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Abstract

Background: Pair bonding with a reproductive partner is rare among mammals but is an important feature of
human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with
comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the
neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have
largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression
differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain
regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding
meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/
nucleus accumbens in virgins and at three time points after mating to understand species differences in gene
expression at baseline, in response to mating, and during bond formation.

Results: We first identified species and brain region as the factors most strongly associated with gene expression in
our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in
expression across species in virgins, as well as categories associated with cell structure, synaptic and
neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study.
Additionally, we identified genes that were differentially expressed across species after mating in each of our
regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic
plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in
both species, and modules that were correlated with post-mating time points in prairie voles but not meadow
voles.
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Conclusions: These results reinforce the importance of pre-mating differences that confer the ability to form pair
bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the
hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure.
Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues
of research in the molecular mechanisms of bond formation.
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Background

The profound social attachments humans form with one
another are a defining feature of our species. While
many species develop parent-offspring or mate pair
bonds, these attachments are especially strong and long-
lasting in humans, particularly those between reproduct-
ive partners [1]. In fact, the social bonds formed by hu-
man partners are quite uncommon among mammals:
only 9% of mammalian species display social monogamy,
including just 6% of rodents, which are often used as
model species to investigate the neural basis of behavior
[2]. Importantly, commonly used laboratory species in-
cluding mice and rats are not monogamous and lack the
ability to form lasting pair bonds. A better understand-
ing of the mechanisms underlying the formation of part-
ner bonds requires use of a species that forms such
bonds.

The voles of the genus Microtus (Fig. 1a, b) have been
developed into powerful models for better understanding
the neural mechanisms underlying attachment and pair
bonding [5]. Typically, the focal species of these studies is
the prairie vole (Microtus ochrogaster, Fig. 1a), which has
become famous for the tendency for males and females to
form long-lasting, socially monogamous bonds. Field stud-
ies of prairie vole space use and behavior demonstrated a
socially monogamous mating system [6, 7] (though extra-
pair fertilization does occur and some individuals adopt
more promiscuous mating tactics [8, 9]). In the lab, recep-
tive virgin prairie voles will mate with novel opposite-sex
conspecifics and, over a period of several hours of mating
and other affiliative behaviors, will form a pair bond char-
acterized by selective affiliation and increased aggression
towards intruders [3, 4, 6, 7].

Prairie voles are often contrasted with closely related
species which do not form these bonds [3, 10-14], includ-
ing the meadow vole (Microtus pennsylvanicus, Fig. 1b).
Field studies of meadow voles are consistent with a pro-
miscuous mating system and in the lab, they do not show
the selective affiliation with mating partners characteristic
of pair bonds [12, 15, 16]. Comparative studies have been
particularly useful in uncovering the features of the prairie
vole brain that facilitate bond formation. These include
neuroendocrine signaling in the brain (particularly via the
nonapeptides oxytocin [OT] and arginine-vasopressin
[AVP]) which conveys social salience, mechanisms of

social recognition and memory, and dopaminergic reward
pathways [17, 18]. Current hypotheses propose that pair
bonding results from synaptic plasticity that links the
neural encoding of partner cues with the reward system,
leading to persistent reinforcement of the partner that re-
sults in selective affiliation [17].

While significant progress has been made in under-
standing the neural mechanisms underlying vole pair-
bond formation, previous studies have mainly focused
on a relatively small number of neuromodulatory path-
ways, including the nonapeptides and dopamine reward
systems mentioned above, as well as opioid signaling in
the brain [17, 18]. In order to identify additional genes
that may be playing a significant role in bond formation,
it is necessary to take a broader perspective and examine
changes to global gene expression in regions with a
known role in bonding.

In this study, we used a comparative approach, taking
advantage of the close evolutionary relationship [19] and
stark contrast in bonding behavior between prairie and
meadow voles to better understand the molecular mech-
anisms that support pair-bond formation and identify
novel candidate genes for future study. Our study fo-
cused on three regions (Fig. 1c): the amygdala (AMY),
hypothalamus (HT), and a region inclusive of the ventral
pallidum and nucleus accumbens (VP/NAc). Each of
these regions is proposed to have a critical function in
the development of a pair bond [17]. The rodent AMY
receives olfactory information important for social rec-
ognition [20, 21], encodes valence [22], and plays an im-
portant role in social memory [23, 24]. The HT contains
several nuclei that are involved in regulating social be-
havior, including populations that produce the neuro-
peptides OT and AVP, which signal social salience,
influence social memory, and regulate related behaviors
[12, 25-28]. Finally, signals of social salience converge
with dopaminergic signaling from the ventral tegmental
area in the NAc, resulting in disinhibition of the VP,
which influences behavioral responses to rewarding
stimuli [29-32]. While several other regions, such as the
ventral tegmental area, hippocampus, and cortical re-
gions also have important functions in the development
and maintenance of pair bonds [17, 18], our focal re-
gions represent key nodes involved in critical aspects of
bonding: social context, social memory, and reward.
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Fig. 1 Experiment overview. a Pair of prairie voles (Microtus ochrogaster) huddling (Photo credit: Aubrey M. Kelly) b A single adult meadow vole
(Microtus pennsylvanicus) (Photo credit: Beery Lab) ¢ Drawing of vole brain. Regions of interest for this study are highlighted, including the
amygdala (AMY, blue), hypothalamus (HT, green), and ventral pallidum and nucleus accumbens (VP/NAc, purple). d Above: Experiment Timeline.
Virgin animals (time 0) were collected prior to mating. Mated animals were collected at either 0.5, 2, or 12 h after first intromission. Below:
Timeline of prairie vole bond formation. Unfamiliar opposite sex conspecifics will mate shortly after introduction. Bonds become detectable at 6 h
after onset of mating and strengthen up to 24 h after mating onset [3, 4]
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We used RNA-sequencing to quantify gene expression
before and at three time points (0.5, 2, and 12 h) after
mating (Fig. 1d) in each of these regions across both
prairie and meadow voles. By observing changes in gene
expression in these regions across time relative to mat-
ing and across pair-bonding and non-bonding species,
we sought to identify genes involved in the process of
pair-bond formation, either by conferring the capacity to
bond before mating or changing their expression to sup-
port bonding after mating. We find gene categories that
differ across species at baseline (pre-mating) and across
brain regions, as well as genes that differ in expression
post-mating between prairie and meadow voles. Further,
using gene network analysis, we identify gene modules

that have expression patterns strongly related to specific
brain regions, as well as modules that change in expres-
sion in response to mating. Together, these results pro-
vide further support for the current models of
mammalian pair bonding and provide additional candi-
date genes that may underlie the formation of monog-
amous bonds.

Results

In order to identify the factors (e.g. species, brain region,
time relative to mating) most strongly associated with
gene expression in our samples, we first performed hier-
archical clustering based on Poisson distance [33],
followed by principal component analysis (PCA). In both
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cases, the primary factor influencing gene expression
was species, followed by brain region (Fig. 2). Hierarch-
ical clustering based on Poisson distance resulted in a
tree with two major branches representing samples from
prairie and meadow voles. These branches were then
split corresponding to brain region. In prairie voles,
AMY and VP/NAc clustered more closely to each other,
while in meadow voles AMY and HT were more closely
clustered (Fig. 2a). This result was also supported by
PCA, which revealed a first principal component (PC1)
that explained 39% of the variance in the data and split
samples by species, followed by a second component
(PC2) that explained 34% of the variance and primarily
separated samples by brain region (Fig. 2b).

