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Abstract

Background: Streptococcus intermedius, a member of the S. anginosus group, is a commensal bacterium present in
the normal microbiota of human mucosal surfaces of the oral, gastrointestinal, and urogenital tracts. However, it has
been associated with various infections such as liver and brain abscesses, bacteremia, osteo-articular infections, and
endocarditis. Since 2005, high throughput genome sequencing methods enabled understanding the genetic
landscape and diversity of bacteria as well as their pathogenic role. Here, in order to determine whether specific
virulence genes could be related to specific clinical manifestations, we compared the genomes from 27 S.
intermedius strains isolated from patients with various types of infections, including 13 that were sequenced in our
institute and 14 available in GenBank.

Results: We estimated the theoretical pangenome size to be of 4,020 genes, including 1,355 core genes, 1,054
strain-specific genes and 1,611 accessory genes shared by 2 or more strains. The pangenome analysis demonstrated
that the genomic diversity of S. intermedius represents an “open” pangenome model. We identified a core virulome
of 70 genes and 78 unique virulence markers. The phylogenetic clusters based upon core-genome sequences and
SNPs were independent from disease types and sample sources. However, using Principal Component analysis
based on presence/ absence of virulence genes, we identified the sda histidine kinase, adhesion protein LAP and
capsular polysaccharide biosynthesis protein cps4E as being associated to brain abscess or broncho-pulmonary
infection. In contrast, liver and abdominal abscess were associated to presence of the fibronectin binding protein
fbp54 and capsular polysaccharide biosynthesis protein cap8D and cpsB.

Conclusions: Based on the virulence gene content of 27 S. intermedius strains causing various diseases, we
identified putative disease-specific genetic profiles discriminating those causing brain abscess or broncho-
pulmonary infection from those causing liver and abdominal abscess. These results provide an insight into S.
intermedius pathogenesis and highlights putative targets in a diagnostic perspective.

Keywords: Streptococcus intermedius, Streptococcus anginosus group, Infection, Virulence, Comparative genomics,
Whole genome sequencing, Pangenome analysis
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Introduction
Streptococcus intermedius belongs to the S. anginosus
group (SAG) that also includes S. constellatus and S.
anginosus [1]. It is part of the normal oral cavity and
upper respiratory tract floras, as well as those of the
gastrointestinal and female urogenital tracts [2–5]. This
bacterium was first described by Guthof in 1956 after
being isolated from dental abscesses [6]. S. intermedius
may also cause human infections, usually monomicro-
bial, including purulent abscesses of the liver, lungs,
psoas, spine and/or central nervous system, and infective
endocarditis [7]. Over the years, the role of S. interme-
dius in human infections has increasingly been reported.
Patients with invasive S. intermedius infections were de-
scribed to cause significantly longer hospital stays and
higher mortality than patients with other S. anginosus
group infections, suggesting that identifying this species
might be important for the management of patients [8].
Various putative virulence factors have been

described for Streptococcus intermedius, among which
the ability to form biofilms to protect itself from
antibiotics and the host immune system [9], the
production of hydrolytic enzymes, including both
glycosaminoglycan-degrading enzymes, such as hyal-
uronidase and chrondroitin sulphate depolymerase,
and glycosidases, such as α- N- acetylneuramidase
(sialidase), β-D-galactosidase, N-acetyl-β-D-glucosami-
nidase and N-acetyl-β-D-galactosaminidase, which
allow S. intermedius to grow on macromolecules found
in host tissue [10]; a cytotoxin, intermedilysin (ILY),
that can directly damage host tissues and immune
defense cells and participate in bacterial pathogenicity;
and the surface protein antigens I/II that are involved
in adhesion to fibronectin and laminin, which is an
important step in the pathogenesis of endocarditis and
abscess formation [11].
The development of high throughput nucleic acid

sequencing technologies has enabled observing varia-
tions of the genetic repertoire among strains of a given
bacterial species. Our present study analysis aimed at
describing the genetic diversity and pathogenesis
substratum of S. intermedius. Twenty-seven genomic
sequences from S. intermedius strains, including 13
newly sequenced from our laboratory and 14 from
public databases, were used for pan-genomic analysis.
Predicted genes were compared among strains to deter-
mine the size of the core and dispensable gene pools,
the pangenome, the gain/loss of putative virulence deter-
minants, and to identify genomic islands.

Accession numbers
The 13 genome sequences determined in this study
were deposited in GenBank and their accession numbers
are listed in Table 1.

