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Abstract

Background: Historically, geneticists have relied on genotyping arrays and imputation to study human genetic
variation. However, an underrepresentation of diverse populations has resulted in arrays that poorly capture global
genetic variation, and a lack of reference panels. This has contributed to deepening global health disparities. Whole
genome sequencing (WGS) better captures genetic variation but remains prohibitively expensive. Thus, we explored
WGS at “mid-pass” 1-7x coverage.

Results: Here, we developed and benchmarked methods for mid-pass sequencing. When applied to a population
without an existing genomic reference panel, 4x mid-pass performed consistently well across ethnicities, with highc
recall (98%) and precision (97.5%).

Conclusion: Compared to array data imputed into 1000 Genomes, mid-pass performed better across all metrics
and identified novel population-specific variants with potential disease relevance. We hope our work will reduce
financial barriers for geneticists from underrepresented populations to characterize their genomes prior to
biomedical genetic applications.

Background
Over the past decade, population and statistical genetics
have relied heavily on genotyping panels as an alterna-
tive to costly sequencing approaches for generating
genome-wide datasets. Due to their sparse coverage, ar-
rays require informed selection of variants a priori and
reference panels for downstream imputation. Genomic
analyses of array data have revolutionized understanding
of human disease and population histories, but the focus

has been predominantly on individuals of Western Euro-
pean ancestry [1–3]. When combined, people with Latin
American, African, or Indigenous ancestries represent
only 4% of all participants in published genome-wide as-
sociation studies (GWAS) [4]. Underrepresentation of
diverse populations has resulted in a lack of reference
panels for imputation and insufficient optimization of
variant panels to adequately capture genetic variation at
a global scale [5, 6]. As a result patients from underrep-
resented populations receive less accurate diagnostic
predictions, are often excluded from clinical trials that
require genetic stratification, and can be unresponsive to
therapeutics that have been optimized for individuals of
European ancestry [7–10]. Additionally, current barriers-
to-entry are significantly higher for Indigenous and mi-
nority geneticists to characterize their communities’
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genomes in a manner that is best aligned with their
cultural values [11]. Ultimately, the democratization of
genomic technologies will require the costs of generating
genome-wide datasets to be dramatically reduced [12].
Unlike array-based genotyping, whole genome sequen-

cing (WGS) is better able to capture novel genetic vari-
ation. While the cost of WGS has been decreasing, it
remains prohibitively expensive for all but the best-
funded genomic studies. To address this, the concept of
“low-pass” sequencing, where each position in the gen-
ome is covered by reads at a lower depth than the gold
standard 30x, has been gaining traction as a cost-
effective alternative to genotyping arrays for applications
such as GWAS and polygenic scores [13–16]. To date,
many low-pass approaches have been focused on gen-
omic coverage levels of 1x and lower, bringing costs in
line with arrays [17]. Even off-target data from whole
exome studies has been shown to be sufficient [18].
However, at such low coverage levels, imputation into
large pre-existing reference panels is still required, pre-
venting applications of low-pass sequencing to studies
with underrepresented populations.
While the 1000 Genomes Project reference panel has

become popular for the study of diverse populations, it
is limited in size and significant improvements have
been demonstrated when using a more appropriately
matched, larger panel [19–21]. More extensive panels
exist but are still limited in diversity and poorly repre-
sent many populations [22, 23]. Importantly, access re-
strictions around genomic data will, at least in the
foreseeable future, continue to make large external refer-
ence panels, which usually require data to be uploaded
to a server, of limited practical use.
Given this limitation, we explored the utility of a self-

contained approach that is independent of external
reference panels and makes use of standard, well-
established and well-maintained software packages for
variant calling and imputation. We investigated the
performance of WGS across different coverage values
ranging from 1-7x, which we term “mid-pass”. This
strategy is not without precedent, as mid-pass sequen-
cing followed by within-cohort imputation has been ap-
plied in the context of global surveys of genetic diversity
and population-based studies [19, 21, 24–28]. However,
to our knowledge, there has not been widespread uptake
of the approach, in part due to the lack of a comprehen-
sive evaluation of the usefulness of current standard
software packages across a number of relevant metrics
such as cohort size and coverage levels.
To address this, we developed and benchmarked

methods for mid-pass sequencing and applied them
to identify genetic variation in a population that lacks
an existing genomic reference panel. This is an essen-
tial step before genome-wide and targeted approaches

to understanding genetic contributions to disease
pathogenesis. First, we benchmarked the performance
of cost-effective, low-pass library generation kits
against more expensive high-pass kits at mid-pass
coverage levels. Next, we developed an optimized bio-
informatics pipeline around the widely-used GATK
Best Practices [29] [v4.1.4] coupled with Beagle [30]
for within-cohort variant calling and imputation to
produce high quality individual-level genotype calls
from mid-pass data. This is in contrast to approaches
estimating only population allele frequencies [31]. We
also assessed if combining mid- and high-pass data
could improve the quality of genotype calls cohort-
wide. Lastly, we applied our mid-pass approach to
characterize genetic diversity in an underrepresented
population and extensively benchmarked it against
genotyping arrays. Our aim is to establish a frame-
work for cost-effective studies that democratize
genomic analyses by making the generation of
genomic data more affordable and accessible.

