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Abstract

Background: Plant pathogens cause substantial crop losses in agriculture production and threaten food security.
Plants evolved the ability to recognize virulence factors and pathogens have repeatedly escaped recognition due
rapid evolutionary change at pathogen virulence loci (i.e. effector genes). The presence of transposable elements
(TEs) in close physical proximity of effector genes can have important consequences for gene regulation and
sequence evolution. Species-wide investigations of effector gene loci remain rare hindering our ability to predict
pathogen evolvability.

Results: Here, we performed genome-wide association studies (GWAS) on a highly polymorphic mapping
population of 120 isolates of Zymoseptoria tritici, the most damaging pathogen of wheat in Europe. We identified a
major locus underlying significant variation in reproductive success of the pathogen and damage caused on the
wheat cultivar Claro. The most strongly associated locus is intergenic and flanked by genes encoding a predicted
effector and a serine-type endopeptidase. The center of the locus contained a highly dynamic region consisting of
multiple families of TEs. Based on a large global collection of assembled genomes, we show that the virulence
locus has undergone substantial recent sequence evolution. Large insertion and deletion events generated length
variation between the flanking genes by a factor of seven (5–35 kb). The locus showed also strong signatures of
genomic defenses against TEs (i.e. RIP) contributing to the rapid diversification of the locus.

Conclusions: In conjunction, our work highlights the power of combining GWAS and population-scale genome
analyses to investigate major effect loci in pathogens.

Keywords: Pathogen evolution, Crops, Genome-wide association mapping, Transposable elements, Genome
assembly, Population genomics

Background
Plant pathogens are a major threat to food security and
cause annual losses of 20–30% of global harvest due to
the lack of durable control strategies [1–3]. The emer-
gence of new pathogens, the rise of new virulence in
resident pathogens, or the gain in resistance against
chemical control agents create significant challenges [2,

4, 5]. To design effective disease control strategies, un-
derstanding the molecular interaction between plants
and pathogens is critical. The virulence of plant patho-
gens is largely determined by their repertoire of secreted
proteins known as effectors [6, 7]. Effectors target a var-
iety of different plant proteins and metabolic pathways
to manipulate the immune response and physiological
state of the host [8]. Plants evolved a large array of re-
ceptors often organized in networks that can directly or
indirectly recognize the presence of effectors [7, 9, 10].
Detection of effectors triggers a variety of defense
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responses preventing the spread of pathogens across
plant tissues. The discovery of resistance genes encoding
receptors has provided key tools for the rapid breeding
of resistant crop varieties [11, 12]. The identification of
effectors in plant pathogens is challenging due to the
large number of genes encoding effector-like proteins.
The size of effector gene repertoires varies between fila-
mentous pathogens [7, 13]. The potato light blight
pathogen Phytophthora infestanshas 1249 predicted ef-
fector candidates, whereas the white rust pathogen of
Arabidopsis thaliana, Albugo laibachii, has only 143 pre-
dicted effector candidates [14]. The frequent birth and
death of genes encoding effectors is underpinning at
least part of the variation in candidate effector reper-
toires among species and underlies also variation within
the same species [15]. Identifying functional effectors
providing an advantage for a pathogen on a specific host
remains challenging [8].
Effector gene polymorphism can be a major factor

driving host-pathogen interactions [12, 15]. The analyses
of complete fungal genomes in combination with map-
ping analyses significantly expanded our knowledge of
effectors across major filamentous pathogens. Genome-
wide association study (GWAS) and analyses of progeny
populations revealed three effectors of the fungal wheat
pathogen Zymoseptoria tritici [16–21]. The analyses of
multiple completely assembled genomes revealed ef-
fector genes missing among individual isolates of the
species [22–24]. Hence, pangenome analyses are crucial
to establish the full extent of effector candidates within
species [25]. Such effector polymorphism is thought to
be at the origin of rapid gains in virulence [15, 26–28].
Breakdown in host resistance can be observed within
few years following the deployment of a crop cultivar
[29–32]. Effector gene evolution can be driven by the
complete deletion of coding sequence, as well as the ac-
cumulation of point and frameshift mutations [15, 16,
33, 34].
The rapid evolution of effector gene sequences is often