Materials and methods
Extraction and genome sequencing
The genomic DNA (gDNA) of each studied S. interme-
dius strain was extracted in two steps: a mechanical
treatment was first performed using acid-washed glass
beads (G4649-500 g Sigma) and a FastPrep BIO 101 in-
strument (Qbiogene, Strasbourg, France) at maximum
speed (6.5) for 90 s. following a 2-hour lysozyme incuba-
tion at 37 °C, DNA was extracted using an EZ1 biorobot
and the EZ1 DNA Tissue kit (Qiagen, Hilden, Germany).
The elution volume was 50µL. Genomic DNA was quan-
tified using the Qubit assay (Life technologies, Carlsbad,
CA, USA).
The gDNAs were sequenced using a MiSeq sequencer

with the Paired-End strategy and the Nextera XT library
kit (Illumina, Inc, San Diego, CA, USA). The Paired-End
library was prepared using input solutions of 1 ng
gDNAs. The gDNAs were fragmented at the tagmenta-
tion step. Then, limited cycle PCR amplification (12
cycles) completed the tag adapters and introduced dual-
index barcodes. After purification on AMPure beads
(Life technologies, Carlsbad, CA, USA), the libraries
were normalized according to the Nextera XT protocol
(Illumina). Normalized libraries were pooled for sequen-
cing on a MiSeq sequencer (Illumina). Automated clus-
ter generation and paired-end sequencing with dual
index reads was performed in a single 39-hour run in a
2 × 250 bp format. The numbers of paired-end reads
were summarized in Table 2. The paired-end reads were
trimmed and filtered according to the read qualities.

Genome assembly, annotation and comparison
After sequencing, the obtained reads were assembled
using the A5 software [12] with default parameters and
then contigs were compared to NCBI using BLASTn to
remove contaminations. Then, the online tool Fasta
dataset joiner (http://users-birc.au.dk/biopv/php/fabox/
fasta_joiner.php) was used to merge sequences into a
single molecule. The Mauve software was used for mul-
tiple genomic sequence alignment [13]. Genes were anno-
tated using the Prokka software with default parameters
[14] in which the similarity e-value cut-off is 0.000001 and
the minimum contig size is 200 bp. This pipeline also in-
cludes several other tools like Aragorn for tmRNA detec-
tion, Barnap to count rRNAs and Prodigal to identify
coding sequences. To estimate the mean level of sequence
similarity at the genome level among studied strains, we
used the OrthoANI [15] and Genome-to-Genome Dis-
tance Calculator (GGDC) [16] softwares, with the follow-
ing respective threshold values of 95–96 and 70%.

Phylogenetic analysis
A 16 S rRNA-based phylogenetic analysis of the 27
studied S. intermedius strains was performed using the
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MEGA 7 software [17]. For constructing the phylogen-
etic tree, the following options were used: Maximum
Likelihood method; Kimura 2-parameter model for
substitution model; uniform rates among sites; partial
deletion option for gaps/missing data; 1000 bootstrap
replicates.
Using genomic sequences and the Roary program [18],

a clustered heatmap of core genes was drawn on the
basis of the presence/absence approach [18]. We also de-
tected SNPs with the snp-sites program [19] from the
core genome alignment and drew a phylogenetic tree
with CGEwebface [20].

Virulence factor analysis
Virulence-associated genes were detected by comparing
studied genomic sequences with the virulence factor
database (VFDB) [21] and sequences described in recent
publications [22]. The BLASTp search was performed
using the threshold scores reported by Olson et al.: 35 %
identity and highest scoring pair length of 50 % [22].
Additionally, we reviewed the literature to identify the
proteins involved in interactions with the host [10, 23, 24].
A principal component analysis was performed using the
XLSTAT program (Data Analysis and Statistical Solution
for Microsoft Excel, Addinsoft, Paris, France 2017) in
which the Fisher’s least significant difference (LSD, α =
0.005) and Pearson’s correlation coefficients were used, to
detect any association of virulence-associated genes with
specific clinical conditions.

Core and pan-genome analysis
Get_homologue [25] was used to reveal orthologous
genes among S. intermedius strains, using the following

parameters: minimal coverage (-C) 40 %, minimum iden-
tity (-S) 50 %, minimum e-value (-E) 1e-05. Sequence
similarity searches and clustering of coding sequence
(CDS) from the 27 genomes were performed using pair-
wise BLASTp and OrthoMCL algorithms [26]. Sequen-
tial inclusion of all possible combinations of up to 27
strains were simulated and fitted by regression analysis
[27] of the amount of conserved genes and of strain-
specific genes. This allowed to estimate and extrapolate
the sizes of core- and pan-genomes. Roary [18] was also
used, with default parameters, to confirm the reliability
of the obtained pan-genome analysis results (identity
percent ≥ 70 %, coverage ≥ 70 %) and to generate the core
genome alignment.

Functional classification of orthologous cluster analysis
The Clusters of Orthologous Groups (COGs) database
was used to identify gene functions [28] using BLASTP
(E-value 1e− 03, coverage 0.7 and identity percent 30 %).
A circular comparison of genomes was obtained using

the online GView Server (https://server.gview.ca/) with
S. intermedius strain ATCC 27,335 as reference genome
[29]. ResFinder and the ARG-ANNOT database were
used to search antibiotic resistance-related markers
[30, 31]. The presence of CRISPR repeats and prophages
was predicted using the CRISPRFinder [32] and PHAS
TER softwares, respectively [33].