Differential gene expression

Species comparison of virgins

To identify genes that may confer the capacity to bond
in prairie but not meadow voles prior to mating, we used
a subset of the data containing only samples collected
from virgins (AMY, HT, and VP/NAc samples from 7 =
4 individuals of each species). We tested for the effect of
species using the likelihood ratio test implemented by
DESeq2 [34]. This test compares two generalized linear
models fit to the data, a full model including all terms
and a reduced model with one or more terms omitted.
The test determines if the effect of the terms omitted in
the reduced model is significantly greater than zero.

To determine the effect of species, we applied the full
model ~region + species and reduced model ~region.
8377 of 12,672 genes were significantly differentially
expressed (FDR<0.1) in this comparison (Fig. 3a, Sup-
plementary Table 1). In order to identify the types of
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genes that differed in expression across species, we used
the Mann-Whitney U (MWU) test (see Methods for de-
tails) to identify enriched gene ontology (GO) categories
[36, 37]. The MWU test of GO term enrichment re-
vealed 48 significantly enriched (FDR < 0.1) terms in the
contrast between prairie and meadow vole virgins (Fig.
3b). This included 10 terms in the category Molecular
Function, 11 in Biological Process, and 27 in the cat-
egory Cellular Component. Enriched terms in prairie
voles were largely associated with cell structure and
extracellular space, while those enriched in meadow
voles were associated with the ribosome and translation,
mitochondrial function, and metabolic and biosynthetic
processes.

Comparison of regions
As sample region was the second largest factor explain-
ing gene expression data, we next compared expression
across brain regions. To understand how gene expression
differed across our focal brain regions, we used the entire
dataset and applied the likelihood ratio test with the full
model ~species + region + time and the reduced model
~species + time. Overall, 10,891 of 12,687 total genes sig-
nificantly differed (FDR < 0.1) in expression on the basis of
sample region (Fig. 4a-c, Supplementary Table 2).
Thirty-two GO terms were significantly enriched
(MWU FDR<0.1) in the contrast between AMY and
HT, including two in the category Biological Process and
30 under Cellular Component (Fig. 4d). Terms enriched
in AMY were largely associated with neuronal structure
and the synapse, while those enriched in HT were asso-
ciated with membranous structures including endoplas-
mic reticulum, Golgi apparatus, intracellular vesicle, and

b
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(See figure on previous page.)

Fig. 3 Vole brain gene expression varies by species. a Volcano plot showing significance (—log;o(p-value)) and magnitude of difference (log, fold
change, LFC) in expression for each gene in contrast between virgin prairie and meadow voles. Each point represents a single gene. Orange
colored points pass significance threshold of FDR < 0.1. Darker shaded points pass FDR cutoff and have LFC > 2. Positive LFC values represent
genes more highly expressed in prairie voles, negative LFC values are genes more highly expressed in meadow voles. b Enriched GO terms for
contrasts between prairie and meadow voles. Hierarchical clustering tree shows relationship between GO categories based on shared genes.
Branches with length of zero are subsets of one another. Fractions preceding GO terms indicate proportion of “good” genes that have raw p-
value< 0.05 compared to total number of genes in the category. Bold text indicates adjusted p < 0.01, plain text indicates adjusted p < 0.05, and
italicized text indicates adjusted p < 0.1 for term. P-values are corrected using Benjamini-Hochberg false discovery rate procedure [35]. Red terms
are enriched in prairie voles and blue terms are enriched in meadow voles

whole membrane. Twelve GO terms were enriched in
the contrast between AMY and VP/NAc (Fig. 4e). These
included six in the category Molecular Function, two
under Biological Process, and four in Cellular Compo-
nent. Categories enriched in AMY were largely associ-
ated with neuropeptide signaling, including terms
related to neuropeptide hormones and receptors, as well
as extracellular space. Terms enriched in VP/NAc

include RNA polymerase II repressing transcription factor
binding, endocytotic vesicle, and chromosomal part. Fi-
nally, 42 terms were significantly enriched in the con-
trast between HT and VP/NAc, including three under
Molecular Function, three in the category Biological
Process, and 36 in the category Cellular Component
(Fig. 4f). GO terms enriched in HT were largely associ-
ated with neuropeptide signaling and extracellular space,
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while those enriched in VP/NAc were related to synaptic
structures as well as the nucleus, transcription, and
translation.

Species comparison across time

We next sought to determine the influence of mating
and, in prairie voles, pair-bond formation on gene ex-
pression in our focal regions. In order to identify how
gene expression changes differently across species fol-
lowing mating, we divided the full dataset into subsets
containing all samples from a single region. We then
tested these regional datasets with the likelihood ratio
test, applying the full model ~species + time + species:
time and the reduced model ~species + time. This com-
parison allowed us to identify those genes that exhibit
species-specific patterns of expression following mating.

In the AMY, we found four genes that were signifi-
cantly differentially expressed (FDR <0.1) across species
over mating time points (Fig. 5a, Table 1, Supplementary
Table 3). The gene with the smallest adjusted p-value
(FDR = 6.17*10°) in this model was Npas4, an activity-
dependent transcription factor involved in synapse for-
mation [38] (Fig. 5d). We found 33 significantly enriched
GO terms between prairie and meadow voles (MWU
FDR < 0.1), including two under Molecular Function and
31 in the category Cellular Component (Fig. 5g).
Enriched terms in prairie voles were related to peptide
receptors and the plasma membrane. Enriched terms in
meadow voles were associated with ribosomal and mito-
chondrial function.

In the HT, 31 genes were significantly differentially
expressed (FDR <0.1) across species over mating time
points (Fig. 5b, Supplementary Table 4), of which 25
were annotated (Table 2). These included water
channel-encoding gene Agp3 [39] (Fig. 5e), which had
the lowest adjusted p-value (FDR =0.0089713). Sixty-five
GO terms were significantly enriched (MWU FDR < 0.1)
in the contrast between prairie and meadow voles.
Among these were two in the category Molecular Func-
tion, 15 in Biological Process, and 48 in Cellular Compo-
nent (Fig. 5h). Enriched terms in prairie voles were
typically associated with neuronal development and cell
structure. Terms enriched in meadow voles included
many related to ribosomal and mitochondrial function,
metabolic and biosynthetic processes, and vesicular
transport.

In the VP/NAc we found 21 genes that were signifi-
cantly differentially expressed over mating time points
(Fig. 5¢, Supplementary Table 5), 19 of which were an-
notated (Table 3). Among these, Spatal6, a gene with
known function in spermatogenesis [40] (Fig. 5f) had the
lowest adjusted p-value (FDR =0.00318981). In addition,
we found 30 significantly enriched (MWU FDR <0.1)
GO terms between prairie and meadow voles, which
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included five under Molecular Function, three under
Biological Process, and 22 in Cellular Component (Fig.
5i). Only two of these terms were enriched in prairie
voles: cluster of actin-based cell projections and extracel-
lular region. Many of the terms enriched in meadow
voles were associated with translation, protein
localization, mitochondria, and the endosome.

Genes shared across comparisons

Several genes were differentially expressed in multiple
comparisons. In region-by-region comparisons across
species in virgin animals, the largest proportion of differ-
entially expressed genes were significantly different in all
three regions (Fig. 6a). Additionally, 1206 genes were dif-
ferentially expressed in both HT and VP/NAc, 395 in
AMY and VP/NAc, and 409 in AMY and HT. Relatively
few genes were uniquely differentially expressed in a sin-
gle region in this comparison, just 2499 compared to a
total of 5031 genes that were differentially expressed in
two or all three regions.

