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Abstract

Background: Virescent mutation broadly exists in plants and is an ideal experimental material to investigate
regulatory mechanisms underlying chlorophyll synthesis, photosynthesis and plant growth. Up to date, the
molecular mechanisms in two virescent mutations have been clarified in cottons (Gossypiuma hirsutum). A virescent
mutation has been found in the cotton strain Sumian 22, and the underlying molecular mechanisms have been
studied.

Methods: The virescent mutant and wild type (WT) of Sumian 22 were cross-bred, and the F1 population were self-
pollinated to calculate the segregation ratio. Green and yellow leaves from F2 populations were subjected to
genome sequencing and bulked-segregant analysis was performed to screen mutations. Real-time quantitative PCR
(RT-qPCR) were performed to identify genes in relations to chlorophyll synthesis. Intermediate products for
chlorophyll synthesis were determined to validate the RT-qPCR results.

Results: The segregation ratio of green and virescent plants in F2 population complied with 3:1. Compared with
WT, a 0.34 Mb highly mutated interval was identified on the chromosome D10 in mutant, which contained 31
genes. Among them, only ABCI1 displayed significantly lower levels in mutant than in WT. Meanwhile, the contents
of Mg-protoporphyrin IX, protochlorophyllide, chlorophyll a and b were all significantly lower in mutant than in WT,
which were consistent with the inhibited levels of ABCI1. In addition, a mutation from A to T at the -317 bp
position from the start codon of ABCI1 was observed in the genome sequence of mutant.

Conclusions: Inhibited transcription of ABCI1 might be the mechanism causing virescent mutation in Sumian 22
cotton, which reduced the transportation of protoporphyrin IX to plastid, and then inhibited Mg-protoporphyrin IX,
Protochlorophyllide and finally chlorophyll synthesis. These results provided novel insights into the molecular
mechanisms underlying virescent mutation in cotton.
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Background
As one of the important economic crops in the world,
cotton is of great significance to provide materials for
the global textile industry. Scientists are always trying to
breed high-quality cotton breeds. Investigation of the
molecular mechanisms underlying plant growth and
production of cotton may facilitate the molecular breed-
ing process.
Virescent mutation is characterized by yellowish leaves

at the early stage, which gradually become normal green
leaves at maturity [1]. The virescent mutation is an easily
identifiable character and has been observed in various
plant species including rape [2], Arabidopsis [3], rice [4],
cucumber [5], maize [6] and cotton [7]. The virescent
mutants in leaves directly or indirectly affect the biosyn-
thesis pathway of chlorophyll, resulting in the imbalance
of the content and proportion of photosynthetic pig-
ments, finally changing the leaf color [8–10]. In general,
the virescent mutation is genetically stable and the gen-
etic mode of virescent mutant is simple, controlled by
1–2 pairs of recessive genes. Thus, virescent mutant
plants together with wild type (WT) plants provide ideal
experimental materials for investigations of mechanisms
regulating the expression of genes in relation to chloro-
phyll synthesis, which are important to photosynthesis
and plant growth.
In allotetraploid cotton strains, 22 virescent mutants

have been identified, which were suspected to the muta-
tions of 24 genes. However, to the best of our know-
ledge, only two molecular mechanisms have been
clarified. First, in the virescent mutant of the cotton
strain T582, the normal functioning of Mg-chelatase I
subunit (CHLI) was disturbed [11]. Next, this mutant
was localized to a 20 kb interval on the chromosome 20
and the responsible gene was named GhRVL, which was
homologous to CHLI in Arabidopsis [12]. Similar results
were also found in the virescent phenotype of the cotton
strain ZM050400 [1]. Compared with the cotton refer-
ence genome of the TM-1 stain [13], GhRVL was local-
ized to the interval between 0.7 and 3.9 Mb on
chromosome D10 in the TM-1 genome. Second, another
virescent gene was identified on the chromosome D04
and the candidate gene was named GhPUR4, which af-
fected the normal function of formylglycinamide ribotide
amidotransferase (FGAMS) in the fourth step of the de
novo purine biosynthesis pathway and finally resulted in
the reduction of chlorophyll content, abnormal chloro-
plast development and virescent true leaves [14]. These
results revealed the molecular mechanisms underlying
virescent leaves in certain cotton strains. However, other
virescent strains may not all follow these mechanisms.
More studies are still required to further investigate the
molecular mechanisms underlying virescent mutations
in cotton.