Results
Low-pass optimized methods for high-throughput library
preparation scale to intermediate coverage levels and
produce consistent data
As a result of the increasing adoption of low-pass se-
quencing, library preparation kits that facilitate highly
multiplexed processing of DNA samples for low cover-
age (≤1x) WGS are now commercially available. High-
throughput processing is required for low-pass ap-
proaches, since many samples are sequenced simultan-
eously (on the same flow cell) as compared to gold
standard 30x WGS. However, many kits that are
designed for low-pass sequencing have not been com-
prehensively tested at an intermediate coverage level of
4x. Thus, we began by assessing if a commonly used
library preparation kit designed for low-pass sequencing
would be suitable at an intermediate coverage level. To
compare library preparation methods quantitatively, we
obtained DNA from 12 HapMap individuals (see
Methods), generated 4 replicate libraries using the low-
pass kit, and generated 2 replicate libraries using a
standard high-pass WGS kit. While we sequenced low-
pass libraries at target coverages of 1x (LP1) and 4x
(LP4), high-pass libraries were sequenced at a target
coverage of 4x (HP4).
First, we observed that the low-pass kit produced

more consistent coverage across pooled libraries than
the high-pass kit (Fig. S1a). This is particularly im-
portant in low-pass applications, as high variability
in coverage at low depths may result in large dispar-
ities in genotyping quality across samples. Next, we
compared read duplication rates across the two li-
brary types. Duplication rates were consistently
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higher for the low-pass kit across all coverage levels
and increased proportionally with coverage. In con-
trast, duplication rates for the high-pass kit were con-
sistent across the coverage ranges tested (Fig. S1b).
Specifically, at target coverages of 1x and 4x, samples
had median duplication rates of 10.8 and 17.2%, re-
spectively, which were 1.5x and 2.4x greater than the
high-pass kit. Next, we assessed genotype quality
(GQ) scores derived from standard sample-level geno-
type calling (Fig. S1c). At 4x coverage, GQ scores de-
rived from low-pass kit data did not significantly
differ from GQ scores derived from high-pass kit data
(p = 0.78, Wilcoxon rank sum test).
Next, we compared both overlap and concordance of

genotype calls between replicates across coverage levels
and kits. At 4x coverage, there was no evidence for a
significant difference in the proportions of overlapping
genotype calls across replicates at all sites (p = 0.89) nor
at high-confidence sites (GQ > 20, p = 0.80) when
comparing data from low- and high-pass kits, suggesting
distributions of genomic coverage are similar (Fig. S1d).
At 1x coverage, the proportion of all sites overlapping
was substantially lower than at 4x (medians of 0.101
and 0.435, respectively), demonstrating the random
nature of genomic coverage across low-pass replicates.
When examining genotype call concordance at 4x
coverage, we again found no evidence for a significant
difference at all sites (p = 0.10) nor at high-confidence
sites (p = 0.068) between the low- and high-pass kit
(Fig. S1e). At 1x coverage, we observed a reduction in
genotype concordance at high-confidence sites when
compared to 4x coverage (medians of 0.931 and 0.978
respectively), which is likely driven by lower overall
genotype qualities in the former (Fig. S1c).
Finally, we evaluated variant calls across the library

kits for 4 of the 12 individuals that are also part of
the 1000 Genomes high-coverage call set [32]. Using
the high coverage call set as ground truth and
measuring recall, precision, and non-reference con-
cordance rates (NCR) (see Methods, Fig. S1f-h) we
observed no significant difference between kits in
recall (p = 0.97 and p = 0.61 for low- and high-
confidence sites, respectively, Wilcoxon rank sum
test) or NCR (p = 0.74 and p = 0.12) and a small but
significant 0.93% increase in precision with the high-
pass kit at low-confidence sites (p = 0.0027; p = 0.30
for high-confidence sites). Furthermore, we observed
that while NCR improves with GQ (Fig. S1h), there is
a large fraction of true variants at low GQ (Fig. S1f)
that would get filtered out with standard thresholds
such as GQ20.
Based on our observations, we conclude that low-pass

optimized kits are suitable for mid-pass applications at a
target coverage range of approximately 4x.

Optimized joint variant calling and imputation by
combining high- and mid-pass whole genome sequencing
Having established a cost-effective and scalable method
for generating sequencing libraries for mid-pass applica-
tions, we next sought to apply the strategy to genotyping
an ethnically-diverse cohort lacking an existing reference
panel for imputation. To date, individuals of Polynesian
ancestry have been underrepresented in genomic studies
and are not present in commonly used multi-ancestral
reference panels such as 1000 Genomes [33]. To this
end, we performed a combination of high- and mid-pass
WGS on a cohort of 1510 individuals of Polynesian an-
cestry recruited from the Māori and Pacific populations
of Aotearoa New Zealand (Fig. S2). We sequenced the
genomes of 100 individuals at a median coverage of
35.2x using the high-pass WGS library kit and all 1510
at a median coverage of 3.67x using the low-pass library
kit (see Methods). A subset of the cohort had previously
had their genomes sequenced using high-pass WGS
(n = 106 individuals, median coverage 37.9x) and geno-
typed using an array (n = 1293 individuals) [34]. To-
gether, these provide an optimal data set for methods
development and benchmarking. Throughout the follow-
ing analyses, we used the pre-existing 30x high-pass
WGS data as a truth set to assess recall, precision, and
non-reference concordance rates (NCR) of genotype
calls derived from the mid-pass approach (see Methods).
Unless otherwise noted, we restricted analyses to high-
confidence regions of the genome which exclude
difficult-to-map regions such as segmental duplications
and other highly repetitive sequences as have been de-
fined by the Genome In a Bottle Consortium [35].
We hypothesized that for populations without existing

reference panels, inclusion of high-pass data alongside
mid-pass data would improve genotype calls. Our strat-
egy to combine mid- and high-pass data was to perform
individual-level calling followed by joint genotyping and
within-cohort imputation using standard software and
best practices (Fig. 1a) [29, 36–38]. While bespoke
methods exist for low-pass data [39], we believed that it
would be more desirable at mid-pass to optimize a
widely established pipeline in order to facilitate broad
adoption of the approach (see Methods). Following
standard site-level filtering using variant quality score re-
calibration (VQSR), we performed stringent call-level
filtering. We reasoned that low-quality calls, which are
abundant at lower coverage levels, would negatively im-
pact the performance of imputation. However, too strin-
gent filtering would result in too few markers for
imputation and also negatively impact performance.
Thus, we sought to identify an optimum value of geno-
type call filtering that maximized imputation perform-
ance. For imputation, we again deployed a commonly
used software with standard settings, so as to maximize
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compatibility with existing pipelines [30]. By testing a
range of GQ filtering values (> 0–30) and comparing
post-imputation genotype calls to the 30x truth set, we

found that using variant calls with GQ > 17 provided an
optimal balance of recall, precision, and NCR for single
nucleotide variants (SNV) (Fig. 1b-d). While we