While not as large a proportion as in virgins, several
genes were also differentially expressed in multiple regions
in our speciesitime comparisons (Fig. 6b-h). The gene
Nfkbia, which encodes NF-Kappa-B Inhibitor Alpha, was
significant in our models of both AMY and VP/NAc (Fig.
6e). Five genes were significant in the species:time com-
parison for both HT and VP/NAc. These included Pxn,
which encodes paxillin, an adaptor protein that interacts
with the cytoskeleton and signaling molecules to facilitate
neurite outgrowth and long-term potentiation [41, 42],
the circadian clock gene Per1 [43], CablesI which encodes
a kinase-binding protein that promotes neurite outgrowth
[44], as well as two unannotated genes (Fig. 6f-h). Each of
these genes was consistently upregulated in one species
over the other across tissues, with the exception of Perl,
which nevertheless showed consistent patterns of expres-
sion over time by tissue and species (Fig. 6g).

Finally, many of the genes that significantly differed
across species over post-mating time points were also
differentially expressed across species in virgins (Fig. 6c,
d). Three of the four genes differentially expressed in
AMY at post-mating time points (all upregulated in
prairie voles) were also upregulated in prairie vole vir-
gins. For the HT, of 31 genes significant for the species:
time interaction, 15 were upregulated in prairie voles in
virgins and after mating and eight were upregulated in
meadow voles as virgins and after mating. In the VP/
NAc, 15 genes were upregulated in prairie voles as vir-
gins and after mating, while two genes were upregulated
in meadow voles in both comparisons.

Correlated gene networks
We next sought to determine if co-regulated groups of
genes varied in expression related to our variables of
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0.05 compared to total number of genes in the category. P-values are corrected using Benjamini-Hochberg false discovery rate procedure [35]. Red
terms enriched in prairie voles, blue terms enriched in meadow voles. Bold text indicates adjusted p < 0.01, plain text indicates adjusted p < 0.05, and
italicized text indicates adjusted p < 0.1 for term. n.s. indicates no significant terms in the category

J
Table 1 Differentially expressed genes in amygdala over time across species
Gene ID Description LFC FDR
Npas4 Neuronal PAS domain containing protein 4A 1.07764799 6.17E-05
Adamts1 A disintegrin and metalloproteinase with thrombospondin motifs 1° 049359749 0.04640262
Cacnals Voltage-dependent L-type calcium channel subunit alpha-15° 2.5010691 0.06006207
Nfkbia NF kappa B inhibitor alpha 0.34440018 0.07022008

FDR False Discovery Rate, LFC log, fold change; Genes with positive LFC have greater total expression in prairie voles, those with negative LFC have greater total
expression in meadow voles. See Supplementary Table 3 for full model results. *Annotation obtained from UniprotKB (uniprot.org)
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Table 2 Differentially expressed genes in hypothalamus over time across species

Gene ID Description LFC FDR

Agp3 Aquaporin-3? —0.6826921 0.0089713
Hsp90ab1* Heat shock protein HSP 90 beta —0.5144606 0.00903347
NA Guanylate binding protein 6 —1.3369143 0.01596747
Serpinel Plasminogen activator inhibitor 1° —0.5338288 0.01596747
Ttr Transthyretin —0.080078 0.01792675
Prph Peripherin 0.29781725 0.04287813
Frmpd1 FERM and PDZ domain containing protein 4 0.81441894 0.04287813
Slc6al8 Sodium-dependent neutral amino acid transporter B(0)AT3? 7.32918535 0.04287813
Wrap53 Telomerase Cajal body protein 1° —0.2558135 0.04287813
Slc25a4? ADP/ATP translocase 1 —8.0122925 0.04287813
Per1® Period circadian protein homolog 1 —0.1178588 0.04287813
Cables1 CDK5 and ABL1 enzyme substrate 2 1.11126916 0.04423695
Pxn? Paxillin 0.5140673 0.04423695
Hif1a® Hypoxia inducible factor 1 alpha 0.97379217 0.0588332
Erich2 Glutamate rich protein 2 2.92340668 0.06351925
Dnah8 Dynein heavy chain 8, axonemal® 0.02817643 0.06693531
Ccdc189 Coiled coil domain containing protein 189 —0.3298147 0.07033001
Foxo1 Forkhead box protein O1° 0.17775249 0.07965468
Elmo2 Engulfment and cell motility protein 2° 0.2559439 0.08211435
Stégalnac2 Alpha N acetylgalactosaminide alpha-2,6-sialyltransferase 2 1.87200042 0.09137815
Ovoll Putative transcription factor Ovo like 1 —2.0478213 0.09137815
Ccdc13? Coiled coil domain containing protein 13 0.52641328 0.09137815
Micalcl® MICAL C-terminal-like protein 1.23718647 0.09701189
Rasgrf2 Ras-specific guanine nucleotide-releasing factor 2° 0.74713328 0.09959283
Riox2 Ribosomal oxygenase 2° 048958706 0.09959283

FDR False Discovery Rate, LFC log, fold change, NA no annotation. Genes with positive LFC have greater total expression in prairie voles, those with negative LFC
have greater total expression in meadow voles. Unannotated genes excluded. See Supplementary Table 4 for full model results. *Annotation obtained from

UniprotKB (uniprot.org)

interest (sample region, mating status [virgin vs.
mated], or time of collection after mating onset).
Using the R package WGCNA [45], we constructed
gene expression networks for prairie and meadow
voles, and detected modules of genes with corre-
lated expression patterns (Fig. 7, see Supplementary
Tables 6 and 7 for module assignments and Supple-
mentary Tables 8 and 9 for Pearson r and p-values
for significant correlations). For prairie voles, we
detected 16 modules ranging in size from 72 to
1707 genes as well as 392 that were unassigned to
any module. In meadow voles we detected 12 mod-
ules ranging in size from 167 to 1577 genes and
517 genes that were unassigned. We then correlated
these modules to sample traits including brain re-
gion (AMY, HYP, or VP/NAc), mating status
(mated vs. virgin), and collection time points, in-
cluding time as a continuous variable and each
post-mating time point individually.

Module correlation with sample traits

For both species, the traits most strongly correlated
with modules were sample brain region (Fig. 7a, b).
In prairie voles (Supplementary Table 8), the green
module was most strongly positively correlated with
AMY, while the greenyellow module was strongly
negatively correlated with the region. The brown, ma-
genta, tan, cyan, pink, black, red, salmon, and tur-
quoise modules were also significantly correlated with
AMY. For HT, the turquoise module showed the
strongest positive correlation, and yellow had the
strongest negative correlation. Modules blue, purple,
greenyellow, magenta, pink, green, red, and salmon
were also significantly correlated with HT. Finally, the
magenta module was most strongly positively, and red
module most strongly negatively correlated with VP/
NAc. The purple, yellow, greenyellow, tan, pink,
green, black, and turquoise modules were also signifi-
cantly correlated with this region.
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Table 3 Differentially expressed genes in ventral pallidum/nucleus accumbens over time across species