Results and discussion
Strain characterization
The 27 studied S. intermedius strains originated from
China, Canada, South Korea, US, Japan and France. The
patients’ data was not available for some strains. The 13
French strains (G1552-G1557 and G1562-G1568,
Tables 1 and 2) were isolated in our laboratory from
patients with various infections (Table 2), from August
2014 to November 2016, on 5 % sheep blood-enriched
Columbia agar (BioMérieux) at 37 °C in anaerobic
atmosphere. Their identification was confirmed by the
high scores (> 2) obtained using MALDI-TOF MS. In
addition, 14 S. intermedius genome sequences were re-
trieved from GenBank. The 27 strains were divided into
8 groups according to their isolation source (Table 2).
The genome sizes and gene numbers among S. interme-
dius strains were relatively similar, consisting for each
strain in a single chromosome but no plasmid was iden-
tified in any strains and ranging in size from 1.85Mbp to
2.05Mbp (Table 2).
A schematic view of all 27 studied genomes is

provided in (Fig. 1), showing an overall high degree of
conservation. The general features of S. intermedius
genomes are summarized in Table 2 The G + C content
of S. intermedius ranged from 37.3 to 37.8 % (avg
37.641 %, n = 27). All 13 in-house sequenced S. intermedius

Table 2 Genome sequencing details of the 13 S. intermedius
strains from our study

Strain Extraction Sequencing data

DNA concentration ng/µL Index Paired end reads

G1552 8.83 4.1 218,834

G1553 5.06 7.45 397,506

G1554 4.66 2.44 130,063

G1555 12.2 5.74 306,282

G1556 11.67 6.83 364,005

G1557 13.37 7.7 410,636

G1562 2.63 4.62 943,724

G1563 1.03 7.73 1,579,852

G1564 0.31 7.51 1,536,166

G1565 0.7 3.91 798,461

G1566 0.65 3.48 712,214

G1567 1.05 5.42 1,107,754

G1568 0.77 6.19 1,265,488
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contained at least 47 tRNA genes, and the number of
rRNAs for all strains ranged from 3 to 6. Streptococcus
intermedius exhibited an average 1870 CDs with a mean
length of 907 bp, accounting for 87.3 % of the whole
genome.

Phylogenetic analysis
The 16 S rRNA-based phylogenetic analysis (Fig. 2),
widely used as a gene marker to differentiate Streptococ-
cus species [34], demonstrated that all S. intermedius
strains were grouped in a single cluster that was closely-
related to S. anginosus and S. constellatus within the S.
anginosus group [22] (Fig. 2). In the topology S. interme-
dius, S. constellatus and S. anginosus strains clustered to-
gether with their sub-species. However, the heatmap
obtained using Roary [18], based on the core genome,
was more discriminatory within the species than the
16 S rRNA-based analysis and identified 3 clusters that
were independent from the strain source (Fig. 3).
The three clusters are as follows: strains G1557, G1556,

LC4, G1562, SK54, AJKN01, ATCC27335 and JTH08 con-
stituted the first group, strains 30,309, G1563, G1564,
631SC0N and G1554 clustered in the second group while
the remaining strains clustered in a third group. There
was neither evidence of correlation between strain clusters
and their clinical forms, nor between genomic types and
the geographical origin of isolates.

To measure the divergence between all studied strains
at a deeper level, we also analyzed their phylogenetic re-
lationships on the basis of core genome SNPs, which
demonstrated that strains G1562, G1566 and FO413
diverged from other strains and exhibited a higher
tendency of recombination. However, again no disease-
specific clustering was observed (Fig. 4).

Genomic similarity
Digital DNA-DNA hybridization (dDDH) values ranged
from 80.5 to 99.3 % between all 27 strains, thus confirm-
ing their classification within a single species. This was
also cross-validated by the OrthoANI program, which
produced pairwise values ranging from 97.78 to 100 %
which is well above the consensus 95–96 % threshold for
prokaryotic species demarcation [35]. This corresponded
to 100 % 16 S rDNA sequence identity across all studied
isolates. The above data correlate with a strong degree
of genome conservation and synteny.

Functional classification of orthologous cluster
The overall distribution of S. intermedius proteins in
COG categories was quite similar in all 27 studied
strains (Fig. 5). Previous studies of other Streptococcus
species also suggested that, within a given species, the
majority of strains had a similar COG profile [36–38].
Approximately 79.72 % of all proteins predicted in all
strains were identified in COG superfamilies. The

Fig. 1 Circular representation of the 27 studied S. intermedius genomes. Genomic sequences were aligned using strain ATCC 27335 as reference.
The alignment gaps tend to coincide with the regions of low G + C contents. The rings, from the inside out, display the size in kbp; GC skew; G +
C content; followed by genomes as listed in the left legend