driven by features of the chromosomal sequence in
which the effector genes are embedded. Effector genes
can be located on lineage-specific accessory chromo-
somes [35–37]. Such accessory chromosomes are
enriched in repetitive sequences [35]. Effector genes lo-
cated on core chromosomes are often located in the
most repetitive regions of the chromosome [38, 39]. The
proximity to repetitive regions, in particular transposable
elements (TEs), increases the likelihood for sequence re-
arrangements to occur. The localization of effectors in
highly repetitive sub-telomeric regions contributed to
rapid virulence evolution of the rice pathogen Magna-
porthe oryzae[40, 41]. The AVR-Pita effector gene has
been shown to undergo multiple translocations in the
genome contributing to the evolution of virulence on

specific hosts [42]. The insertion of a Mg-SINE TE in
the effector gene AvrPi9 led to a loss-of-function muta-
tion enabling M. oryzae to escape host resistance [43].
The transposition of TEs can disrupt coding sequences
or change the regulation of effector genes [19, 44, 45].
Additionally, repetitive sequences can lead to higher mu-
tation rates through a mechanism known as repeat in-
duced point (RIP) mutation [46–48]. Brassica napus
(canola) carrying the Rlm1 resistance gene suffered a
breakdown of resistance against the fungal pathogen L.
maculans [49]. The breakdown was associated with a
rise in virulence alleles at the AvrLm1 locus [49]. Se-
quence analyses revealed that the gain in virulence was
driven by RIP mutations rendering the locus non-
functional. Highly similar sequences nearby effector
genes can also trigger ectopic recombination and, by
this, the deletion or duplication of the effector gene.
Consequently, the genomic context of effector genes
provides critical information about effector evolvability.
Hence, within-species analyses of effector gene diversifi-
cation and TE dynamics of the surrounding regions have
become key tools to retrace the evolution of virulence.
The haploid ascomycete Zymoseptoria tritici is one of

the most destructive pathogens of wheat leading to yield
losses of ~ 5–30% depending on climatic conditions [50,
51]. Pathogen populations across the wheat-producing
areas of the world harbor significant variation in patho-
genicity and genetic diversity [16, 17, 52–54]. GWAS were
successfully used to identify the genetic basis of virulence
on two distinct wheat cultivars [16, 17]. In addition, ana-
lyses of progeny populations revealed a third effector gene
related to a resistance breakdown [19, 20]. GWAS was
also successfully used to map the genetic architecture of a
broad range of phenotypic traits related to abiotic stress
tolerance [55]. TE dynamics are playing a key role in influ-
encing the sequence dynamics at effector gene loci [16,
19, 44]. Gene gain and loss dynamics are accelerated in
proximity to TEs [52]. TEs shape also the epigenetic land-
scape in proximity to effectors [44, 56]. Phenotypic traits
expressed across the life cycle of the pathogen show ex-
tensive trade-offs possibly constraining the evolution of
virulence [55, 57]. Identifying additional pathogenicity loci
associated with host specificity remains a priority since for
most wheat resistance genes (i.e. Stb), the corresponding
effector genes remain unknown [58].
In this study, we aimed to identify the genetic basis of