Gene ID Description LFC FDR

Spatal6 Spermatogenesis-associated protein 167 0.88879921 0.00318981
Dhx35 Probable ATP dependent RNA helicase DHX35 0.2499954 0.00366884
Mccc2 Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial® —0.6041633 0.00462278
Pxn? Paxillin 043629243 0.00956998
Sike1 Suppressor of [KBKE 1 0.06660377 0.03030073
Rbm3 RNA binding protein 3 0.38113582 0.03897143
P4ha2 Prolyl 4-hydroxylase subunit alpha-2° 0.93405983 0.03897143
Best3 Bestrophin 2 4.3486464 0.03897143
Per1? Period circadian protein homolog 1 0.21428454 0.03897143
Ciart Circadian associated transcriptional repressor 0.31693109 0.03897143
Agt Angiotensinogen® 061071671 0.03897143
Prss56 Transmembrane protease serine 3 1.07993336 0.04014217
Cables1 CDK5 and ABL1T enzyme substrate 2 1.09018372 0.04014217
Sgk1 Serine/threonine-protein kinase Sgk1? 0.34324947 0.09405603
Nfkbia NF kappa B inhibitor alpha 0.53419379 0.09405603
Adamts14 NA 3.33669686 0.09496818
Csmpl Cysteine/serine rich nuclear protein 3 0.59391793 0.09496818
Lrrc6 Protein tilB homolog? 0.71670559 0.09496818
Smocl SPARC related modular calcium binding protein 2 —0.6408534 0.09995594

FDR False Discovery Rate, LFC log, fold change, NA no annotation. Genes with positive LFC have greater total expression in prairie voles, those with negative LFC
have greater total expression in meadow voles. Unannotated genes excluded. See Supplementary Table 5 for full model results. *Annotation obtained from

UniprotKB (uniprot.org)

In meadow voles (Supplementary Table 9), the dar-
korchid module was most strongly positively, and to-
mato most strongly negatively correlated with AMY.
The ghostwhite, orange, seagreen, darkred, plum, gold,
and navyblue modules were also significantly correlated
with AMY. Modules seagreen and darkred were most
positively and negatively correlated with HT, respect-
ively. The orange, tomato, darkorchid, plum, deeppink,
and gold modules also had significant correlations with
HT. Finally, the gold module had the strongest positive
correlation with VP/NAc and orange module had the
strongest negative correlation. Modules ghostwhite, sea-
green, darkorchid, darkred, and navyblue were each also
significantly correlated with VP/NAc.

In general, module correlations with mating status and
collection time points were weaker than those with brain
regions (Fig. 7a, b). For prairie voles (Fig. 7a, Supple-
mentary Table 8) three modules, cyan, pink, and brown
were significantly positively correlated with having
mated. The blue, salmon, and midnightblue modules
were negatively correlated with having mated, indicating
a positive association with virgin animals. Only the grey
module containing unassigned genes was significantly
correlated with overall time of collection in the experi-
ment. This relationship appears to be driven by a signifi-
cant negative correlation with the 12h collection time

point. However, two modules were significantly corre-
lated with specific collection time points. The cyan mod-
ule was positively associated with the 0.5h time point
and the blue module was significantly negatively corre-
lated with this time.

Module correlations with mating status and post-
mating time points were weaker in meadow voles than
in prairie voles (Fig. 7b, Supplementary Table 9). No
modules were significantly correlated with mating status,
and only the grey module containing unassigned genes
was correlated with collection time or individual time
points. It was negatively correlated with time overall and
the 12 h collection time point, and positively correlated
with the 0.5 h collection time point.

Module associations across species

To identify relationships between modules across spe-
cies, we clustered prairie and meadow vole modules on
the basis of Euclidean distance (Fig. 7c) and Pearson cor-
relation (Fig. 7d). Clustering revealed eight pairs of mod-
ules that were closely related across species. These
included the brown prairie vole and navyblue meadow
vole modules, prairie magenta and meadow gold, prairie
green and meadow darkorchid, prairie yellow and
meadow darkred, prairie black and meadow ghostwhite,
prairie red and meadow orange, prairie turquoise and
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meadow seagreen, and prairie greenyellow and meadow
tomato. Clustering by correlation also found one pair of
prairie vole modules, midnightblue and salmon, that
were most closely related.

Of these closely related modules, the majority were
strongly associated with individual brain regions. The
green/darkorchid modules were the most strongly posi-
tively correlated with AMY in both species, while the
greenyellow/tomato modules were the most negatively
correlated with AMY. Modules turquoise/seagreen were
most highly positively correlated with HT and yellow/
darkred were most strongly negatively correlated with it.
Finally, the gold/magenta modules were most strongly
associated and red/orange modules most strongly nega-
tively associated with VP/NAc.

We used GO term analysis on pairs of modules that
were strongly positively correlated with each region to
identify enriched gene categories. The prairie vole green
module, which was strongly correlated with AMY had
85 significantly enriched GO terms (MWU FDR<0.1),
including four in the category Molecular Function, 42

under Biological Process, and 39 in the category Cellular
Component (Supplementary Fig. la). In meadow voles,
the AMY-associated darkorchid module had 53 signifi-
cantly enriched (MWU FDR<0.1) GO terms (Supple-
mentary Fig. 1b). These included one term in Molecular
Function, cation channel activity, 27 terms related to
Biological Process, and 25 terms in the category Cellular
Component. In both species, terms related to neuronal
projections, ion channels, plasma membrane and extra-
cellular space, receptors, and synaptic transmission were
enriched. The terms behavior and cognition were also
enriched in both the prairie vole green module and
meadow vole darkorchid module. However, the terms
associative learning and learning were uniquely enriched
in the prairie vole green module.

The prairie vole module turquoise and meadow vole
module seagreen were each strongly associated with HT.
33 GO terms were significantly enriched in the turquoise
module (MWU FDR <0.1), including 12 in the category
Molecular Function, nine in Biological Process, and 12
in Cellular Component (Supplementary Fig. 2a). In the
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meadow vole seagreen module, 11 terms were enriched
(MWU FDR<0.1), all under Cellular Component (Supple-
mentary Fig. 2b). In both species, several terms related to cilia
were enriched. Additionally, in prairie voles, terms relating to
neuropeptide signaling, transcription factors, extracellular
space were enriched along with the term feeding behavior.

No GO terms were significantly enriched in the prairie
vole magenta module, which was strongly correlated with
VP/NAc. However, 12 terms were significantly enriched
(MWU FDR <0.1) in the related meadow vole gold mod-
ule (Supplementary Fig. 3). These included five in the cat-
egory Molecular Function and six in the category Cellular
Component. In addition, one term, regulation of postsyn-
aptic neurotransmitter receptor internalization was
enriched under the category Biological Process. Overall,
most enriched terms related to the cell membrane, synap-
tic transmission, or enzymatic function.

Modules associated with mating
Finally, to identify gene categories associated with mat-
ing, we looked for GO term enrichment among the

modules most strongly correlated with mating status in
prairie voles (Supplementary Fig. 4). We used the MWU
test to identify significantly enriched terms in the cyan
and pink modules, which were the most significantly
positively correlated with having mated, and the blue
and salmon modules, which were the two most signifi-
cantly negatively correlated with having mated (thus
positively associated with virgin animals).

In addition to mating status, these modules also had
significant correlations with brain regions (Fig. 7a, Sup-
plementary Table 8). The cyan module was positively
correlated with AMY, pink module was positively corre-
lated with AMY and HT, and negatively correlated with
VP/NAc. Module blue was negatively correlated with
HT and the salmon module was positively correlated
with HT and negatively correlated with AMY.