Fig. 1 Optimized methods for genotyping from mid-pass whole genome sequencing. a) Outline of strategy for variant calling and imputation
using a combination of 100 high- and 1410 mid-pass sequenced genomes. Recall, precision, and non-reference concordance rate (NCR)
calculated for imputed genotypes derived from mid-pass sequencing of the genomes of 92 individuals as a function of: pre-imputation call-level
filtering using the GQ metric (keeping variants with GQ > X, b-d), binned sequencing coverage (e-g), and both coverage and with (MP + HP,
dotted lines) or without (MP, solid lines) inclusion of high-pass sequencing from 100 individuals in joint-calling and imputation (h-j). For runs
without high-pass included (MP), data for the 100 individuals was substituted with mid-pass data. Metrics were calculated using previously
available genotype calls derived from 30x whole-genome sequencing as a truth set. All metrics plotted were calculated for SNVs only (for indels
see Figs. S3, S5, and S6). For boxplots, bottom whisker: Q1–1.5*interquartile range (IQR), top whisker: Q3 + 1.5*IQR, box: IQR, center: median, and
outliers are not plotted for ease of viewing
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primarily focused on SNVs since they make up the vast
majority of variant calls, we observed the same threshold
to be optimal for indels albeit at a slightly reduced over-
all performance (Fig. S3).
While GQ filtering of low-confidence calls markedly

improved imputation performance, it still results in in-
formative data being discarded. To leverage data at sites
with filtered genotype calls we devised an approach to
compare imputed genotype calls to GQ-filtered calls
(Fig. S4a). We characterized variants as belonging to one
of four categories: not imputed, or imputed and identical
to the filtered call (IM0); imputed and not inconsistent
with the filtered call (IM1); and imputed and inconsist-
ent when the filtered call was either heterozygous (IM2)
or homozygous (IM3). “Inconsistent” here is defined as
the loss or disappearance of an allele after imputation.
Given the nature of mid-pass sequencing data, where we
expect to frequently only observe one of two alleles due
to low coverage, we categorize the addition or appear-
ance of an additional allele after imputation as “not in-
consistent”. By comparing recall, precision, and NCR
across variants stratified by IM flag, we found that, as
expected, variants where the imputed genotype was in-
consistent with the filtered call had significantly worse
performance (Fig. S4d-i). In particular, performance at
IM3 variants, where the filtered call was homozygous for
one allele and the imputed genotype was homozygous
for the other allele, was particularly poor. However,
these variants only account for a small fraction of the
total number of calls (Fig. S4b-c). Thus, due to the lower
NCR, we suggest that calls flagged as IM3 and poten-
tially IM2 be filtered out for any downstream applica-
tions that are particularly sensitive to incorrect genotype
calls.
Next, using the established GQ filtering threshold, we

examined post-imputation performance across coverage
levels (Fig. 1e-g, Fig. S5). We observed a steep drop off
in overall performance for individuals sequenced at 1x
when compared to 2x or greater. At 4x coverage, our
optimized best-practices based approach yielded high re-
call (98.0%), precision (97.5%), and NCR (95.2%). As ex-
pected, indel calling performed slightly worse overall,
with median recall, precision, and NCR of 96.9, 91.9,
and 92.1%, respectively. Extending the analyses to the
whole genome (i.e., including repetitive and highly vari-
able regions) still yielded high recall (96.1%) for SNVs at
4x but came with a loss in precision (90.8%) and NCR
(92.5%) (Fig. S5a). This loss in precision and NCR was
more strongly pronounced for indels (Fig. S5c). Strict fil-
tering criteria would be required to make these variants
suitable for downstream analyses.
Finally, our study design allowed us to compare the ef-

fectiveness of including high-pass data in the joint geno-
typing and imputation stages to approaches relying on

mid-pass sequencing of the entire cohort. To this end,
we produced two imputed call sets and assessed their
respective performances: the first included high-pass
data for 100 individuals and mid-pass data from 1410 in-
dividuals (MP +HP); the second included mid-pass data
for all 1510 individuals (MP). Inclusion of high-pass data
improved performance across all metrics and coverage
levels, but improvements were greater for individuals
with low (1-3x) coverage levels for SNVs (recall = +
1.05%, precision = + 0.64%, NCR = + 1.85%, Fig. 1h-j)
with more pronounced improvements for indels (recall =
+ 2.47%, precision = + 2.08%, NCR = + 3.24%). Analyzing
performance pre- and post-imputation revealed that the
inclusion of high-pass data yielded minor improvements
in joint-genotyping precision, but that most improve-
ments came post-imputation (Fig. S6). This suggests that
having a subset of high-confidence, complete genotype
calls is able to improve imputation in the mid-pass
sequenced individuals, albeit to a minor extent.
Based on our analyses, we found that with

optimization, standard best-practices based variant call-
ing and imputation pipelines are suitable for genotyping
using mid-pass WGS and generate comprehensive and
accurate genotype calls. Furthermore, the inclusion of a
subset of individuals sequenced at high-pass yielded
better performance in the entire cohort, largely through
improved imputation performance.