virulence on the wheat cultivar Claro using GWAS per-
formed on a genetically highly diverse mapping popula-
tion established from a single wheat field. We analyzed
the expression patterns of genes in proximity to the top
associated SNP, the presence of TEs and genetic vari-
ation at the locus in populations across the world to
build a comprehensive picture of sequence dynamics at
the newly identified virulence locus.
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Results
Genome sequencing of a highly polymorphic pathogen
field population
To build a mapping population for GWAS, we used a sub-
set of a previously established collection of 177 isolates of
Z. tritici. The collection originates from a multi-year experi-
mental wheat field in Switzerland planted with 335 wheat
cultivars [54, 59] (Supplementary Table S1). In total 120
isolates from ten genetically different winter wheats (7–20
isolates per cultivar) collected at two different time points
during a single growing season were included in this study.
We analyzed whole-genome sequencing datasets of each
isolate constituting an average coverage of 21X as previ-
ously described [54]. We found that the minor allele fre-
quency (MAF) spectrum showed a strong skew towards
rare alleles in the population, suggesting that the population
did not experience any recent genetic bottlenecks (Fig. 1a).
After filtering for MAF > 0.05 (also see methods), we ob-
tained 788′313 high-confidence SNPs. We constructed an
unrooted phylogenetic network using SplitsTree to visualize
the genotypic differentiation within the population (Fig.
1b). Compared to the broader field population analyzed
previously, our GWAS mapping population contained 10
clonal groups comprising a total of 21 isolates [54] (Supple-
mentary Table S2). A principal component analysis con-
firmed the overall genetic differentiation within the
population (Fig. 1c). Nearly all isolates were at similar gen-
etic distances to each other with the exception of six iso-
lates with larger genetic distances to the main cluster of
isolates [54] (Fig. 1c). The percent variance explained was
only 2.6 and 2.5 for principal component 1 and 2, respect-
ively, though (Fig. 1c). Interestingly, the six isolates were all
collected from cultivar CH Combin, which is susceptible to
Z. tritici [60] and grouped into two clone groups of three
isolates each (Supplementary Table S2). A principal compo-
nent analysis performed after removing the six isolates col-
lected from CH Combin revealed no meaningful
population structure (Supplementary Fig. 1).

Heritability and correlations among pathogenicity traits
We experimentally assessed the expression of pathogenicity
traits of each individual isolate on the winter cultivar Claro
using a greenhouse assay. The cultivar Claro was among
the cultivars used in the multi-year experimental wheat
field from which the isolates were sampled from [59]. The
cultivar is widely planted in Switzerland and is generally
mildly susceptible to Z. tritici [60]. We obtained quantita-
tive data on symptom development from a total of 1′800
inoculated leaves using automated image analysis [59]. The
image analyses pipeline was previously optimized to detect
symptoms caused by Z. tritici under greenhouse conditions
and uses a series of contrast analyses to obtain estimates of
the surface covered by symptoms. For each leaf, we re-
corded the counts of pycnidia (structures containing

asexual spores) and the percentage of leaf area covered by
lesion (PLACL) (Fig. 1d-e). We considered the pycnidia
count as a proxy for reproductive success of the pathogen
on the host and PLACL as an indication of host damage
due to pathogen infection. From these measurements, we
derived three quantitative resistance measures: ρleaf is the
pycnidia count per cm2 of leaf area, ρlesion is defined as the
total number of pycnidia divided by per cm2 lesion area,
and tolerance is expressed as the pycnidia count divided by
PLACL. The overall reproductive success per leaf area is
represented by ρleaf while ρlesion focuses on the reproductive
success within the lesion area. Tolerance indicates the abil-
ity of the host to tolerate pathogen reproduction while lim-
iting damage by lesions [61]. We found that the mean
pycnidia count ranged from 0 to 20 (mean 7, median 6.3)
among isolates and PLACL ranged from 2 to 97% (mean
56%, median 57.7%) (Fig. 1e, Supplementary Table S1, Sup-
plementary Fig. 2). The values for ρleaf ranged from 0.04–
7.2 (mean 2.4, median 2.15); ρlesion ranged from 0 to 13.8
(mean 3.6, median 3.3) and tolerance ranged from 0.15–0.3
(mean 0.12, median 0.17) (Supplementary Table S1, Sup-
plementary Fig. 2).
We estimated SNP-based heritability (h2

snp) for each
trait using a genomic-relatedness-based restricted
maximum-likelihood approach to partition the observed
phenotypic variation (Fig. 1f). The h2

snp ranged from
0.08–0.23 among different phenotypes (Fig. 1f). Herit-
ability for pycnidia counts and PLACL was 0.17 (SE =
0.14) and 0.15 (SE = 0.16), respectively. We found the
highest h2