Both the cyan and pink modules, each had significantly
enriched terms (MWU FDR < 0.5) related to translation,
ribosomes, and mitochondria (Supplementary Fig. 4a, b).
In addition, terms associated with phosphatase binding
were enriched in the cyan module and several terms
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related to ubiquitination, catabolic and metabolic pro-
cesses, protein localization, and the ESCRT complex were
enriched in the pink module. Terms significantly enriched
(MWU FDR <0.5) in the blue included several related to
peptidyl-amino acid modification and chromatin modifi-
cation (Supplementary Fig. 4c). Those enriched in the sal-
mon module (MWU FDR <0.5) were largely associated
with neuronal development and axon guidance, as well as
extracellular space (Supplementary Fig. 4d).

Discussion

Pair bonding is an important social behavior of many
animal species, including humans [1, 6, 46, 47]. Signifi-
cant efforts have been made to understand the neural
and hormonal mechanisms underlying the formation of
pair bonds; however, these studies have focused on a
relatively small number of genes and their products [17].
A critical next step in understanding the mechanisms of
bond formation is more fully accounting for the genes
underlying pair-bond formation. While other studies
have made comparisons of neural gene expression in
closely-related monogamous and non-monogamous spe-
cies [48], to our knowledge, ours is the first to make
comparisons across species during an actively-
developing bond.

In this study, we used RNA-sequencing to observe
changes in gene expression in three regions that have
critical roles in pair-bond formation including social
memory, social context, and reward. We compared two
species, the bond-forming prairie vole and the non-
bonding meadow vole, before and at three time points
after mating. By using a comparative approach, we
sought to differentiate those genes which change in ex-
pression in response to mating, but do not play a role in
bond formation, from the genes that may be critical to
pair-bond development. We first identified differences in
the gene categories expressed across species in virgins,
as well as differences in the categories of genes
expressed across our focal regions. Next, we identified
those genes that differed in expression post-mating
across species in each focal region. Finally, we identified
gene expression networks in each species and related
modules of genes with correlated expression to sample
features. This allowed us to identify modules strongly as-
sociated with each brain region, as well as modules
which changed in expression in response to mating in
prairie voles.

Pre-mating differences and the capacity to bond

Our results emphasize the importance of pre-mating dif-
ferences in gene expression that confer the capacity to
bond in prairie voles but not meadow voles. We found
that gene expression count data were most strongly as-
sociated with sample species (Fig. 2), and the vast
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majority of genes included in this study were differen-
tially expressed across prairie and meadow vole virgins
(Fig. 3). This is consistent with prior studies that have
investigated the neural mechanisms of pair bonding
through comparisons between monogamous and pro-
miscuous vole species. For example, the neuropeptide
AVP plays an important role in the development of part-
ner preference and aggression toward unfamiliar conspe-
cifics that characterize pair-bond formation in prairie
voles [26]. Expression of the V1a vasopressin receptor in
the VP is necessary for bond formation in male voles
[49]. Meadow voles naturally have very low expression
of this receptor in the VP, however, driving its expres-
sion in this brain region results in increased partner
preference, a hallmark of bond formation, in meadow
voles [12].

Similarly, several other studies focused on individual
candidate genes or proteins found species differences in
expression of OT receptor, mu-opioid receptor,
corticotropin-releasing factor receptors, estrogen recep-
tor alpha, and neuropeptide Y [50-54]. Gene expression
differences important for behavior have also been found
across bonding and non-bonding species in other taxa,
including variation in Avp (gene encoding arginine-
vasopressin) expression related to parental care in Pero-
myscus mice [55] and variation in OT receptor expres-
sion across pair-bonding versus solitary species of
butterflyfish [56]. Together, these and the present study
show that species-level differences in brain gene expres-
sion play a large role in determining the capacity to form
pair bonds.

While the effects of vasopressin and its receptor are
dramatic, it remains likely that many genes underlie the
species differences in bonding capacity. Our current
study has identified several gene categories that differed
in expression across species in virgins. GO terms
enriched in prairie voles were largely related to cell
structure, the nucleus and extracellular space. These in-
clude microtubule organizing center part, centriole, chro-
matin, and cell-cell junction. Enriched in meadow voles
were terms associated with the ribosome and translation,
mitochondrial function, and metabolic and biosynthetic
processes including translation initiation factor, transla-
tion regulator, peptide metabolic process, macromolecule
biosynthetic process, ribosomal subunit, and mitochon-
drial part. These results indicate that gene expression
differences across virgin prairie and meadow voles are
largely associated with genes involved in cell structure
(enriched in prairie voles) and protein synthesis
(enriched in meadow voles).

Function of critical bonding-related regions
While it was not the central focus of this study, given
that we found sample brain region to be the second
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strongest factor associated with gene expression, we ex-
plored the types of genes that differed between our focal
brain regions. Unsurprisingly, given its role in social
memory [23], when comparing the AMY to HT, we
found enrichment of terms related to synaptic signaling
including regulation of postsynaptic neurotransmitter re-
ceptor internalization, postsynapse, and glutamatergic
synapse (Fig. 4d). In comparison to the VP/NAc, many
enriched GO terms in AMY were related to neuropep-
tide signaling (Fig. 4e). Neuropeptide signaling, particu-
larly by OT, is necessary for the AMY’s function in
social recognition and memory. The medial AMY ex-
presses OT receptor and receives OT innervation from
the paraventricular nucleus of the HT in both mice and
prairie voles [23, 29]. OT knockout mice are unable to
recognize familiar conspecifics, but this deficit is rescued
by site-specific injection of OT into the medial AMY
[23]. Further, site-specific injection of an OT antagonist
into the medial AMY also disrupted social recognition
in wild type mice. Beyond OT, the AMY expresses many
other neuropeptides and their receptors [57]. Genes in
the neuropeptide-related categories enriched in AMY in-
cluded those encoding galanin, neuropeptide FF,
urocortin-3 along with receptors for neuropeptide Y,
galanin, somatostatin, and neuropeptide FF along with
several others. Our results suggest that there are a var-
iety of neuropeptide systems that are likely at play in
AMY function.

Several synapse-related terms were also enriched in
the prairie vole green and meadow vole darkorchid
WGCNA modules which were strongly correlated with
the AMY (Supplementary Fig. 1). Additionally, the terms
cognition and behavior were enriched in both modules,
while learning and associative learning were enriched
only in the prairie vole green module. Individual recog-
nition is an essential aspect of bonding behaviors [17],
one presumably mediated by these suites of genes.
Taken together, these results point to the active role of
the AMY in navigating social interactions, with a par-
ticular importance in prairie voles for developing social
memory for a new partner during bond formation.

The gene categories we found to be enriched in the
HT are also consistent with known functions of this re-
gion, a diverse structure important for sensing and pro-
ducing hormonal signals [58]. In the contrast between
HT and VP/NAc, we found enrichment of the terms
peptide receptor and neuropeptide receptor (Fig. 4f).
Similarly, these terms along with several others related
to hormone signaling were enriched in the prairie vole
turquoise module which was strongly correlated to HT
(Supplementary Fig. 2a). Somewhat surprisingly, we did
not find these terms to be enriched in the meadow vole
seagreen module which was also strongly correlated with
HT (Supplementary Fig. 2b), though we would expect
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genes related to hormone and peptide signaling to be
just as important in that species as they are in prairie
voles. We interpret this as reflecting the well-known role
of the hypothalamus in neuroendocrine coordination
[58]. Another set of GO terms that were enriched in HT
compared to both AMY and VP/NAc as well as in both
the prairie vole turquoise and meadow vole seagreen
modules were several terms related to cilia (Fig. 4d, f;
Supplementary Fig. 2). These genes are likely related to
the ependymal cells that lie along the surface of the ven-
tral part of the third ventricle, which is flanked on either
side by the HT [59]. These cilia play an important role
in regulating the flow of cerebrospinal fluid through this
ventricle. Other groups of terms that were enriched in
the HT and related modules included several related to
the endoplasmic reticulum and the extracellular region.
The endoplasmic reticulum is involved in protein syn-
thesis, including of neuropeptides [60], so enrichment of
this category may be related to neuropeptide synthesis
and release.