Sumian 22 (Gossypiuma hirsutum) is an important up-
land cotton variety in China. It shows high yield, good
quality of fiber, and high resistance to diseases [15]. In
2004, a natural virescent mutant was found in the Sumian
22 populations, whose leaves were yellow at the young
stage but then turned to light green at the boll stage [16].
Clarifying the genetic basis of leaf color mutation has im-
portant theoretical and practical value in cotton research
[17]. Considering the insufficient understanding of mo-
lecular mechanisms underlying virescent mutation in cot-
ton, it is still necessary to also study the mechanisms
underlying the virescent Sumian 22 strain.
Bulked-segregant analysis (BSA) is a very useful ap-

proach to identify genetic locus for simple quality trait,
which separately pools the DNA of extreme individuals
with contrasting phenotypes from a segregating popula-
tion followed by screening of mutated molecular
markers between parents and bulks [18, 19]. Based on
next-generation sequencing (NGS), BSA analysis greatly
accelerates the period of gene mapping research [20].
This method has been successfully applied to identify
genes regulating genic male sterility in sesame [21], vir-
escent mutation in rapeseed [22], plant height in maize
[23] and rate of leaf initiation in barley [24].
In the present study, the virescent mutant (mutant)

and wild green type (WT) of Sumian 22 were cross-bred
and the F2 population was separated to green and yellow
pools. BSA was conducted to search single nucleotide
polymorphisms (SNP) between the two pools. Based on
the SNP results, candidate genes were predicted, their
mRNA levels were examined using real-time quantitative
PCR (RT-qPCR) and the changes of potential intermedi-
ate metabolites for chlorophyll synthesis were also deter-
mined. Overall, these results aimed to explain the
molecular mechanisms underlying the virescent trait in
Sumian 22 cotton, which provides a basis to further
understand the molecular mechanisms underlying the
virescent phenomenon and regulation of chlorophyll
synthesis in cotton.

Results
The virescent mutation is a recessive gene in Sumian 22
The young leaves of mutant were clearly distinguished
by a yellowish leaf color (Fig. 1A), significantly different
from the WT (Fig. 1C). At the mature stage, mutant
leaves became green (Fig. 1B), but still slightly different
from the WT (Fig. 1D).
In the cross-breed between mutant and WT, all F1

plants revealed green leaves. However, in the self-
pollinated F2 population, 72.8% and 27.2% individuals re-
vealed green and yellow leaves, respectively. The ratio
between green- and yellow-leaved plants was not signifi-
cantly different from 3:1 (Table 1), suggesting the vires-
cent mutation in Sumian 22 is a recessive mutation.
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Rapid delimitation of a candidate genomic region by
BSA-seq
Genome sequencing obtained 124.46 and 127.67 million
reads for WT and mutant, with the genome coverage of
94.66% and 94.63%, respectively. Considering the hetero-
geneity of plants in F2 population, the G- and Y-pools
were sequenced, which produced 822.93 and 680.68 M
reads, covering 95.30% and 95.30% of the whole genome,
respectively (Additional file 1: Table S1).
Between WT and mutant, 958,198 SNPs and 528,693

small InDels polymorphic markers were identified. The
SNP-index plots were similar between G-pool and Y-
pool at most regions of the genome. However, ΔSNP-
index revealed a higher SNP load at the region from
3.08 to 3.42 Mb on the chromosome D10 according to
the reference genome of TM-1 cotton [13] (Fig. 2),
which was considered as the unique candidate region of
the virescent gene. In this region, 31 coding genes and
597 SNPs were identified.