Sinha et al. BMC Genomics          (2021) 22:522 Page 5 of 17



Fig. 2 16S rRNA-based phylogenetic relationships of S. intermedius strains using the Maximum Likelihood method with Kimura 2-parameter. The
scale bar indicates the evolutionary distance between the sequences determined by a 0.005 substitution per nucleotide position. Numbers at the
nodes indicate bootstrap values obtained from 1,000 replicates
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proportion of each category fluctuated within a very
small range, showing almost similar percentages of dis-
tribution in all strains. The most abundant sub-
categories were related to carbohydrate transport and
metabolism (G) and translation, ribosomal structure and
biogenesis (J) like their distribution in core genes.
Less than half of strain-specific genes, but more than

90 % of core genes, had a match in the COGs database.
The most abundant functions in core genes were associ-
ated with metabolism (Fig. 5a). The overall proportion
of metabolic functions in core genes was 32.47 %,
whereas that in strain-specific genes was 9.58 %. More
specifically, energy production and conversion (C),
amino acid transport and metabolism (E), nucleotide
transport and metabolism (F), carbohydrate transport
and metabolism (G) and coenzyme transport and metab-
olism (H) were noticeably more abundant in core genes
(p-value < 0.01) (Fig. 5b). No mobilome-related functions
were detected in S. intermedius. The functional category
of information storage and processing showed highly dif-
ferent proportions in sub-categories (Fig. 5b). The func-
tions of translation, ribosomal structure and biogenesis
(J) were significantly enhanced (p-value < 0.0001) in core
genes, whereas the functions of replication, recombination
and repair (L) were significantly enhanced (p-value < 0.01)
in strain-specific genes. This trend was also observed in
other bacteria [35]. In the cellular processing and signaling
category, the function of defense mechanisms (V) was
more abundant in strain-specific (p-value < 0.05) than in
core genes (Fig. 5c).

Pan- and core-genome analyses
The average number of new genes added by a novel gen-
ome was 40 when the 27th genome was added (Fig. 6).
The exponential decay model shown in Fig. 7a suggests
that the number of conserved core genes approached an
asymptote with the comparison of 27 genomes. A total
of 1,355 core genes were identified in S. intermedius.
The average proportion and sequence identity of core
genes per strain were 72 and 97.79 %, respectively, indi-
cating that core genes in S. intermedius are highly con-
served and reflecting a low degree of intraspecies
genomic variability too. Examination of the functional
annotation of these core genes suggests, as expected,
that they encode mostly core metabolic processes.
A total of 1,054 strain-specific genes were identified in

S. intermedius and the average number of strain-specific
genes was 39 (Fig. 7b). Among strain-specific genes, 148
genes were found in strain G1562, 107 in strain
TYG1620, 105 in strain BA1, 96 in strain 32,811, 82 in
strain G1557, 73 in strain C270, 69 in strain 631_SCON,
61 in strain G1555, 41 in strain G1554, 38 each in
strains G1565 and F0413, 33 each in strains G1564 and
LC4, 27 each in strains G1556 and ATCC27335, 20 in
strain 30,309, 16 in strain G1553, 13 in strain G1552, 11
in strain B196, 6 in strain KCOM1545, 5 in strain FDAA
RGOS_233 and 1 in strains G1563, G1566, G1567,
JTH08, SK54AJKN01, respectively. The size of the pan-
genome increased steadily without reaching any plateau.
The pangenome trend depicted in (Fig. 7b) shows a
gradual expansion by addition of new genomes and thus

Fig. 3 Clustered gene presence/ absence and accessory genome distribution calculated by pangenome analysis among the 27 studied S.
intermedius strains. Left: core-genome phylogeny; the three clusters in the dendrogram are delineated by red lines; right: heatmap of core genes
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the pangenome of S. intermedius may be considered as
open and indicates a homogenous pattern of genome
evolution with similar rates of gene gain/ loss process
across the whole population. In addition, a total of 1,611
accessory genes that were shared by two or more strains
were identified. Overall, we identified a S. intermedius
pangenome of 4,020 genes including 1,355 core genes, 1,
054 strain-specific genes and 1,611 accessory genes.

Virulence factors and principal component analysis
In the S. intermedius pangenome, 252 virulence factors
were identified in total. Of these, 70 core virulence fac-
tors were shared by all strains and 78 unique virulence
factors were present in one strain each (Table 3).
Virulence-associated genes present in all studied ge-
nomes included homologous virulence genes that con-
tribute to bacterial avoidance of the immune system,
such as ily which encodes an intermedilysin, the lmb,
pspA, pavB/pfbB, fss3 genes coding surface proteins, the
genes coding the polysaccharide capsule (cps4A, cps4B,

cps4C, cps4D, cps8D), the auto-inducer LuxS (luxS), the
binding proteins (pavA, hitC, fbpC, psaA, mntA, clpC,
fss3), neuraminidase (nanA), hyaluronidase (hysA), and
heat shock protein B (htpB), genes from the sil locus
known to play a role in quorum-sensing and virulence in
S. pyogenes (silA, silD, silE, salX), genes associated with
secretion systems (lem11, lem15, sdeC, ceg32, esxA, essC,
lpg2372, lirB), and genes associated with Mg2+ transport
proteins (mgtB, mgtC); the response regulator CsrR beta-
hemolysin gene (cylG), lamanin-binding surface protein
like Pac and invasion protein inlA were also present in
all strains.
Among these core virulence genes, the surface protein

antigen I/II that was demonstrated to play a potential
role in S. intermedius pathogenesis [39], and human fi-
bronectin and laminin that are supposed to bind to this
antigenic protein induce IL-18 release from monocytes
[39]; genes from the streptococcal invasion locus (sil) are
related to enhanced virulence in the SAG group and
may contribute to the invasive behavior of S. intermedius