Many of the terms enriched in the VP/NAc compared
to either the AMY or HT (Fig. 4e, f)—or in the meadow
vole gold module (Supplementary Fig. 3), which was
strongly correlated to VP/NAc—were related to the nu-
cleus, chromosomes, and transcription/translation. In
addition, there were several enriched terms related to
synaptic function including postsynapse and terms re-
lated to dendritic spines in both the comparison with
the HT and in the meadow vole gold module and the
term regulation of postsynaptic neurotransmitter receptor
internalization in the gold module. Together, these
enriched terms paint a picture of a transcriptionally ac-
tively region with a potentially important role for the
formation new synapses or modulation of existing ones.

Post-mating gene expression in support of bond
formation

Pair-bond formation is a major life history transition
that is dependent on mechanisms of social reward and
memory [17]. The necessity of these systems in bonding
is the reason we chose to focus on the AMY, HT, and
VP/NAc as regions of interest. Prior studies have
shown that the AMY is necessary for social recognition
and encodes valence [22]. The HT is a diverse structure
that has several functions related to social behavior
[61]. Finally, the VP/NAc form a circuit important for
action selection. Both dopaminergic and OT inputs to
NAc are necessary for pair-bond formation in prairie
voles [31, 32]. Activation of the D2 dopamine receptor
in NAc reduces activity of inhibitory neurons in that re-
gion, which is proposed to then disinhibit VP neurons
which guide behavioral responses to rewarding stimuli,
such as mating [17, 62].



Tripp et al. BMC Genomics (2021) 22:399

To better understand the molecular mechanisms at
work in these regions in response to mating, and during
pair-bond formation in prairie voles, we first focused on
the genes in each region that were most significantly dif-
ferentially expressed (lowest FDR) in our model testing
for the effect of species:time interaction. In the AMY,
this was Npas4, which peaked in expression for both
species at the 0.5h post-mating time point but was
expressed at higher levels in prairie voles pre-mating
and at later post-mating time points (Fig. 5d). Npas4 is a
transcription factor that plays an important role in the
development of inhibitory synapses in response to exci-
tatory inputs by regulating expression of activity-
dependent genes [38]. In mice, social encounters drive
increased Npas4 expression in the hippocampus and
knock out of Npas4 results in alterations of social behav-
jor, including reduced time investigating novel conspe-
cifics [63]. Knockout animals in that study also showed
deficits in learning and memory tasks.

Mating is a highly-socially salient behavior that in-
creases neural activity in the AMY [64] so it is unsur-
prising that Npas4 peaks in expression shortly after
mating onset. However, the fact that it differs across spe-
cies both before mating, and at later time points follow-
ing mating onset suggest that it may play a particularly
important role for AMY function in prairie voles com-
pared to meadow voles. It may be that AMY activity in
prairie voles is simply higher in the absence of mating or
other social cues, driving Npas4 expression more
strongly. Alternatively, it may be expressed at constitu-
tively higher levels in prairie voles in the absence of
strong activation so that neurons in the region are pre-
pared to develop inhibitory synapses in response to
strong excitatory inputs. Either way, this result points to
the importance of maintaining excitation/inhibition bal-
ance in the AMY for prairie voles.

In the HT, the most strongly differentially expressed
gene across species over post-mating time points was
Agp3 (Fig. 5e), a gene encoding a water/glycerol trans-
porting channel [39] that was lowly expressed in both
species until the 12 h time point, where it increased in
expression in meadow voles but not prairie voles. In rats,
Agp3 is expressed in astrocytes and neurons of several
regions, and weakly expressed in ependymal cells, but no
expression was found in either the supraoptic or supra-
chiasmatic nuclei of the hypothalamus [65]. Expression
of Agp3 increased in response to stroke in rats [66] and
is elevated in pyramidal cells of cortical tissue from hu-
man patients with edema [67]; however, the reason why
this gene increases in expression in the HT of male
meadow voles 12 h after beginning to mate with a novel
female is not immediately clear.

The gene that was most strongly differentially
expressed in the VP/NAc between species across post-

Page 15 of 22

mating time points was Spatal6 (Fig. 5f). This gene
showed an interesting opposing pattern of expression
across species, starting at high levels and reducing
quickly following mating in prairie voles and beginning
at low levels of expression and peaking shortly after mat-
ing in meadow voles. Spatal6 is a gene important for
spermatogenesis [40], and to our knowledge it has not
so far been studied for its function or localization in the
brain.

In addition to the genes most strongly differentially
expressed in our model testing the effect of the species:
time interaction, we found four genes that significantly
differed across species in multiple brain regions (Fig. 6e-
h). Among these were Nfkbia, which encodes an inhibi-
tor of the transcription factor nuclear factor kappa B
[68]; Pxn, which acts as an adaptor protein that interacts
with the cytoskeleton and signaling molecules that regu-
late cell adhesion to the extracellular matrix [69]; the
circadian clock gene Perl [43]; and CablesI, which en-
codes a protein that promotes neurite outgrowth in neu-
rons and plays a role in regulating cell death [70].

Interestingly, though the absolute level of expression
varied across regions within a species, the pattern of ex-
pression of these genes was largely similar across our
focal regions. This suggests that whatever function they
serve in response to mating is consistent across the brain
regions. Further, these genes tended to increase after
mating in meadow voles, then return to baseline, while
maintaining relatively more consistent expression across
all time points in prairie voles. This suggests that they
are responsive to mating in the promiscuous species but
are not necessarily important for bonding.

Alternatively, it is possible that the changes in expres-
sion over time we observe in some or all of these genes
are related to time itself, rather than time relative to
mating. This is particularly true for circadian-related
genes Perl, which has opposing patterns of expression
in prairie and meadow voles (Fig. 6g), and Ciart, though
this caveat applies more broadly, as nearly half of
protein-coding mammalian genes show circadian vari-
ation in their expression [71]. If this is the case, their
variation may reflect differences in circadian cycles of
gene expression across species. Prairie voles show ultra-
dian patterns in cardiovascular measures [72] and in ac-
tivity in the field [73]. This is also true of common voles
(Microtus arvalis) [74], though daily rhythms of meadow
voles and potential differences between prairie and
meadow voles remain to be investigated. Given that in
this study we collected prairie and meadow voles at
similar time points, our results are unlikely to be an
artifact of timing of tissue collection. Moreover, none of
our gene ontology analyses identified enrichment of
circadian-related terms. While some genes (e.g. Perl,
Ciart) may be influenced by species differences in
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circadian rhythms, on balance, species differences in circadian
function do not seem to be major predictors of gene expression
in our data. Future investigations can more directly test for cir-
cadian differences between prairie and meadow voles and their
effects on brain gene expression and bonding behavior.

In addition to these genes that were differentially
expressed across species, we also examined modules that
were significantly correlated with mating status to identify
enriched gene categories associated with these modules.
The cyan and pink modules were each positively corre-
lated with having mated, and enriched terms in these
modules included many related to translation, ribosomes,
and mitochondria. Terms related to catabolic and meta-
bolic processes were also enriched in the pink module.
The terms enriched in these modules are likely associated
with transcriptional and energetic demands associated
with the response to a novel social encounter and initial
mating activity. For example, an earlier study has found
that 30 min of mating elicits activity-dependent expression
of the immediate early genes Fos and Egr-1 in dopamin-
ergic neurons of the AMY in male prairie voles [75]. Con-
sistent with this interpretation, the post-mating time point
these modules were most strongly related to was 0.5h
(Fig. 7a). Cyan was significantly positively correlated with
this point (r = 0.33, p = 0.024) while pink trended toward a
significant positive correlation (r = 0.25, p = 0.088).