Mid-pass whole genome sequencing outperforms array-
based genotyping for diverse ethnicities
After establishing genotyping methods for mid-pass
WGS, we next applied the approach to characterize gen-
etic variation. The cohort comprised individuals with
self-reported ethnicities drawn from the Māori and Pa-
cific populations of Aotearoa New Zealand with repre-
sentation of both Eastern and Western Polynesian
nationalities (Fig. S2h).
First we examined principal components (PCs) derived

from imputed genotype calls. We found that PC1 was
highly correlated with the degree of European ancestry ad-
mixture (Spearman’s ρ = − 0.89, p < 2.2e-16, Figs. 2a, S7).
PC2 robustly captured Eastern vs Western Polynesian an-
cestry, with Samoan and Tongan people clustering at one
end of the spectrum, Aotearoa New Zealand Māori clus-
tering at the other, and Cook Island Māori in the middle.
Reassuringly, PCs 3 and 4 also clearly corresponded to
self-reported Pukapukan and Niuean ethnicities, respect-
ively (Fig. S8). When examining the correlation between
PCs and technical factors, we found that PC5 was linearly
correlated with log(sequencing coverage) (Fig. S8j).
Next we assessed the performance of our mid-pass

approach across self-reported ethnicities. Overall, we
found that differences in performance across ethnici-
ties were minor, being smaller in magnitude than
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differences due to coverage level (Fig. 2b). Perform-
ance was best for individuals of self-reported Aotea-
roa New Zealand and Cook Island Māori ethnicity,
most likely because this is the best represented group
in the cohort (N = 834 combined). Individuals of
Western Polynesian nationality (N = 298 combined
between Samoan and Tongan people) had slightly
lower NCR, but comparable recall and precision
values to other self-reported ethnicities.

While the full cohort was ethnically diverse, we sought
to benchmark our mid-pass approach in the context of
smaller, more homogenous cohorts. To do this, we fo-
cused on individuals with self-reported Aotearoa New
Zealand Māori ethnicity, as this comprised the largest
group, and subsetted to 750, 500, and 250 individuals.
Subsetting was performed by selecting individuals that
showed less European ancestry admixture (Fig. S9a) and
the proportion of individuals sequenced at high vs mid-

Fig. 2 Performance of mid-pass whole genome sequencing across self-reported ethnicities and compared to array genotyping. A) Principal
component analysis of imputed genotype data from 1410 mid-pass and 100 high-pass sequenced Polynesian individuals’ genomes. Data points
are colored by self-reported ethnicity (EURO, European, MACI, Cook Islands Māori, MANZ, Aotearoa New Zealand Māori, NIUE, Niuean, OTHR,
other, PNMI, Mixed Ethnicity Polynesian, PUKA, Pukapukan, SAMO, Samoan, TONG, Tongan, listed in alphabetical order) with symbols
corresponding to the broader regional division of Polynesia (East, West or NA, not applicable). B) Performance measured using recall, precision,
and non-reference concordance rate (NCR) for mid-pass derived imputed genotype calls across self-reported ethnicities. Metrics were calculated
for the genomes of 100 individuals sequenced as part of this study at both and high- and mid-pass using the high-pass genotype calls as a truth
set. C) Performance as a function of cohort size for individuals with self-reported Aotearoa New Zealand Māori ethnicity. Individuals were selected
such that the smaller cohorts have less European ancestry admixture (Fig. S8). D) Performance calculated from imputed genotypes for 84
individuals binned by sequencing coverage with corresponding array data for comparison and using previously available 30x whole-genome
sequencing genotype calls as a truth set. For boxplots, bottom whisker: Q1–1.5*interquartile range (IQR), top whisker: Q3 + 1.5*IQR, box: IQR,
center: median, and outliers are not plotted for ease of viewing
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pass was kept approximately constant across the subsets
(6.5–9.2%, Fig. S9b). We found that recall, precision, and
NCR were similar across the cohort subsets as compared
to performance when the entire cohort was used (Figs. 2c,
S9c-h). In fact, precision tended to be slightly higher in
the smaller, less admixed cohorts, although the differences
were minor and the small improvements in recall and
NCR slightly more pronounced.
Finally, we compared genotype calls derived from our

mid-pass approach to those derived from array-based
genotyping followed by imputation into 1000 Genomes,
which is commonly used for diverse genomic studies
(see Methods). Examining overall recall, precision, and
NCR for individuals with truth sets derived from 30x
WGS, we found that array genotyping followed by im-
putation resulted in much lower recall compared to all
mid-pass coverage levels (Fig. 2d). Precision however,
was comparable to mid-pass individuals sequenced at 3x
coverage, while NCR was comparable to mid-pass at 2x
coverage. When examining performance as a function of
minor allele frequency (MAF) we found that with the ex-
ception of precision at low frequency (MAF ≤ 2%) vari-
ants, 4x mid-pass WGS outperformed array genotyping
with 1000 Genomes imputation across all metrics and
frequencies (Fig. S10).
Through these analyses we found that our mid-pass

sequencing strategy effectively identified the genetic vari-
ation present in a diverse study cohort, was minimally
affected by technical covariates, and performed consist-
ently across ethnicities and cohort sizes. When com-
pared to genotyping arrays followed by imputation into
1000 Genomes, mid-pass better identified genetic vari-
ation while at the same time having higher recall and
precision across most coverage levels.

Mid-pass sequencing identifies novel, potentially
population-specific genetic variation with putative
functional impact that is missed by imputation into 1000
Genomes
A major advantage to whole genome sequencing as
compared to array genotyping is the ability to detect
novel genetic variation that could contribute to dis-
ease etiology. For our final analyses, we examined
genetic variation that is detected using our approach
but missed when using array genotyping followed by
imputation into 1000 Genomes. We characterized var-
iants that were common (MAF > 5%) in the study co-
hort and either absent from or rare (MAF < 1%) in
1000 Genomes (Fig. S11). Mindful that this may en-
rich for false positive genotype calls, we restricted our
analyses to all SNVs, where our analyses showed
false-positive rates to be low (Fig. S5a), and only in-
cluded indels found in high-confidence regions of the
genome (Fig. S5d). Using this approach, we identified

426,256 SNVs and 44,235 indels that were common
in the cohort but absent from 1000 Genomes, and an
additional 152,113 SNVs and 5475 indels were rare in
1000 Genomes (Fig. 3a). Further classifying these vari-
ants based on predicted class revealed 22,649 regula-
tory and 3514 coding variants that were absent from
1000 Genomes, representing a substantial amount of
potentially Polynesian-specific genetic variation with
putative functional impact (Fig. 3b). Finally, we exam-
ined the predicted effect of genetic variation, as this
is often of primary importance in genomic studies
(Fig. 3c). Mid-pass sequencing identified 155 putative
loss of function variants (across splice donor, splice
acceptor, stop-gained, and frameshift variants) as well
as 2089 missense variants that were absent from 1000
Genomes, but common in the study cohort. When
examining variants with putative regulatory impact we
found 14,264 regulatory region variants, 6247 UTR,
1521 transcription factor binding site, and 519 splice-
region variants that were absent from 1000 Genomes
and common in the study cohort.