snp for ρleaf (0.24, SE = 0.15) exceeding h2
snp

for ρlesion (0.19, SE = 0.16). Pathogenicity-related traits
have overlapping genetic architectures leading to pheno-
typic and genetic correlations [55]. To identify potential
trade-offs among traits, we analyzed correlations among
all pairs of traits (Fig. 1g). We found overall positive
phenotypic trait correlations except for PLACL and tol-
erance (rp= − 0.08; Fig. 1g). To assess genetic correla-
tions among traits, we performed GWAS on each trait.
To avoid p-value inflation due to non-random degrees
of relatedness among isolates, we used a mixed linear
model that included a kinship matrix. We assessed the
allelic effects across all SNPs for all traits to estimate the
degree of genetic correlation among trait pairs. We
found the genetic correlations (rp) to vary from − 0.1 to
0.98 (Fig. 1g). Pycnidia counts and ρleaf showed the high-
est degree of genetic correlation. Tolerance and PLACL
showed the lowest degree of genetic correlation. Overall,
phenotypic and genetic correlations among pairs of traits
were highly similar.

Major effect locus for pathogen reproduction on the
cultivar Claro
We used the GWAS on each trait to identify the most
significantly associated SNPs in the genome. We focused
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on association p-values passing the 5% false discovery
rate threshold for all the phenotypes except for PLACL
where we found no significant associations (Supplemen-
tary Fig. 3). All significantly associated SNPs for pycnidia

count were overlapping with significantly associated
SNPs for ρleaf and ρlesion (Fig. 1h). The traits ρleaf, ρlesion
and tolerance had 58, 9 and 11 associated SNPs, respect-
ively, which were uniquely associated with the specific

a
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Fig. 1 Genetic and phenotypic diversity in a single field population of Zymoseptoria tritici. a Minor allele frequency spectrum (frequency of the
less common allele in the population) at 1′496’037 single nucleotide polymorphism (SNP) loci genotyped in 120 isolates. b Phylogenetic network
of 120 isolates constructed using SplitsTree visualizing reticulation due to potential recombination. c The first two principal components (PC) from
a PC analysis of 788′313 genome-wide SNPs with a minor allele frequency of at least 5%. Isolates are color-coded by the cultivar of the origin. d
Photographs showing the difference between a mock treated and infected leaf. e Trait distribution of pycnidia counts in lesions and the
percentage of leaf area covered by lesion (PLACL). f SNP based heritability (h2 SNP) of the virulence phenotypes estimated following a GREML
approach. Error bars indicate standard errors. g Mean allelic effect (i.e.. genetic) correlation and phenotypic correlation coefficients for all
measured virulence phenotypes. h Number of significantly associated SNPs (5% FDR threshold) exclusive to an individual virulence trait or shared
among traits
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trait and not overlapping with any other trait (Fig. 1h).
We then focused our investigation on the most signifi-
cantly associated SNPs passing the Bonferroni threshold
(⍺ = 0.05). We found a single locus on chromosome 1
with significantly associated SNPs for pycnidia count,
ρleaf and ρlesion (Fig. 2a-b, Supplementary Fig. 3C, E).
Both integrating principal components of a principal
component analysis (PCA) and a kinship matrix can be
used as random factors to control false positive rates in
a GWAS. The inclusion of principal components did not
meaningfully affect the outcome and confirmed the sin-
gle strong association on chromosome 1 for pycnidia
count, ρleaf and ρlesion (Supplementary Fig. 4B,D-E). The
top SNP (chr1_4521202) showed an association of iso-
lates carrying the non-reference allele T with higher pyc-
nidia production compared isolates with reference allele
G (Fig. 2c). The non-reference allele was less frequent in
the population (10%) and nearly half (48%) of all isolates
were not assigned a SNP genotype at the locus.
We analyzed sequence characteristics of the chromo-

