins in other pathways. We also did not perform
5-fold cross validation, instead we randomly held 5 pro-
teins from each pathway as testing dataset and the rest as
training dataset.

Baseline classifiers

We used several GO based semantic similarity measures
and baseline classifier as comparison to our method. We
used the most commonly used semantic similarity mea-
sures, Resnik [10] and simGIC [9]. These measures mainly
use the information content (IC) of each node to quantify
the GO terms in the GO graph. The IC is described as:

1IC(t) = —log[p(®)] (6)

where p(t) is term frequency of ¢ in a given annota-
tion corpus, such as Gene Ontology Annotation (GOA).
These measures use same principal in calculating similar-
ity between two proteins, which is based on the similari-
ties of their corresponding terms. For protein similarities
of Resnik’s measures, we followed method from [14]. In
addition to these methods, we also calculated the simi-
larity of two proteins g and p based on their dot product
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Fig. 3 Neural network architecture for single vector input
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Fig. 4 Neural network architecture for multi input vector
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of their corresponding semantic value vectors SV, and
SV, as

s(gp) =Y _ SVy(t) - SVp(®) (7)
teT

where ¢ is the term of GO terms 7. To determine whether
query protein g belong to the model, we used the aver-
age similarity score between the query protein and set of
proteins P of incomplete pathways as

S(g,P) =) _S(g,p)/IP| (8)

peP

where s(g, p) is the similarity score between query protein
q and a member protein p as calculated by Eq. 7 and |P| is
the number of known proteins for the incomplete pathway
P.

In addition to GO based semantic similarity meth-
ods, we also use some of mostly used base classifiers in
machine learning: SVM, RE, and KNN. We implemented
the Scikit library of SVM, RE, and KNN by using all default
parameters. We used parameters as follows: rbf kernel and
C = 1e10 in SVM, number of forest is 100 in RF, and num-
ber of neighbor is 5 in KNN. We implemented Scikit SVM,
RF, and KNN libraries.

Predictive performance evaluation

We adopted two different performance measures, each
for pathway centric and protein centric prediction task
respectively. For pathway centric task, we considered the
task as binary classification problem and used receiving
operating characteristic (ROC) curve analysis to evalu-
ate the performance. The ROC curve of perfect classifier
has the area under the ROC curve (AUC) of 1. The per-
fect curve rises steeply from bottom left to top left and
move toward top right. We calculated ROC curve for each
pathway and average across all pathways. ROC curve mea-
sures the performance of classifier at various threshold
setting and represents the tradeoff between true positive
rate (TPR) and false positive rate (FPR). The TPR and FPR
for each pathway c are defined as:

FP,
FPR, = —— )
(FP, + TN,)
TP,
TPR, = ——— < (10)
(TP, + FN,)

where FP., TN,, TP., and FN, are the number of false
positive, true negative, true positive and false positive
respectively in pathway c. We then calculated the AUC of
ROC from the above FPR and TPR and average the ROC
score over all pathways.

For protein centric task, we considered the task as multi-
label classification since one protein can have multiple
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label, and used the F1 score and Matthews Correlation
Coefficient (MCC) to evaluate performance. The preci-
sion and recall are defined as

TP

L 11
P=Tpyrp (11)
TP
. L (12)
TP + FN

where TP, FP, and FN are the number of true positive,
false positive, and false negative respectively. The F mea-
sure is harmonic mean of precision and recall. The value
range between 0 and 1. The perfect score of 1 means
that both of the precision and recall reach their maximum
score of 1. However, when the precision reach maximum,
it increases the TN, thus reducing the recall. On the
other hand, when the recall reaches maximum score, it
increases the FP, thus reducing the precision. Thus, F mea-
sure hardly reach maximum score 1. The F1 measure is
defined as

2
Flo 2P X" (13)
p+r
while MCC is defined as:
McC (TP x TN)—(FP x FN) (14)

= J(TP 1 EP) x (TP f EN)x(IN + FP) x (TN + EN)
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