Similar to the modules positively associated with mat-
ing, the modules negatively correlated with mating (and
so positively correlated with virgin status) were most
negatively associated with the 0.5h post-mating onset
time point (Fig. 7a). The blue module was significantly
negatively correlated with this time (r=-0.32, p =0.031)
and salmon module trended toward a negative correl-
ation (r = - 0.26, p = 0.073). Many of the terms enriched
in the blue module were related to chromosomes and
chromatin modifications, suggesting that activity of these
genes is reduced in early mating. In the salmon module,
most enriched terms were associated with neural devel-
opment and axon guidance. As the salmon module was
positively correlated with HT, this result suggests that
during early mating there is a reduction in the formation
or growth of axons from neurons in this region. To-
gether, these results suggest that during very early mat-
ing in prairie voles, expression of genes involved in
synaptic plasticity and activity of epigenetic modifica-
tions are actually reduced compared to the virgin state,
perhaps due to the energetic and protein synthesis de-
mands occurring at this time. Though it remains pos-
sible that the products of these genes are still present
and active during early mating.

Limitations and future studies
One limitation of the current study is the fact that anno-
tations for the genes encoding OT, OT receptor, and the
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Vla AVP receptor are absent from the currently avail-
able annotated prairie vole genome. While their absence
is unfortunate, as these genes would have served as use-
ful positive controls, given the fact that they have been a
major focus of studies of mating and pair bonding in
voles and other taxa [5, 9, 17, 56, 76-82], it is unlikely
that the current study would reveal any novel function
for these genes. So, although their inclusion in the anno-
tated genome would have been useful, their absence
does not impede the key goals of this study.

While this study identified several gene categories that
differ between virgin prairie and meadow voles and
across regions in both species, as well as intriguing can-
didate genes that vary over time after mating across spe-
cies, we are not able to tie these genes and GO
categories to specific behaviors. Future studies that in-
clude more detailed behavioral observation will be useful
for correlating expression of genes of interest to specific
mating-related or other prosocial behaviors that voles
engage in during bond formation. Additional manipula-
tive studies will be useful in determining which gene ex-
pression differences between prairie and meadow voles.

Additionally, our GO term enrichment analyses com-
paring across species often found significant enrichment
of terms related to transcription and translation as well
as metabolic activity. While this may be indicative of real
differences in these processes between prairie and
meadow voles, it is important to consider that this may
instead be an artifact of the sequencing and analysis
process. That is, due to the enrichment of genes in other
categories (e.g. cell structure and neuronal development)
in prairie voles, the relative abundance of “housekeep-
ing” genes involved in protein synthesis and metabolism
appears to be reduced. Nevertheless, our results still
emphasize the importance of brain transcriptional regu-
lation in supporting prairie vole bond formation.

Finally, this study investigated gene expression differ-
ences in males only. A benefit of this approach is reducing
the number of animals needed to obtain a sample size
with appropriate statistical power, while limiting the num-
ber of samples and factors needed to analyze a large data-
set. Further, most of the neural mechanisms of prairie
vole pair bonding investigated so far are shared across the
sexes [17]; however, sex differences in the neurohormonal
control of pair bonding do exist, such as dimorphic effects
of stress on bond formation [83]. Future studies using
RNA-sequencing or a candidate gene approach should in-
vestigate whether our results also hold true for female
voles, or if there are important sex differences in brain
gene expression facilitating bond formation.

Conclusions
Our results emphasize the importance of pre-mating dif-
ferences in gene expression that confer the ability to pair
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bond in prairie voles but not in non-bonding species
such as meadow voles. In addition, they support the hy-
pothesis that pair-bond formation relies on transcrip-
tional regulation and alterations of neuronal structure in
regions including the amygdala, hypothalamus, ventral
pallidum, and nucleus accumbens that links neural en-
coding of partner cues with the reward system, resulting
in reinforcement of the partner that leads to selective af-
filiation (Fig. 8). Finally, we identify several intriguing
candidate genes that may play important roles in bond
formation following co-habitation and mating. Together,
our results should help broaden the scope of research on
the neural and molecular mechanisms of pair-bond for-
mation by providing novel candidates to investigate in
future manipulative studies.

Methods

Animals

All animals used in this study were taken from labora-
tory breeding colonies at Emory University, derived from
field-captured voles collected in Illinois. Prairie voles
and meadow voles were housed separately in same-sex
groups of two to three voles per cage from postnatal day
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21. Housing consisted of a ventilated 36 cm x 18 cm x 19
cm plexiglass cage filled with Bed-o’-Cobs laboratory
animal bedding (The Andersons Inc.,, Maumee, Ohio)
under a 14/10 h light/dark cycle (lights on 7:00 AM-9:00
PM) at 22°C with access to food (rabbit diet; LabDiet,
St. Louis, Missouri) and water ad libitum. All experi-
ments were performed in accordance with relevant
guidelines and regulations and were approved by the
Emory University Institutional Animal Care and Use
Committee.

Tissue collection

All animals were 60-90days old and sexually naive at
the time of the experiment and tissues were collected
from males only. Voles were euthanized by isoflurane in-
halation overdose followed immediately by rapid decapi-
tation as recommended by the American Veterinary
Medical Association and approved by the Emory Institu-
tional Animal Care and Use Committee. Tissues for the
virgin group (time point 0) were collected from sexually
naive males without exposure to females (1 =4 per spe-
cies). For tissues from mated animals, single male voles
were paired with a single unrelated female of the same
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species primed with estradiol benzoate (Sigma Aldrich, St.
Louis, MO, USA, BP958) for two days prior to pairing to
ensure sexual receptivity. Pairs were observed and the
time of first intromission was recorded. Males were col-
lected at 30 min (n = 4 per species), 2 h (n =4 per species),
and 12h (n=4 per species) following the first intromis-
sion. To reduce the possible influence of circadian effects
on gene expression, prairie and meadow voles were col-
lected at similar times for each post-mating time point.
Virgin animals were collected at the same times as post-
mating animals. Following collection, animals were eutha-
nized using isoflurane, and whole brains were harvested
and dissected on a block of dry ice. The AMY, HT, and
VP/NAc were collected from each brain and stored in
RNAlater (Applied Biosystems AM7020).

RNA extraction and sequencing

Total RNA was extracted from each region from all indi-
viduals using TRIzol (Sigma-Aldrich) following manu-
facturer’s protocol. An additional DNAse treatment
(Purelink) was included to eliminate any contaminating
DNA. RNA quantity and quality were assessed using a
BioAnalyzer (Agilent) and quantified by spectrophotom-
etry. cDNA was prepared using Superscript reverse tran-
scriptase II (Invitrogen) and purified with QIAquick
PCR purification kit. After checking cDNA quantity and
quality in the BioAnalyzer, libraries were prepared using
[lumina’s TruSeq Sample Prep Kit with starting amount
of 1.25ug cDNA. Libraries were sequenced as 50bp
single-end reads at the Emory University genomics core
facility using Illumina HiScan, and HiSeq 2000 ma-
chines. Read files were trimmed and cleaned using fastq
tools.