Discussion
From our analyses of kits for library generation, we
conclude that those optimized for low-pass sequen-
cing facilitate high-throughput processing while pro-
viding data that are largely consistent with high-pass
kits. The pooled processing of a high number of sam-
ples offered by low-pass kits reduces variability of
coverage, number of batches, and cost, which is espe-
cially important for low-pass studies. However, a not-
able drawback is that we observed higher duplication
levels when a low-pass kit was used. This could be a
result of the much smaller amount of input DNA
used for the low-pass kit (5–25 ng) vs the high-pass
kit (200 ng), resulting in lower library diversity. Based
on this observation, we would not suggest exceeding
target coverage levels of 4x using current generation
low-pass optimized library preparation methods be-
cause of diminishing returns attributed to increased
read duplication rates. However, at a target coverage
level of 4x, we believe the workflow and cost benefits
of low-pass optimized kits outweigh the drawbacks
from increased duplication rates. If higher coverages
are desired, we suggest using high-pass library prepar-
ation kits. We have made the sequencing data from
HapMap individuals generated for library kit bench-
marking publicly available to facilitate broader adop-
tion of low- and mid-pass sequencing strategies and
to further encourage development of computational
genomic methods (see Data and Code Availability).
In this work we sought to develop and share a bio-

informatics pipeline for processing mid-pass data that
made use of commonly used software packages. We
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reasoned that such a pipeline would be more accessible,
as many users would already be familiar with the various
components. However, we found that our “off-the-shelf”
approach fared poorly at coverage levels ≤1x. It is very
likely that at this coverage level, low-pass optimized vari-
ant calling and imputation methods would perform
much better than our more standard approach [39].
With respect to downstream analyses that make use of

mid-pass data, such as GWAS, we suggest filtering out
imputed calls that are discordant with sequencing reads
and provide scripts to do so (see Data and Code
Availability). Furthermore, while the mid-pass approach
yielded high-quality genotype data that largely correlated
with self-reported ethnicity, we found that coverage level
did introduce sources of variation. Thus, we suggest that
any downstream applications should appropriately
control for this technical factor.

We also explored the performance of various mid-pass
study designs. We found that sequencing the genomes
of a subset of individuals at high-pass and including
them in joint-genotyping and imputation led to minor
improvements in performance across the entire cohort.
While these improvements were small, there are other
potential benefits to including high-pass sequenced
genomes that are not explored here. For example, vari-
ants that are harder to identify from short-read data
such as large indels and structural variants may benefit
more substantially from high-pass data and could then
be genotyped in individuals with mid-pass data. We also
explored the performance of the mid-pass approach as a
function of study size. For more homogenous cohorts,
we found that mid-pass WGS performed well even at a
cohort size of just 250 individuals, making it a robust
approach for smaller scale studies.

Fig. 3 Functional annotation of putatively Polynesian enriched variants identified by mid-pass sequencing. Variants are characterized as being
absent (orange) or rare (MAF < 1%, green) in 1000 Genomes Phase 3 and common (MAF > 5%) in the study dataset. Breakdown of variants as a
function of type (SNV/INDEL, A), class (coding, regulatory, or other, B), and predicted effect (C). Indels located in high-confidence regions of the
genome and all SNVs were included in the analysis. Variant counts (y-axis) have been log-transformed for ease of viewing
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It is important to consider the strengths and weak-
nesses of mid-pass WGS in the broader context of
genotyping strategies. At present, researchers carrying
out population-scale genomic studies have options in-
cluding 30x WGS, whole exome sequencing (WES),
mid−/low-pass WGS, and genotyping arrays, roughly
in order of cost. Ultimately, there is not one perfect
solution, so researchers must decide on the strategy
that best fits their needs and budget. Based on our
work, we would suggest mid-pass WGS for cost-
effective, population-scale genetic studies of individ-
uals that are not well represented in existing genomic
reference panels. This is a particularly effective ap-
proach for studies that aim to identify variants that
are rare globally but common locally [40]. For
population-scale genetic studies of European ancestry
individuals, low-pass WGS has been demonstrated to
be a highly effective strategy [15]. When high confi-
dence, individual-level genotypes for rare protein-
coding variants with predictable effects are of the ut-
most importance, for example in clinical studies, WES
remains the most effective strategy, despite its narrow
scope and relatively high cost. However, the lack of
genome-wide data from WES makes it much less
powerful for population-scale studies, and usually ne-
cessitates the generation of additional complementary
data from genotyping arrays.
In the context of diverse genomic studies, a recent

cost-effective approach has been to use WGS to se-
quence the genomes of a subset of individuals in the
population of interest, and use these data to design cus-
tom arrays that capture population-specific variants and/
or produce a population-specific reference panel for im-
putation use. While this has been an effective interim so-
lution, the power to detect novel genetic variation is still
limited to those few individuals selected for WGS, unlike
mid-pass approaches where novel variant discovery is
possible in every individual. In addition, the process of
designing custom arrays is in itself costly and time inten-
sive. Thus, we believe the advantages of mid-pass WGS
outweigh this approach.
Finally, we present mid-pass WGS not just as a cost-

saving strategy for generating genomic datasets with
populations that have previously been underrepresented
in human genetic research, but also as a means to
democratize statistical and population genetic tools. For
over a decade, GWAS and polygenic score methodolo-
gies have been applied, optimized, and reapplied to
cohorts of largely Western European ancestry. Conse-
quently, public health outcomes from genomics research
disproportionately benefit individuals of Western Euro-
pean ancestry and globally reinforce institutional dispar-
ities that Indigenous communities are actively fighting to
dismantle [41, 42].