somal region surrounding the top locus. The SNP chr1_
4521202is located in an intergenic region rich in TEs (Fig.
2d-e). The closest identified genes include a gene encod-
ing a putative effector (Zt09_1_01590) and a gene encod-
ing a serine-type endopeptidase (Zt09_1_01591). The
effector gene (415 bp) in length have four SNPs detected
in the mapping population. Additionally, the gene encodes
a protein of 114 amino acids with 7% cysteine residues
and is predicted to be secreted. We detected no evidence
for a conserved protein domain using PFAM. The two
genes were at a distance of ~ 8 kb and ~ 4.5 kb, respect-
ively, from the SNP chr1_4521202(Supplementary Table
S3). The low genotyping rate at the SNP suggests that seg-
mental deletions are present. The genotyping rate was
58%, which is consistent with the SNP genotyping
rate for nearby SNPs (within ~ 5 kb; Fig. 2e). We re-
covered no SNPs in the immediate vicinity (at around
4.25Mb on chromosome 4). The genotyping rate in-
creases to close to 100% at a further distance of the
top SNP (> 10 kb; Fig. 2e. The segmental pattern in
the reduced genotyping rate close to the most signifi-
cant SNP suggests that a substantial fraction of the
isolates harbor deletions. We analyzed patterns of
linkage disequilibrium among pairs of SNPs including
SNP chr1_4521202(Fig. 2f). We found that the decay
in linkage disequilibrium generally occurred at short
distance near the associated virulence locus. The link-
age disequilibrium in the effector gene region decayed
to r2 = 0.2 within ~ 1000 bp while the decay in the repeat
rich region surrounding the most significantly associated
SNP was faster (r2= 0.2 within ~ 500 bp; Fig. 2f). The in-
creased linkage disequilibrium suggests that the physical
distance among SNPs in the analyzed isolates is shorter
consistent with the detection of deletions.

We analyzed transcription levels of the two closest
genes using RNA-seq data generated under culture condi-
tions simulating starvation (minimal medium) for all iso-
lates of the GWAS panel. Both genes were conserved in
all the isolates and appear transcriptionally active with
variable expression levels among the isolates. The candi-
date effector gene was transcribed between 12 and 14′750
reads per kilobase of transcript per million mapped reads
(RPKM) (Fig. 2h, Supplementary Fig. 5). RPKM
normalization compensates for library size differences and
for the bias generated by the higher number of reads from
longer RNA molecule [62]. The serine-type endopeptidase
gene showed much lower transcription ranging from 1.6–
33.4 RPKM (Fig. 2g, Supplementary Fig. 5). We found that
transcription levels of the gene encoding the endopeptid-
ase was positively correlated with the amount of pycnidia
produced (r = 0.3, p= 0.0021, Fig. 2g). We found no sig-
nificant correlation between pycnidia production and ex-
pression of the effector candidate gene (Fig. 2h). We also
investigated transcriptional activity of the genes during
wheat infection. For this, we analyzed RNA-seq data of
four isolates previously collected from a nearby site in
Switzerland and for which in planta transcriptional pro-
files were available [44, 63]. The effector gene Zt09_1_
01590 is upregulated during early infection stages (7–14
days post infection) while the endopeptidases gene Zt09_
1_01591is mainly expressed towards the end of the infec-
tion cycle (~ 28 days post infection; Fig. 2i-j).

Transposable element dynamics and sequence
rearrangements
Given the indications for segmental deletions at the viru-
lence locus, we analyzed multiple completely assembled ge-
nomes of the species. We included genomes from isolates
from Switzerland, United States, Australia and Israel cover-
ing the global distribution range of the pathogen [24]. The
locus showed a highly variable content in TEs underlying
significant length variation. The distance between the two
flanking genes is 20.2 kb in the reference genome IPO323
used for mapping (Fig. 3a-b). However, this distance varies
from 4.8–35.3 kb between the genes depending on the gen-
ome for an average distance of ~ 17 kb (Fig. 3b). The lon-
gest distance between genes was found in the genome of
the Swiss strain CH99_1A5 and the shortest distance was
found in the genome of the Israeli strain ISY92.
We identified five different TE families in the reference

genome IPO323 covering a segment of ~ 20 kb (Fig. 3c).
We detected additional TE families in two of the three ge-
nomes from Switzerland (CH99_1A5 and CH99_3D7). The
genomes carry multiple copies of a total of seven different
TE families. Meanwhile, the two genomes from Israel and
the United States showed a reduction in TEs with the re-
gion carrying only single copies of two and three different
TE families, respectively (Fig. 3a-c). The presence of TEs in
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