Determination of gene transcription levels by RT-qPCR
Seven genes in relation to chlorophyll synthesis were se-
lected to for RT-qPCR. The results showed no signifi-
cant differences between mutant and WT (Fig. 3),
suggesting that the reported mechanism of GhRVL mu-
tation (identical to CHLI in the present study) [11, 12]

in virescent T582 cotton was not responsible for the vir-
escent mutation in Sumian 22.
To compare the levels of the 31 genes in the candidate

region, RT-qPCR assays were performed for both mutant
and WT. Among them, 4 genes (Protein SRG1 (SRG1),
Floral homeotic protein AGAMOUS (AG), Integrin-
linked protein kinase 1 (ILK1), and a function unknown
gene) revealed significantly higher, but 3 genes (ER lumen
protein-retaining receptor A (ERD2A), Protein gravitropic
in the light 1 (GIL1), and ABC transporter I family mem-
ber 1 (ABCI1)) displayed significantly lower levels in mu-
tant than in WT (Fig. 4). As reported, these genes were
mainly functionally related to plant immunity [25, 26],
carpels development [27], and signal transducer activity
[28]. Only ABCI1 (Ghir_D10G003980) was reported to
participate in the chlorophyll biosynthesis process [29],
thus was considered as the candidate gene for virescent
mutation. As reported, ABCI1 was suspected to involve in
the Proto-IX transport and distribution in Arabidopsis,
which is an essential step of chlorophyll biosynthesis [30].

Contents of chlorophyll precursors and chlorophylls
To validate the metabolic changes of ABCI1 mutation,
intermediate products in the biosynthesis process from pro-
toporphyrin IX (Porto-IX) to chlorophyll were determined.
The results showed that contents of Mg-protoporphyrin IX

Fig. 1 Phenotypes of leaves in the virescent mutant (Mutant) of Sumian 22 and wild type (WT) of Sumian 22. A Mutant at the young stage; B WT
at the young stage; C mutant at maturity; D WT at maturity

Table 1 Segregation of leaf color in the F2 population of the cross-breed between the wild type and the virescent mutant of
Sumian 22 cotton

Cross Wild type S22 × Virescent mutant S22

Number of green leaves plants 704

Number of yellow leaves plants 263

Total number of plants 967

Expected ratio 3:1

χ2 2.49

χ20.05 = 3.84, χ2 < χ20.05 indicates no significant difference between the observed and expected ratios
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(Mg-Proto IX) and protochlorophyllide (Pchld) were both
significantly lower in mutant than in WT (Fig. 5A). Mean-
while, contents of both chlorophyll a and b showed signifi-
cantly lower values in mutant than in WT (Fig. 5B).

Characterization of mutations potentially affecting ABCI1
transcription in Sumian 22
The open reading frame (ORF) of ABCI1 in Sumian 22
was 690 bp in length, encoding 229 amino acids. Based
on the genome sequencing results, nine SNPs which
might potentially affect the transcription of ABCI1 were
identified (Additional file 1: Table S2). Among them,
one was localized to the exonic region of ABCI1, which
is heterozygous in the Y-pool. One was localized to the
5′-untranslated region (5′-UTR). It is heterozygous in
the G-pool, but homozygous in the Y-pool. This

mutation was in an AT-rich region (Additional file 1:
Figure S1). Other seven SNPs were all upstream to both
Ghir_D10G003980 and Ghir_D10G003990.

Discussion
In cotton strains, two virescent mutations have been
clarified, which were attributed to the dysfunction of
GhRVL and GhPUR4 [1, 12, 14]. However, in the present
study, qPCR analyses did observe significant differences
in these two genes between mutant and WT, indicating
that these two genes were not the mechanisms under-
lying virescent mutation in Sumian 22 cotton. Thus, WT
and virescent mutant of Sumian 22 cotton provide good
materials to elucidate novel mechanisms underlying vir-
escent mutation in cotton.