Fig. 4 Phylogenetic tree of S. intermedius strains based upon SNPs extracted from the core genome. Sequences were aligned using ClustalW with
default parameters and phylogenetic inferences obtained using the Maximum likelihood method within the MEGA, version 7, software. Nodes
indicate bootstrap support from 1000 replicates.
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strains; the internalin (inlA), likely acquired from Lis-
teria monocytogenes, increases the virulence of S. inter-
medius by playing a key role in attachment to host cells
[40]; the hyaluronidase (hysA) acts in the liquification of
tissues and is also involved in biofilm formation, which
protects bacteria from host defenses and antibiotics, and
plays a role in infection [9]; the ily-coded intermedilysin

can directly damage host tissues and immune defense
cells, causing human cell death by membrane bleb for-
mation [23]. It has been also reported that intermedily-
sin helps in invasion and adhesion of bacteria to human
liver cells, and in cytotoxicity [41]; the galE gene codes
galactose which plays a role in biofilm formation and its
key residues are essential for epimerase activity [42]; the

Fig. 5 Differential distribution of COG functional categories in S. intermedius: a proportion of six classes of functional categories in strain-specific and
core genes; b functional categories in strain-specific and core genes; c functional categories in the 27 S. intermedius strains. Category abbreviations are
as follows: C, energy production and conversion; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; G, carbohydrate
transport and metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; P, inorganic ion transport and metabolism; Q,
secondary metabolites biosynthesis, transport and catabolism; X, mobilome: prophages, transposons; A, RNA processing and modification; B, chromatin
structure and dynamics; J, translation, ribosomal structure and biogenesis; K, transcription; L, replication, recombination and repair; D, cell cycle control,
cell division, chromosomal partitioning; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, posttranslational modification, protein turnover,
chaperones; T, signal transduction mechanisms; U, intracellular trafficking, secretion, and vesicular transport; V, defense mechanisms; W, extracellular
structures; Z, cytoskeleton; R, general function predicted only; S, function unknown
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Fig. 6 Plot representing the numbers of new and unique genes found as each isolate of S. intermedius is added

Fig. 7 Fitted curves indicating the characteristics of core- and pan-genomes from 27 studied S. intermedius strains. a curve showing the relationship
between the core genome and the number of genomes, b curve showing the relationship between the pan-genome and the number of genomes.
As the number of genomes sequenced increased, the pan-genome size increased, whereas the core-genome size decreased, thus indicating an open
pan-genome model. The gradual extension of the pangenome with addition of new genomes describes an open pan-genome model of S.
intermedius. The number of genes that each strain contains is documented from comprehensive statistical analysis given earlier in Table 2
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Table 3 Unique Virulence-associated genes detected in the 27
studied S. intermedius genomes

Strain Virulence factor Amino acid identity%a

G1562 lpg2879 39.286

hlyD 46.667

sdcA 44.118

pvdD 41.509

ybtE 40.396

SalR 37.879

legS2 38.462

pieC/lirE 36

pvcB 38.776

inlK 44.444

virB8 38.235

sigA 35.294

SalK 36.585

pvdI 37.092

G1563 - -

G1564 ctrD 42.308

G1565 aliA 42.5

sspH2 38.462

espN 35.849

G1566 - -

G1567 - -

G1568 - -

ipaJ 38.298

FlgG 40.909

lpg1803 36.111

pilC 39.286

brkA 38

G1552 pilT 35.484

lbpA 38.462

G1553 lpg0365 45.833

pvdJ 36.667

ravI 42.308

G1556 vasL 40

G1554 flgK 35.294

vopT 52

iraB 46.875

hopH 41.935

G1557 flgI 39.286

toxB 37.143

SalT 35.294

lepA 45.833

fcrA 35.938

MPN372 35.294

bepB 36.364

wcbF 35.714

Table 3 Unique Virulence-associated genes detected in the 27
studied S. intermedius genomes (Continued)