Differential gene expression

Reads were aligned to an annotated prairie vole genome
(MicOchl1.0, INSDC Assembly GCA_000317375.1, Full
genebuild annotation by Ensembl released February 2017)
using STAR aligner (v2.7.2b) [84]. The R package array-
QualityMetrics [85] was used to assess sample quality and
identify outliers. One sample was removed for having low
read counts and two removed as outliers resulting in 47
prairie vole (n =16 AMY samples, n = 15 HT samples, n =
16 VP/NAc samples) and 46 meadow vole (n=16 AMY
samples, n=15 HT samples, n=15 VP/NAc samples)
samples. Genes with less than one count per sample on
average were removed prior to analyses.

The dataset was characterized and differential gene ex-
pression was analyzed with the R package DESeq2 [34]
following the workflow provided by the package authors
[86]. For analyses of the full dataset, a DESeq dataset
was created with the model ~species + region + time.
Poisson distance was calculated using the PoiClaClu
package [33]. Variance stabilizing transformation and
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principal component analysis (PCA) were conducted
using DESeq2 functions. A likelihood ratio test with the
reduced model ~species + time was used to test for
genes that were differentially expressed across regions.
To identify genes that were differentially expressed
across species before mating, the full model ~species +
region was applied to count data from both species from
the virgin time point only, and the likelihood ratio test
was used with the reduced model ~region. To test for
differentially expressed genes across species at the virgin
time point within each region, the data were subset by
region and a likelihood ratio test was used with the full
model ~species and reduced model ~ 1. To test for spe-
cies differences in gene expression within a region fol-
lowing mating, the data were subset by region and a
likelihood ratio test was used with the full model ~spe-
cies + time + species:time and reduced model ~species +
time. This model tests whether species differ in gene ex-
pression at any time point after time 0 (virgin animals)
[86]. Additional annotation information for genes of
interest (Tables 1, 2 and 3) was obtained from the Uni-
ProtKB (uniprot.org) manually annotated, reviewed
(Swiss-prot) database. Manually annotated gene IDs and
descriptions were derived from mouse (Mus musculus)
annotations.

Gene correlation networks

We used the R package WGCNA [45] to identify net-
works of genes with correlated expression. Count data
were divided by species, and separate networks were cre-
ated for prairie voles and meadow voles. Lowly
expressed genes (mean of less than 10 counts per sam-
ple) were removed and count data were transformed
using DEseq2 variance-stabilizing transformation [34].
We identified signed modules (ie. modules consist of
genes with strong positive correlation to one another) of
correlated genes within networks for each species and
found correlations between module eigengenes and sam-
ple traits including brain region, mating status (coded 1
for any post-mating time point, 0 for virgin), time of col-
lection (0 [virgin],0.5, 2, or 12h), and individual post-
mating collection time points. Following this, we com-
pared species networks by calculating module member-
ship score (kME) [45] for each gene in each module for
each species, then merged the kKME datasets. We used R
package pheatmap [87] to create heatmaps based on
module distances and Pearson correlations and used
hierarchical clustering by the function hclust with
method “average” to visualize relationships of modules
across species.

Gene ontology term enrichment
To test for enrichment of GO terms among genes asso-
ciated with our differential expression comparisons or
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WGCNA modules of interest, we used the Mann-
Whitney U (MWU) test [36] implemented by the GO_
MWU R script [37] (Available at https://github.com/
z00n/GO_MWU). Rather than test for enrichment
among genes determined to be significant by an FDR
cutoff, the MWU test determines if GO categories are
enriched by up- or down-regulated genes, or within
modules, compared to all other categories using con-
tinuous measures. For tests of enrichment among differ-
ential expression comparisons, we used signed -log;o of
the p-value as the measure of comparison to identify
terms associated with genes most strongly differentially
expressed across species or brain regions [37]. The
-log;o of the p-value from the model was calculated for
each gene, then “signed” by multiplying by — 1 if the log,
fold change (LFC) for the contrast of interest was nega-
tive [37]. For tests of enrichment in WGCNA modules
of interest, we used gene kME values for genes included
in the module, and all genes not included in the module
were assigned a value of zero and adjusted p-value was
determined by 100 permutations where significance
measures are randomly shuffled among genes [37].

Data analysis and visualization

All analyses were conducted using R (v4.0.0). Details of
packages and scripts used for differential expression,
gene correlation network, and GO term enrichment ana-
lyses are described in the relevant sections above. Plots
were made using DESeq2 [34] and WGCNA [45] as well
as the packages ggplot2 [88], pheatmap [87], and RCo-
lorBrewer [89].
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accumbens
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(below). b. Pxn in HT (above) and VP/NAC (below). c. Per1 in HT (above)
and VP/NACc (below). d. CablesT in HT (above) and VP/NAC (below). Sup-
plementary Fig. 2. Gene ontology analysis for amygdala gene-
expression modules. Enriched GO terms in a. prairie vole green module
and b. meadow vole darkorchid module. Hierarchical clustering tree
shows relationship between GO categories based on shared genes.
Branches with length of zero are subsets of one another. Fractions pre-
ceding GO terms indicate proportion of genes from the category that are
included in the module of interest. FDR determined by 100 permutations
where significance measures are randomly shuffled among genes. Bold
text indicates adjusted p < 0.01, plain text indicates adjusted p < 0.05, and
italicized text indicates adjusted p < 0.1 for term. n.s. indicates no signifi-
cant terms in the category. Supplementary Fig. 3. Gene ontology ana-
lysis for hypothalamic gene-expression modules. Enriched GO terms in a.
prairie vole tuquoise module and b. meadow vole seagreen module.
Hierarchical clustering tree shows relationship between GO categories
based on shared genes. Branches with length of zero are subsets of one
another. Fractions preceding GO terms indicate proportion of genes from
the category that are included in the module of interest. FDR determined
by 100 permutations where significance measures are randomly shuffled
among genes. Bold text indicates adjusted p < 0.01, plain text indicates
adjusted p < 0.05, and italicized text indicates adjusted p < 0.1 for term.
n.s. indicates no significant terms in the category. Supplementary Fig. 4.
Gene ontology analysis for ventral pallidum/nucleus accumbens gene-
expression modules. Enriched GO terms in meadow vole gold module.
(There were no significant enrichments for the prairie vole magenta mod-
ule) Hierarchical clustering tree shows relationship between GO categor-
ies based on shared genes. Branches with length of zero are subsets of
one another. Fractions preceding GO terms indicate proportion of genes
from the category that are included in the module of interest. FDR deter-
mined by 100 permutations where significance measures are randomly
shuffled among genes. Bold text indicates adjusted p < 0.01, plain text in-
dicates adjusted p < 0.05, and italicized text indicates adjusted p < 0.1 for
term. n.s. indicates no significant terms in the category. Supplementary
Fig. 5. Effects of mating on gene ontology categories. Enriched GO
terms in modules most strongly positively (a-b) and negatively (c-d) cor-
related with mating status in prairie voles. a. cyan module, b. pink mod-
ule c. blue module, d. salmon module. Hierarchical clustering tree shows
relationship between GO categories based on shared genes. Branches
with length of zero are subsets of one another. Fractions preceding GO
terms indicate proportion of genes from the category that are included
in the module of interest. FDR determined by 100 permutations where
significance measures are randomly shuffled among genes. Bold text indi-
cates adjusted p < 0.01, plain text indicates adjusted p < 0.05, and itali-
cized text indicates adjusted p < 0.1 for term. n.s. indicates no significant
terms in the category.
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