Fig. 2 SNP index plot of green and yellow leaves (G-pool and Y-pool) in F2 population of the cross-breed between wild type (WT) and virescent
mutant of Sumian 22
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Yellow leaf mutants are often associated with disrup-
tions of photosynthetic pathway, including the regula-
tory network of chlorophyll biosynthesis and chloroplast
development genes. Comparative genome sequencing of
WT and mutant only identified one candidate mutation
region, which contained 31 genes. In these genes, only
ABCI1 was significantly downregulated in mutant in
comparison to WT, and functionally related to chloro-
phyll synthesis. ABC transporter proteins belong to a
large, diverse and ubiquitous superfamily [31]. Plants
contain a collection of ABC proteins, which are similar
to the components of prokaryotic multi-subunit ABC
transporters, namely ABC group I. In Arabidopsis and
rice, ABCI is required for proper formation of chloro-
plast structure, and biosynthesis of chlorophyll precur-
sor. In addition, ABCI has been characterized as a FR
light-specific signaling factor involved in the phyto-
chrome A signaling pathway [30, 32]. During the chloro-
phyll biosynthesis, protoporphyrinogen IX is relocated
from the stroma to the plastid envelope, where it is oxi-
dized by the envelope-bound PPO to form protoporphy-
rin IX [33]. The generated proto IX then returns to the
stroma by yet an unknown mechanism, participating in
the synthesis of Mg-proto IX and downstream sub-
stances [34]. ABCI1 possibly transfers proto-IX formed
on the plastid envelope into the stroma for chlorophyll
biosynthesis [30]. Thus, deceased ABCI1 level would
negatively affect the amount of proto IX in plastid and
subsequently decrease the amounts of Mg-proto IX,

Pchld and finally chlorophylls in leaves. Experimental
determination really showed significantly lower contents
of Mg-proto IX and Pchld (Fig. 5), further supporting
that ABCI1 might be a mechanism underlying virescent
mutation in Sumian 22 (Fig. 6).
Based on the genome sequences, regulatory mechanisms

of ABCI1 transcription were further explored. Nine SNPs
were observed in ABCI1 sequence and its upstream
1000 bp region. Among them, the mutations C3329472G
and T3330502C could be excluded from the potential
regulatory mechanisms of ABCI1, because these two mu-
tations were heterozygous in mutant (Additional file 1:
Table S3), which was contradicted to the results of cross-
breed experiments that the virescent mutation was
recessive in Sumian 22. The mutations G3330282C,
C3330324T, A3330374T, T3330536C, C3330589A, and
C3330981T might also be excluded, because these muta-
tions were located upstream to both Ghir_D10G003980
(ABCI1) and Ghir_D10G003990 (Additional file 1: Table
S3). Thus, these mutations should regulate the transcrip-
tion of both genes. However, qPCR revealed different
changing tendencies between mutant and WT (Fig. 4). Fi-
nally, only the mutation A3330215T was left. This muta-
tion was located at an AT-rich region of the 5’-UTR of
ABCI1 and is − 317 bp from the start codon of ABCI1. As
reported, a long AT-rich region between positions from −
350 to − 161 bp relative to the transcription start site
could function as a cryptic enhancer element regulating
the transcription of the following gene in transgenic

Fig. 3 Relative levels of genes in chlorophyll synthesis via qPCR experiments (mean ± SD). *Significantly different between wild type (WT) and
virescent mutant of Sumian 22 cotton (P < 0.05)
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Fig. 4 Relative levels of genes in the candidate mutated region in virescent mutant (Mutant) compared with wild type (WT) of Sumian 22 cottons
via qPCR experiments (mean ± SD). *Significantly different between WT and Mutant (P < 0.01). Ghir_D10G003720: Protein SRG1 (SRG1);
Ghir_D10G003810: Floral homeotic protein AGAMOUS (AG); Ghir_D10G003820: Integrin-linked protein kinase 1 (ILK1); Ghir_D10G003940: ER lumen
protein-retaining receptor A (ERD2A); Ghir_D10G003950: Protein gravitropic in the light 1 (GIL1); Ghir_D10G003980: ABC transporter I family
member 1 (ABCI1); Ghir_D10G003990: unknown