Our mid-pass sequencing approach identified many
potentially population-specific variants with functional
impact potentially important in disease etiology that
would have been missed by array genotyping followed by
imputation into 1000 Genomes. Common population-
specific variants are implicated in metabolic disease in
Polynesian populations. The Gln allele of the CREBRF
p.Arg457Gln variant associates with increased BMI but
reduced risk of diabetes [34], the Ser allele of the IL37
p.Asn182Ser variant with gout [43], and the Western
Polynesian-specific Leu allele of the ABCC4 p.Pro1036-
Leu variant with gout [44]. The Māori and Pacific popu-
lations of Aotearoa New Zealand are affected by a range
of polygenic conditions such as type 2 diabetes, gout,
and other diseases with a metabolic basis. The underpin-
ning genetic causes differ to various extents relative to
the larger European population [45]. While structural in-
equities contribute to the increased prevalence [43, 46],
we expect population-specific genetic variants to con-
tribute to health status. Studying these population-
specific variants will provide insights into disease patho-
genesis directly relevant to Māori and Pacific people.
While mid-pass WGS provides a technical solution to

overcome the lack of diversity in genomics research,
greater change in research practices will be needed to
course-correct human genetics. Specifically, given that
Western researchers have a documented history of ig-
noring, overlooking, and abusing BIPOC (Black, Indigen-
ous, people of color) populations, sweeping revisions of
how underrepresented peoples are engaged in genomics
research are required [4, 11]. Rather than imposing
Western perspectives of genetic privacy, data sharing,
and disease priorities, researchers should engage in
community-led partnerships that empower participants
of genetic research to define the parameters under which
their genomes are studied [47, 48]. Lastly, partnerships
should bring impactful changes not only to science and
medicine but also to participants and their communities.
Approaches that ethically engage populations, build
genomics capacity, and return both short and long-term
benefits are long overdue.

Conclusion
Our work has demonstrated that mid-pass WGS is a
cost-effective strategy for generating high quality
genomic datasets from diverse populations without reli-
ance on external datasets or reference panels. In order
to maximize adoptability, we have established a frame-
work for mid-pass WGS that uses commercially avail-
able reagents and optimized pipelines consisting of
widely used software packages. Methods and approaches
that improve accessibility and affordability will empower
researchers around the world to carry out their own
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genomic studies and improve global diversity in genomic
studies.

Methods
HapMap sequencing pilot
We selected 12 HapMap individuals (NA12877,
NA12878, NA12879, NA18954, NA18995, NA19238,
NA24143, NA24149, NA24385, NA24631, NA24694,
NA24695) to test sequencing coverage and data quality
of low-pass kits. We generated 10 replicates per DNA
sample: 4 replicates at 1x using plexWell LPS384 library
preparation, targeting 150Gb total bases (corresponding
to 3.125Gb per sample on average); 4 replicates at 4x
using plexWell LPS384 library preparation, targeting
600Gb total (12.5Gb per sample); 2 replicates at 4x using
plexWell WGS24 library preparation, targeting 300Gb
total (12.5Gb per sample). Libraries were sequenced on
NovaSeq 6000 instruments, with 2x151bp reads. Library
preparation and sequencing were done at Psomagen Inc.
(USA).

Aotearoa New Zealand study participants
Individuals of self-reported Māori and / or Pacific ethni-
city aged ≥16 years, primarily from the Auckland,
Waikato, and Christchurch regions of Aotearoa New
Zealand, were recruited to the Genetics of Gout, Dia-
betes, and Kidney Disease in Aotearoa New Zealand
Study. 65 participants were recruited as part of a part-
nership with the Pukapuka Community Group (Man-
gere, South Auckland). The cohort consisted of 716
males and 794 females and the median age was 47 years.
421 individuals were diagnosed with kidney disease, 247
were diagnosed with gout, and 438 were diagnosed with
type 2 diabetes. 908 individuals had not been diagnosed
with any of the above.

DNA sequencing of 1510 mid-pass and 100 high-pass
whole genomes
DNA was extracted in Aotearoa New Zealand and
shipped to Psomagen Inc. (USA) for library preparation
and sequencing. Mid-pass libraries were prepared using
plexWell LP384 kits and subsequently sequenced target-
ing an average of 16Gb per sample. We targeted a higher
coverage than for the HapMap sequencing pilot to ac-
count for the higher duplication rate observed when
using the plexWell kits. In addition, when pooling large
numbers of samples some variation in coverage is un-
avoidable, so targeting a higher coverage ensures more
samples will be in a usable coverage range for our pur-
poses (>1x). High-pass libraries were prepared using
TruSeq PCR-Free (350 bp) kits and sequenced at a target
coverage of 30x per sample. All sequencing was done on
NovaSeq 6000 instruments with 2x151bp reads. After se-
quencing and QC, DNA samples were returned to

Aotearoa New Zealand to be disposed of in a culturally
appropriate manner.

Pre-existing whole genome and array data
Previous to this study, 106 individuals from the cohort
had their genomes sequenced to high coverage (TruSeq
Nano libraries sequenced on HiSeqX) and 1293 individ-
uals were genotyped using Illumina Infinium
CoreExome arrays (v1.0–1.3) [34]. We reprocessed the
106 whole genomes to obtain joint variant calls as de-
tailed below. For the array data, GRCh37 genotype calls
were lifted over to GRCh38, resulting in 471,499 geno-
typed positions on autosomes which were then further
imputed into the 1000 Genomes mapped onto GRCh38
reference panel [49] using Beagle v5.1 [30]
(beagle.27Apr20.b81.jar).