Strain Virulence factor Amino acid identity%a

G1555 Iga 35.556

lpsA 36

flgJ 36.957

stcE 41.379

631_SCON Prt 35

flgD 37.143

C270 eccE5 36.111

lem7 37.736

EF0818 36.842

ATCC 27335 vpdA 38.462

JTH08 - -

SK54AJKN01 - -

32811 Tox 37.037

sipA/sspA 38.235

fepA 39.13

sdbC 43.243

lpg2525 50

30309 flhA 37.838

legC1 38.235

F0413 tlpB 56.25

hopZ 47.619

sidA 42.424

hifB 45.455

sipB/sspB 35

LC4 fliI 36.364

KCOM 1545 - -

B196 - -

FDAARGOS_233 srtD 37.918

BA1 zmpC 54.839

recN 42.105

bsc3 47.826

vscN2 36.364

fimC 39.13

mavC 35.593

fliF 40

tcpB 47.826

sfbI 37.778

wcbN 37.778

TYG1620 pitB 46.429

lem10 57.143

lapB 35.294

sopD2 35.484
aAmino acid identity values were obtained by comparing each gene from
each strain to the VFDB database [21]
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laminin-binding surface protein, homologous to that in
Streptococcus agalactiae is coded by the Pac gene and is
essential in binding and invasion of different host sur-
faces, and is present in almost all group B Streptococcus
strains causing pneumonia, septicemia and meningitis
[43, 44]; psaA codes a surface lipoprotein that plays a
role in Streptococcus pneumoniae systemic infections by
interacting with monocytes [45]; we also identified the
heat shock protein-coding gene htbB that is known in
Legionella pneumophila to act in adhesion to host fibro-
nectin [46]; the clpC gene codes a heat shock protein in-
volved in the invasion of hepatocytes in Listeria
monocytogenes and has an ATPase activity [47]; ATPase
proteins were shown to play a role in the survival and
virulence in Salmonella typhimurium and S. aureus [48]
; clpP codes an ATP-dependent caseinolytic protease
that was proven in Streptococcus suis to play a role in
colonization and bacterial adaptation to various environ-
mental stresses [49], pavB codes a fibronectin-binding
protein that mediates bacterial attachment to human
epithelial and endothelial cells and also promotes trans-
fer of bacteria to the bloodstream [50, 51]; and nanA
codes a highly conserved neuraminidase that also possesses
a sialidase activity to catalyze the cleavage of terminal sialic
acid residues from glycoconjugates. In S. pneumoniae, it
promotes biofilm formation and contributes significantly to
broncho-pulmonary colonization [52].
Although most of the strains exhibited one to eight

unique virulence genes, strains G1562 and BA1 pos-
sessed 14 and 10 specific virulence genes, respectively.
Eight strains (G1563, G1566, G1567, G1568, BA1,
KCOM1545, JTH08, SK54AJKN01) had no strain-
specific virulence factor (Table 3).
Among unique virulence genes, sdcA, ybtE,lpbA, SalR,

salK, VopT are secretory system-associated genes that
are involved in iron-mediated transport across cellular
membranes. Some of these genes are linked with
bacterial growth and act as important anti-inflammatory
effectors [42, 53–58]. Among other unique genes, the
pilC gene is suspected to be essential for secretion and
assembly of transcription factor P, important in pilus
formation [59] while pilT helps in polymerization and
depolymerization of pilin [60]. The brkA gene inhibits
bactericidal activity and protects the bacterium from
complement activation products [61]. Other unique
genes are linked with bacterial adherence and coloniza-
tionm such as hopH, toxB, mpn 372 and stcE which con-
tribute significantly to actin organization and bacterial
attachment to human surfactant proteins [62–65]. The
iraAB gene utilizes iron-loaded peptides that promote
iron assimilation [66] while lepA plays a role in bacterial
growth and induces inflammatory response. This gene
also plays a key role in pathogenicity in Psudomonas
aeruginosa [67]. The fcrA gene codes a protein

containing receptor domains for immunoglobulins similar
to those M-related proteins [68]. Another
immunoglobulin-related gene, aga, plays a barrier func-
tion for mucosal antibodies by cleaving IgA1 [69]. IpsA
controls transcriptional biogenesis of the cell wall in
inositol-derived lipid formation in Corynebacterium and
Mycobacterium species [70]. The vasL gene is considered
to be component of vas genes, associated with the mem-
brane type VI secretion system [71], and ravL is presum-
ably activated at low oxygen level and regulates virulence
gene expression via clp gene [72]. The lpg0365 codes a
lypophosphoglycan that together with other membrane
polypeptides, is necessary for Leishmania pathogenesis
[73]. The pvdJ gene is involved in the production of cyclo-
dipeptides that may regulate the production of biofilm
[74]. In addition, pvdL is associated to biosynthesis or up-
take of the siderphores pyoverdine and pyochelin that act
in the transport of heme and ferrous ions [75], while pvdD
is involved in the biosynthesis of pyoverdine in Pseudo-
monas aeruginosa [76]. IpaJ codes a plasmid antigen in-
volved in demyristoylation of proteins by inducing golgi
fragmentation and inhibiting hormone trafficking [77].
AliA is associated with nasopharyngeal colonization in
Streptococcus pneumoniae [78]. The espN gene is reported
in Mycobacterium tuberculosis to play a role in adding an
acetyl group to the N-terminus of the esaT-6 virulence
factor [79]. Flagella-related unique genes found in differ-
ent studied strains include flgG, flgI, flgJ and flgk which
play a major role in virulence, adhesion and motility. They
are mostly involved in flagellum formation and also act as
interface with other flagellar proteins [80–83]. The lnlK
gene was reported in Listeria monocytogenes to help avoid
autophagy while virB8 localizes to the inner membrane
and is related to the export of alkaline phosphatase to the
periplasm [84]. Finally, sigA codes a sigma factor linked
with galactosidase activity [85].
Using principal component analysis of differentially