Fig. 5 Contents of chlorophyll precursors (A) and chlorophylls (B) in virescent mutant (Mutant) compared with wild type (WT) of Sumian 22
cottons (mean ± SD). *Significantly different between WT and Mutant (P < 0.01)
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Arabidopsis plants [35]. More investigations are required
to validate the regulatory functions of A3330215T muta-
tion on ABCI1 transcription in cotton.

Conclusions
Virescent mutation in Sumian 22 cotton is recessive.
Compared with WT, transcription of ABCI1 was low-
ered in mutant, inhibiting the transportation of proto-
porphyrin IX (proto IX) to plastid, and then suppressing
the synthesis of Mg-protoporphyrin IX (Mg-proto IX),
Protochlorophyllide (Pchld) and finally chlorophylls.
These molecular changes are the mechanisms under-
lying the virescent trait in Sumian 22. The mutation

from A to T at the -317 bp position might be the reason
to mediate ABCI1 transcription in Sumian 22.

Materials and methods
Plant materials and cross-breeding
No special permissions and/or licenses were required for
the present study. The collection of all plant materials
complied with all current Chinese laws and regulations.
The seeds of mutant and WT of Sumian 22 were pro-
vided by the Agricultural Sciences Research Institute of
Coastal Region of Jiangsu Province (Yancheng, China).
Mutant was crossed with WT, and the obtained F1
plants were self-pollinated to produce an F2 population.
Finally, 967 F2 seedlings were obtained. These operations

Fig. 6 Overview of changes in mRNA transcription and metabolites in the biosynthesis of chlorophyll. Red and green indicate significant
upregulation and downregulation in Mutant, respectively, compared with WT
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were performed at the Nanyang Experimental Station of
the Agricultural Sciences Research Institute of Coastal
Region of Jiangsu Province (Yancheng, China). The
numbers of green and yellow plants were counted to cal-
culated the segregation ratio, and the data were analyzed
using the χ2 test. In addition, fresh green and yellow
leaves were collected and stored at − 80 °C for further
molecular analyses.

Whole genome re-sequencing, and BSA-seq analysis
Leaves from WT, Mutant were extracted using a Biospin
plant genomic DNA extraction kit (Bioer, Hangzhou,
China). In addition, green leaves (G-pool) and yellow
leaves (Y-pool) from the F2 population were pooled sep-
arately and then subjected to DNA extraction. For each
sample, leaves from at least 40 individuals were mixed.
DNA degradation and contamination were monitored
on 1% agarose gels. DNA purity was checked using a
NanoPhotometer spectrophotometer (IMPLEN, CA,
USA). DNA concentration was measured using a Qubit
DNA assay kit on a Qubit 2.0 Fluorometer (Life Tech-
nologies, CA, USA). Sequencing libraries were prepared
using a NEBNext Ultra DNA Library Prep Kit for Illu-
mina following the manufacturer’s instruction and sub-
jected to the whole genome sequencing (WGS) using an
Illumina HiSeq2500 platform. Paired-end reads were col-
lected. After filtering low-quality reads, the obtained
clean data of the two parents and two pools of F2 popu-
lation were aligned to the reference genome of G. hirsu-
tum (AD1) [35] using Burrows-Wheeler Aligner (BWA)
(0.7.10-r789) with the default parameters [36]. Align-
ment/Map (SAM) tools were used to sort and index the
resulted Binary Alignment Map (BAM) format files [37].
Mark duplicates in Picard tools (v1.102) (http://
broadinstitute.github.io/picard/) was used to discard du-
plicates, and the final sorted bam results were used for
downstream analysis. For all samples, SNP calling was
conducted using the Unified Genotype function of the
Genome Analysis ToolKit (GATK) (v 3.6) software [38],
and then variant calling was performed for SNP and
small InDels between bulks.
To identify candidate genomic regions responsible for