Processing of whole genome data
Raw sequencing data were inspected with fastqc
(v0.11.7) and adapters were trimmed using cutadapt
(v2.10). Trimmed reads were then processed following
the GATK Best Practices guidelines [29] (BWA-mem
v.0.7.15, GATK v.4.1.4.0) to produce joint-called and
VQSR-filtered multi-sample VCFs. We set --truth-sensi-
tivity-filter-level to 99.8 for SNPs and 99.0 for indels in
VQSR and only retained PASS filter sites for further
analyses. The GATK Best Practices guidelines are thor-
oughly outlined here: https://gatk.broadinstitute.org/hc/
en-us/articles/360035535932-Germline-short-variant-
discovery-SNPs-Indels-, and we provide some key com-
mand lines as well in https://github.com/variant-bio/
mid-pass. For single sample genotyping we ran Genoty-
peGVCFs on HaplotypeCaller-generated individual
GVCF files without any additional filtering (unless GQ
thresholds where indicated).

GQ filtering, imputation, and site flagging
We used custom scripts to filter genotype calls below
our chosen threshold of GQ < =17. Subsequently, Beagle
v5.1 [30] (beagle.27Apr20.b81.jar) was run without a ref-
erence panel and specifying the ‘gt=’ input parameter for
within-cohort imputation. The resulting VCFs were re-
merged with the original unfiltered VCF to flag sites by
consistency with the filtered calls. Call flagging script as
well as command lines used can be found at https://
github.com/variant-bio/mid-pass.

Performance evaluation data
The genomes of 106 individuals with previously available
30x WGS data were joint-genotyped as detailed above
and all PASS filter variants and genotypes with GQ > 20
were used as truth set in the subsequent evaluations. For
MAF-based analyses, we additionally applied a variant
call rate filter of 50%. Out of the 93 individuals with
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mid-pass and 30x reference data available (Fig. S2), one
individual was excluded from evaluations due to sample
contamination, resulting in 92 genomes total for most of
the evaluations. Comparisons including array data were
limited to the genomes of 84 individuals for which array
data were additionally available. Cohort size evaluations
were limited to include individuals with self-reported
Aotearoa New Zealand Māori ethnicity, and individuals
were included based on PC1 and PC2 to form sub-
cohorts of 250, 500, and 750 individuals (Fig. S8a).
Cohort size evaluations were limited to the genomes of
22 individuals that were part of the smallest sub-cohort
and for which both MP and 30x reference data were
available.

Performance assessment methods
Throughout the performance assessments, we used
recall, precision, and non-reference concordance
(NCR) to assess accuracy of variant calls. Recall and
precision serve as (coordinate-based) variant site
metrics whereas NCR further assesses allele and
genotype accuracy. Recall is defined as the number
of true positive variant sites divided by the total
number of variant sites in the truth set. Precision is
defined as the number of true positive variant sites
divided by the total number of variant sites in the
test set. Non-reference concordance is the fraction
of correctly called genotypes, excluding homozygous
reference matches. For MAF-based performance
comparisons, we used minor allele concordance ra-
ther than non-reference concordance, i.e. alt and ref.
allele were flipped where variant allele frequency was
greater than 0.5. High-confidence regions of the
genome were defined as regions present in the
“GRCh38_notinalldifficultregions.bed “file provided
by the Genome in a Bottle Consortium [35] and de-
scribed in https://opendata.nist.gov/pdrsrv/mds2-21
90/GRCh38/union/v2.0-GRCh38-Union-README.txt.
Pipeline optimization (Fig. 1) as well as subcohort
experiments (Fig. 2c) were limited to chromosome 1
only. Comparisons on imputed array data were lim-
ited to autosomes. All other comparisons were
genome-wide excluding chrY and alt contigs. All
pairwise comparisons between test and reference
genotype call sets were done using vcf-compare
(v0.1.14–12-gcdb80b8).

Principal component analysis
PCA was performed on imputed genotypes using Hail
v0.2. Briefly, for individuals with ≥1.5x mean coverage,
SNPs and indels in high-confidence regions with MAF >
1% and imputation rate < 30% were LD-pruned using the
ld_prune() function with parameters r2 = 0.2, bp_win-
dow = 100,000. Principal components were calculated

using LD-pruned variants using the hwe_normalized_
pca() function with parameters, k = 20.

European admixture analysis
Genotype calls for 91 British individuals (GBR) from
1000 Genomes high coverage sequencing and mapping
to GRCh38 were downloaded [32]. Chromosome 1 was
subsetted, and merged with the genotype calls from
Polynesian individuals using the Hail function union_
cols(), which performs an inner join on the two call sets.
Allele frequencies were calculated in the combined call
set and variants were filtered based on MAF > 1%. To re-
move indels and multiallelic variants, VCF files were
subset to biallelic SNPs using bcftools. Thereafter, to thin
variation, LD pruning was performed in PLINK
(v1.90b6.16) with settings --indep-pairwise 50 10 0.1
followed by random down-sampling of the remaining
variation with settings --thin-count 245,000. Using the
resulting set of 245,000 biallelic SNPs as input for AD-
MIXTURE (v1.3.0), we estimated ancestry-specific allele
frequencies and fractions assuming k = 2.

Overlap with 1000 genomes variants and functional
annotation
All variants with MAF > 5% in the study cohort, excluding
indels in non-high-confidence regions, were compared to
1000 Genomes phase 3 variants. Variants were classified
as either rare (< 1% MAF in 1000 Genomes) or novel (ab-
sent from 1000 Genomes) and annotated for functional
impact using Variant Effect Predictor with cache version
102 (homo_sapiens_vep_102_GRCh38). Variant class was
defined as follows: coding (frameshift_variant, inframe_de-
letion, inframe_insertion, missense_variant, start_lost,
stop_gained, stop_lost, stop_retained_variant, synonym-
ous_variant), regulatory (5_prime_UTR_variant, 3_prime_
UTR_variant, mature_miRNA_variant, regulatory_region_
variant, splice_acceptor_variant, splice_donor_variant,
splice_region_variant, TF_binding_site_variant, TFBS_ab-
lation), and other (downstream_gene_variant, intergenic_
variant, intron_variant, non_coding_transcript_exon_vari-
ant, upstream_gene_variant).