distributed virulence genes, three distinct clusters were
visualized (Fig. 8). A clear separation of virulence genes
associated with brain or broncho-pulmonary abscesses
(cps4E, sda and lap) from those associated with liver or
abdominal abscesses (cpsB, fbp54 and cap8D) was
observed. The first component which has maximum
coverage and represents the largest variation showed
that brain abscess-causing strains were associated with
genes coding ATP-dependent proteolytic enzymes,
which indicates their potential role in abscess formation.
Other virulence genes clustered independently, excluding
any association with the previous two disease categories.
Among virulence genes associated to brain and broncho-
pulmonary infections, sda codes an histidine kinase that
regulates sporulation initiation in Bacillus subtilis and me-
diates the expression of virulence-associated factors [86];
lap codes the Listeria adhesion protein (LAP) that is a host
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stress response protein responsible for adhesion and pro-
motion of translocation across monolayers [87]; and cps4E
codes the capsular polysaccharide biosynthesis protein
that was demonstrated in S. pneumoniae to prevent
phagocytosis by forming an inert shield essential for en-
capsulation [88, 89].
In S. pyogenes, fbp54 codes a fibronectin-binding pro-

tein that acts as an immunogen in humans. The amino
acid sequence of fbp54 in S. intermedius is similar to
that of S. pneumoniae. cap8D codes a dehydratase that is
essential for the synthesis of the capsule precursor
involved in adhesion. It has also been targeted as
component for vaccine development [85, 90]; cpsB code
capsular polysaccharide biosynthesis proteins that are
essential for encapsulation in S. pneumoniae and are
involved in the interaction of bacteria with their envir-
onment, notably their host organism [91];
In contrast to the above-mentioned genes, some were

not found to be disease-specific. These included glf,
cpsE, cpsI, cpsA, cps4C, cps8P and hasC. The glf gene is
involved in the biosynthesis of unusual monosaccharide
galactofuranose [92]; cpsE codes a glycosyl transferase
responsible for the addition of activated sugars to the
lipid carriers in the bacterial membrane and are essential
for encapsulation in S. pneumoniae [93]; cpsI is essential
for the production of high molecular weight capsular
polysaccharides [94]; cpsA and cps8P are necessary for
normal cell wall integrity and composition [95]; cps4C
codes a polysaccharide tyrosine kinase adaptor protein
that plays a key role in the regulation of capsule biosyn-
thesis [96]; finally, hasC is involved in biosynthesis of

hyaluronic acid capsule biosynthesis encodes glucose-1-
phosphate uridylyltransferase [97].

Resistance-related genes and prophages
The tetracycline resistance gene tetM was identified in
strains G1552, C270, KCOM1545, G1555, LC4, 30,309
and 32,811 whereas tet32 was identified in strain 631_
SCON (Table 4). The macrolide resistance gene ermB
was detected in strains G1552, C270, G1555 and 30,309.
In other strains, no antibiotic resistance gene was
identified.

Fig. 8 Principal component analysis based upon gene presence/absence showing the distribution of virulence genes which may contribute to
the particular type of abscess. The green color represents the various clinical forms while virulence genes are represented in red and studied
strains are in blue. BPA is Broncho Pulmonary abscess and Abd abscess denotes abdominal abscess

Table 4 Antimicrobial resistance genes of studied S. intermedius
strains

Strain namea Resistance gene Phenotype

G1552 erm(B) Macrolide resistance

tet(M) Tetracycline resistance

C270 erm(B) Macrolide resistance

tet(M) Tetracycline resistance

631_SCON tet(32) Tetracycline resistance

KCOM 1545 tet(M) Tetracycline resistance

G1555 erm(B) Macrolide resistance

tet(M) Tetracycline resistance

LC4 tet(M) Tetracycline resistance

30309 erm(B) Macrolide resistance

tet(M) Tetracycline resistance

32811 tet(M) Tetracycline resistance
aStrains in which no resistance marker was detected were not included
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A set of prophage elements was identified in all 27
strains (Table 1). In addition, four prophage-like ele-
ments were detected in strain BA1, three in strain
TYG1620, and two in strains G1562, G1564, G1553,
G1557, F0413 and G1555. The major difference in the
genome size between all 27 studied strains of S. interme-
dius resided in the phage numbers and this presence of
phages also denotes contribution of horizontal gene
transfer in the emergence of this species [98].