virescent gene, the SNP-index between the G-pool and
Y-pool was estimated as a proportion of reads aligned to
a position with a variant nucleotide different from the
reference sequence. In order to improve the accuracy of
the identified candidate regions, consecutive low depth
SNPs were classified into a block with a minimum read
depth of 20. A sliding window of 1 Mb long and 10 kb
step size was used to measure the average distribution of
all SNP-indices. The ΔSNP-index was calculated by sub-
tracting the SNP-index of the G-pool from the Y-pool.
Genomic regions with ΔSNP-index higher than the
threshold line were considered as candidate regions.

Sequences of genes in the candidate regions were ex-
tracted, blasted against Nr, Swissport databases for an-
notation. Alignment of gene and protein sequences were
performed using the ClustalX v2.1 software.

RNA extraction and RT-qPCR
Total RNA was extracted from young leaves of mutant
and WT plants using a Plant RNA extraction kit (Bioer,
Hangzhou, China). Their quality and quantity were ex-
amined using an Agilent Bioanalyzer 2100 (Agilent,
USA) and a Qubit RNA assay kit on a Qubit 2.0
Fluorometer (Life Technologies, CA, USA). Then, total
RNA were reversed to cDNA using a Prime Script II 1st

strand cDNA synthesis kit (Baosheng Bioengineering In-
stitute, Dalian, China). RT-qPCR assays were conducted
using SYBR Premix Ex Taq (Baosheng, Dalian, China)
on a Gene9600 Plus RT-qPCR machine (Bioer,
Hangzhou, China). In total, 31 genes in the candidate re-
gions of the BSA results and seven genes related to
chlorophyll biosynthesis were selected for RT-qPCR.
The gene names and primers are listed in Additional file
1: Table S3. The cotton actin gene was used as the in-
ternal reference. Transcription levels of each gene were
compared by calculating their relative change folds using
the 2−ΔΔCt method [39]. For each stain, three biological
replicates were included.

Measurement of chlorophyll contents
The contents of chlorophyll a and b (chl-a and chl-b)
were measured for WT and mutant leaves [40]. Briefly,
fresh leaf samples (0.03 g) were homogenized in 1 ml of
extraction solution (acetone:absolute ethanol = 1:1) and
then extracted for 18 h in darkness. After centrifugation
at 13,000g for 5 min, the absorbance values at 645 and
663 nm were measured using a UV4800 spectrophotom-
eter (Unico, Shanghai, China), with the extraction buffer
as the blank control. Each treatment was assayed with
three biological replicates. Contents of chl-a and chl-b
were calculated using the following equations.

Chl�a ¼ 12:7A663 � 2:69A645ð Þ � V= 1000�Wð Þ
Chl�b ¼ 22:9A645�4:68A663ð Þ � V= 1000�Wð Þ

where, A645 and A663 represent the absorbance at 645 and
663 nm, respectively. W indicates the sample weight (g).

Measurement of contents of chlorophyll synthesis
precursors
To validate the predicted changes of metabolites based
on the qPCR results, contents of Mg-proto IX and Pchld
were measured using the Hodgins’s method [41]. Briefly,
fresh leaf samples (0.05 g) were homogenized in 1 ml of
extraction solution (acetone:ammonia = 9:1), and then
centrifuged at 13,000g for 10 min. The absorbances were
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measured at 575, 590 and 628 nm. Next, the Mg-proto
IX and Pchld contents were calculated using the follow-
ing equations.

Mg� protoIX ¼ 0:06077� A590�0:01937
� A575�0:003423� A628

Pchld ¼ 0:03563� A628 þ 0:007225� A590�0:02955
� A575

where A575, A590 and A628 indicate the absorbance at
575, 590 and 628 nm, respectively.

Statistical analysis
Difference in all indices between WT and Mutant were
analyzed by the Student’s t-test. Values were considered
significantly different with the threshold of P < 0.05.
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