Abbreviations
BIPOC: Black, Indigenous, people of color; GQ: Genotype quality; HP: High-
pass; Indel: Insertion deletion; LP: Low-pass; MAF: Minor allele frequency;
MP: Mid-pass; NCR: Non-reference concordance rate; PC: Principal
component; SNV: Single nucleotide variant; VQSR: Variant quality score
recalibration; WES: Whole exome sequencing; WGS: Whole genome
sequencing
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Additional file 1: Figure S1. Benchmarking of libraries generated with
low-pass kits sequenced at intermediate coverage levels. a) Mean
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coverage across the library types. b) Per-sample duplicate rate over
(deduplicated) sequencing coverage. c) Genotype quality (GQ) as a func-
tion of mean GQ (averaged over 2 × 12 samples). Fraction of variant calls
that overlap between replicates (d), and their genotype concordance (e)
at either all variants (GQ > 0) or high-confidence variants (GQ > 20). f) Re-
call, g) Precision and h) Non-reference concordance rates computed per
sample against the 1000 Genomes high coverage call set [32] as “truth”.
The single HP4 sample with coverage>10x was excluded from this com-
parison. Figure S2. a) Overview of data types available for participants
and how they overlap. b) Distribution of de-duplicated sequencing cover-
age per sample for low-pass samples, c) TruSeq PCR-free high-coverage
samples, d) TruSeq Nano high-coverage samples. e) Distribution of se-
quencing duplicate rates per sample for low-pass samples, f) for TruSeq
PCR-free samples, and g) for TruSeq Nano samples. h) Breakdown of
number of individuals by self-reported ethnicity and sequencing type.
Figure S3. Effect of GQ filtering on indel calling performance. a) Recall,
b) Precision, and c) NCR for indels over varying GQ thresholds. Figure
S4. Accuracy of flagged sites by flag type. a) Overview of the different
flag types that characterize variants by comparing (filtered) sequencing-
based genotype with genotype after imputation. A call is flagged with
IM = 0 if sequencing-based genotype and imputed genotype agree fully.
Given low coverage, we consider the lack of sequencing data evidence
for an imputed allele as “not inconsistent” while the disappearance of an
allele after imputation is categorized as “inconsistent”. IM = 1 therefore
flags imputed calls that are not inconsistent with the sequencing-based
call (either because it was missing or we may have only observed one of
two alleles in sequencing). IM = 2 and IM = 3 flag sites that are inconsist-
ent between sequencing-based and imputed calls, where IM = 2 calls
were heterozygous in sequencing (potentially due to sequencing or map-
ping artifacts or contamination, or an error in imputation) and IM = 3 calls
were homozygous for the opposite allele. b) Fraction of SNV calls in each
IM flag category. c) Fraction of indel calls in each IM flag category. d) Re-
call (normalized to each individual’s overall SNV recall), e) Precision, and f)
NCR of SNVs. g) Normalized recall, h) Precision, and i) NCR of indels. Fig-
ure S5. Detailed performance (recall, precision, and NCR) of SNV and
indel calling both genomewide (including repetitive regions) as well as in
high-confidence regions only, shown over coverage. a) SNVs genome-
wide, b) SNVs in high-confidence regions, c) Indels genomewide, d)
Indels in high-confidence regions. Figure S6. Performance comparison
across different pipeline stages/runs. a) Overview of tested call sets. “Sin-
gle” refers to individually called mid-pass data (GQ > 17). “MP” and “MP-
HP” refer to the joint-called (“joint”) and imputed (“imp”) call sets using
mid-pass data from 1510 individuals (MP) and mid-pass data from 1410
individuals plus high-pass data from 100 high-pass individuals (MP-HP)
For more details see methods. b) Recall, c) Precision, and d) NCR for SNVs.
e) Recall, f) Precision, and g) NCR for indels. Figure S7. Analysis of Euro-
pean admixture in the study cohort. ADMIXTURE was run assuming two
populations on the cohort with 91 British individuals from 1000 Genomes
(GBR) included to capture European ancestry. Shown are the proportions
of ancestry estimated (population 1 = red, population 2 = orange). Individ-
uals are ordered by cohort (GBR/Polynesian). Analysis of PC1 from PC ana-
lysis versus proportion of population 1 ancestry from ADMIXTURE analysis
found that PC1 is highly correlated with the degree of estimated Euro-
pean ancestry (Spearman’s ρ = − 0.89, p < 2.2e-16). Figure S8. Principal
component (PC) analysis of imputed genotype calls. a-i) PC1 vs PC2–10,
labeled based on self-reported ethnicity. j) PC5 vs log(coverage) with data
points colored by sequencing depth and symbols corresponding to li-
brary type (plexWell LP384 used for low-pass sequencing and TrueSeq
PCR-Free used for high-pass sequencing). Individuals with ≥1.5x coverage
and both SNVs and indels in high-confidence regions of the genome
were used for the analyses. Figure S9. Effect of cohort size on perform-
ance. a) PCA of self-reported Aotearoa New Zealand Māori individuals
that were included in the analysis. b) Sequencing type breakdown within
subcohorts (MP, mid-pass, HP, high-pass). c) Recall, d) Precision, and e)
NCR for SNVs. f) Recall, g) Precision, and h) NCR for indels. Figure S10.
MAF-based comparison of variants in high-confidence regions, split by
coverage level. a) Recall, b) Precision, and c) NCR of SNVs over the full
MAF range. Panels d), e), and f) show the same plots zoomed in on the
0–7.5% MAF range. Panels g) to l) show the same for indels. Figure S11.
Allele frequency distribution of common (MAF > 5%) variants in the study

cohort that are either absent from (a) or rare in (b) 1000 Genomes. Indels
located in high-confidence regions of the genome and all SNVs were in-
cluded in the analysis.
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