CRISPR identification analysis
The search for CRISPR elements showed that 14 of the
27 studied genomes contained CRISPRs. Three of these
14 strains (G1564, G1565, 631_SCON) had more than
one CRISPR, for a total of 17 CRISPR modules identified
in studied strains. The direct repeat (DR) length in

identified CRISPRs ranged from 24 to 36 bp while there
was variation in the number of spacers present within
each CRISPR. CRISPRs also differed among strains but
the DR regions were similar for a given CRISPR element
subtype. Based on the type of cas proteins, the CRISPRs
of strains G1562, G1563, G1564, G1556, G1554, 631_
SCON, 30,309 were subtype I-C CRISPRs; those of
strains FDAARGOS_233 and KCOM1545 were subtype
II-A CRISPRs; finally, the CRISPRs of strains G1565,
G1552, B196, G1555 and 32811were subtype II-C CRIS
PRs [93] (Table 5).

Conclusions
In the present study, we reported 13 new clinical isolates
of S. intermedius and, based upon a combined approach
of pangenomics, core-genomics and virulence profiling

Table 5 CRISPR elements found in studied S. intermedius strains

Strain DR length (nt) Number of
spacers

Spacer
Length (nt)

CRISPR
length (nt)

CRISPR
type

DR consensus

G1562 32 23 33-37 1555 CAS-TypeIC ATTTCAATCCACGCACCCGCGAAGGGTGCGAC

G1563 32 24 33-38 1632 CAS-TypeIC ATTTCAATCCACGCACCCGCGAAGGGTGCGAC

G1564 32 17 33-38 1166 CAS-TypeIC ATTTCAATCCACGCACCCGCGAAGGGTGCGAC

32 6 33-35 429 ATTTCAATCCACGCACCCGCGAAGGGTGCGAC

G1565 36 33 29-31 2215 CAS-TypeIIC GTTTTACAGTTACTTAAATCTTGAGAGTACAAAAAC

36 9 20-30 628 GTTTTACAGTTACTTAAATCTTGAGAGTACAAAAAC

G1566 -

G1567 -

G1568 -

TYG1620 -

BA1 -

FDAARGOS_233 36 17 29-30 1155 CAS-TypeIIA GTTTTAGAGCTGTGCTGTTTCGAATGGTTCCAAAAC

G1552 36 23 29-30 1550 CAS-TypeIIC GTTTTACAGTTACTTAAATCTTGAGAGTACAAAAAC

G1553 -

G1556 32 6 33-35 427 CAS-TypeIC GTCGCACCCTTCGCGGGTGCGTGGATTGAAAT

G1557 -

B196 36 19 29-30 1288 CAS-TypeIIC GTTTTTGTACTCTCAAGATTTAAGTAACTGCAAAAC

C270 -

G1554 32 44 33-36 2950 CAS-TypeIC ATTTCAATCCACGCACCCGCGAAGGGTGCGAC

631_SCON 32 1 33 96 CAS-TypeIC GTCGCACCCTTCGCGGGTGCGTGGATTGAAAT

24 1 32 79 ATGTACTTTATTTAAGTGAACACT

KCOM 1545 35 1 31 100 CAS-TypeIIA GTTTTAGAGCTGTGCTGTTTCGAATGGTTCCAAAA

F0413 -

G1555 36 38 29-31 2540 CAS-TypeIIC GTTTTACAGTTACTTAAATCTTGAGAGTACAAAAAC

LC4 -

30309 32 27 34-38 1830 CAS-TypeIC ATTTCAATCCACGCACCCGCGAAGGGTGCGAC

32811 36 5 30 365 CAS-TypeIIC GTTTTACAGTTACTTAAATCTTGAGAGTACAAAAAC

ATCC 27335 -

JTH08 -

SK54AJKN01 -
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of 27 strains, attempted identification of disease-specific
genetic profiles. The comprehensive analysis revealed a
genomic variability across strains within the species, al-
though synteny of the core genome was preserved. Our
results highlight the importance of surface proteins like
pavB, pspA and cps4 (polysaccharide-coding proteins)
and the binding proteins psaA, pavA, which are present
in all studied strains, in pathogenesis. PCA results sug-
gests two distinct categories of virulence genes, ATP
dependent proteolytic virulence genes cps4E, sda and
lap that are associated with brain and broncho pulmon-
ary abscess while capsular polysaccharides protein cod-
ing genes cpsB and cps8D are linked with liver and
abdominal abscess formation. The fibronectin binding
protein coded by fbp54 is also showing its connection
with liver and abdominal abscess formation. A recent
study also attempted to determine the pangenome of S.
intermedius.[99] The SNP-based phylogenetic tree as
well as core gene-based tree showed no clustering
related to any disease entity in S. intermedius strains.
The whole study provides a key genetic framework for
assessing and understanding the molecular events
contributing to S. intermedius pathogenesis. However,
due to the limited number of studied strains, validation
of the role of these virulence factors will require experi-
mental confirmations.
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