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Abstract

Background: Transcription factors, including trihelix transcription factors, play vital roles in various growth and
developmental processes and in abiotic stress responses in plants. The trihelix gene has been systematically studied
in some dicots and monocots, including Arabidopsis, tomato, chrysanthemum, soybean, wheat, corn, rice, and
buckwheat. However, there are no related studies on sorghum.

Results: In this study, a total of 40 sorghum trihelix (SbTH) genes were identified based on the sorghum genome,
among which 34 were located in the nucleus, 5 in the chloroplast, 1 (SbTH38) in the cytoplasm, and 1 (SbTH23) in
the extracellular membrane. Phylogenetic analysis of the SbTH genes and Arabidopsis and rice trihelix genes
indicated that the genes were clustered into seven subfamilies: SIP1, GTy, GT1, GT2, SH4, GTSb8, and orphan genes.
The SbTH genes were located in nine chromosomes and none on chromosome 10. One pair of tandem duplication
gene and seven pairs of segmental duplication genes were identified in the SbTH gene family. By gPCR, the
expression of 14 SbTH members in different plant tissues and in plants exposed to six abiotic stresses at the
seedling stage were quantified. Except for the leaves in which the genes were upregulated after only 2 h exposure
to high temperature, the 12 SbTH genes were significantly upregulated in the stems of sorghum seedlings after 24
h under the other abiotic stress conditions. Among the selected genes, SbTH10/37/39 were significantly
upregulated, whereas SbTH32 was significantly downregulated under different stress conditions.

Conclusions: In this study, we identified 40 trihelix genes in sorghum and found that gene duplication was the
main force driving trihelix gene evolution in sorghum. The findings of our study serve as a basis for further
investigation of the functions of SbTH genes and providing candidate genes for stress-resistant sorghum breeding
programmes and increasing sorghum yield.
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Background

Abiotic stress can affect the growth process of plants
considerably, reducing plant development and crop yield
[1]. In view of this, plants have evolved a complex sys-
tem to regulate their adaptability to stress signals [2, 3].
Transcription factors are ubiquitous in plants and play
important roles in various growth and developmental
processes and abiotic stress response [4]. More than 60
transcription factor families have been identified in
plants [5, 6]. Nevertheless, the functions of several cru-
cial transcription factor families have not been com-
pletely clarified. In the 1980s, the trihelix transcription
factors exist only in plants and separated from the pea
(Pisum sativum) for the first time [7]. They bind to the
core sequence of 5 -G-Pu- (T / A) -A- (T / A) -3 ‘of the
promoter region of rbcS-3A gene to regulate light-
dependent expression [8]. Trihelix transcription factors
were initially called GT factors because they bind to
photosensitive GT elements. The DNA-binding domain
of GT factor has a typical helix-loop-helix-loop-helix
structure, which is responsible for the name trihelix
transcription factor. Studies have shown that the trihelix
structure of GT factors is highly similar to the structure
of Myb/SANT-LIKE DNA-binding domains [9]. GT fac-
tors evolved from Myb/SANT-LIKE proteins. The gaps
between helix pairs result in different recognition se-
quences between GT factors and Myb/SANT-LIKE pro-
teins [9, 10].

The trihelix gene has been systematically studied in
some dicots and monocots, including Arabidopsis, to-
mato, chrysanthemum, soybean, wheat, corn, rice, and
buckwheat. However, the trihelix family in sorghum
have not been systematically studied. Because of the im-
portant functions of trihelix genes in tissue development,
environmental adaptation and evolution, it is of great
significance to systematically analyze the trihelix family
members of sorghum. Presently, a total of 30 GT family
members have been identified in Arabidopsis thaliana
and were classified into GT-1, GT-2, GTy, SH4, and
SIP1 subfamilies, named after their founding members
[11]. Similarly, 96 trihelix proteins have been identified
in tomato and were classified into six subfamilies (GT-1,
GT-2, SH4, SIP1, GTy, and GT$§) [12]. The structures of
most trikelix genes vary among plant species, especially
at the C-terminal.

Some studies have reported the involvement of trihelix
gene family in complex physiological functions. In Ara-
bidopsis, GT1 subfamily genes may be involved in salt
stress and pathogen infection response, and their expres-
sion was induced by light in 3-days-old seedlings [13].
Additionally, expression of RMLI of tomato GT-1 gene
was inhibited by light in yellow seedlings [14]. Osmotic,
salt, and cold stress induced the expression of trihelix
transcription factors, GmGT-2A and GmGT-2B, in
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soybeans [15]. In Arabidopsis thaliana, GTLI gene mu-
tants can significantly reduce transpiration and improve
drought tolerance [16].. The expression of GTy evolu-
tion branch gene, OsGTy-1, in tomato increased by 2.5
to 10 folds in response to salt stress, and the abscisic
acid (ABA) treatment also upregulated its expression
[17]. The Arabidopsis SIPI genes, ASIL1 and ASIL2,
downregulated the expression of LEA (rich in late em-
bryogenesis) gene in Arabidopsis seedlings [11]. Trihelix
genes play multiple functions during plant development.
Therefore, it is necessary to clarify their roles and the
molecular mechanisms involved in signal transduction
pathways in different stress response.

Sorghum (Sorghum bicolor L. Moench) is an important
food crop and is widely cultivated in different regions of
the world, making it an ideal C4 plant for research. In
this study, the trihelix gene family was identified in sor-
ghum. The chromosomal distributions, protein charac-
teristics, gene structures, and conserved motif
compositions of the identified trikelix genes were ana-
lysed. We then identified orthology relations, analysed
gene duplication events, and constructed phylogenetic
trees of the identified trihelix genes. Additionally, we ex-
amined the expression pattern of selected sorghum tri-
helix genes under abiotic stresses.

Results

Identification of trihelix genes and analysis of their
physicochemical properties in S. bicolor (L.)

The Hidden Markov Model (HMM) profile of trihelix
domain (PF13837) was used to search the trihelix do-
main in the entire sorghum genome. Only genes with E
value <0.01 were classified as those of trihelix family.
The Pfam and InterPro databases were used to confirm
that the putative genes contained the Myb/SANT-LIKE
domain. Finally, a total of 40 non-redundant trihelix
genes were identified in sorghum. The sorghum trihelix
genes were named from Shtrihelix1-Shtrihelix40 accord-
ing to their positions on the chromosome. Sbtrihelix was
abbreviated to SbTH. Table S1 contains a summary of
the characteristics of SbTH, including gene ID, chromo-
some location, coding sequence (CDS) length and amino
acid sequence, protein size, and isoelectric point (PI).
SbTH5 encodes the smallest protein with 205 amino
acids, whereas SbTHI18 encodes the largest protein with
875 amino acids. The SbTH protein molecular weight
(Mw) ranged from 22.68 kDa—96.29 kDa, while the pre-
dicted isoelectric point ranged from 4.42 (ShTHI17) to
11.19 (ShTH31). The results of subcellular localization
prediction of SbTH proteins showed that 34 SbTH genes
were located in the nucleus, 5 in the chloroplast, and 1
(SbTH23) in the extracellular membrane. Among the 40
SbTH genes, 8 (20.0%) contained the GT1 domain, 23
(57.5%) contained the Myb_DNA-binding domain and 9
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(22.5%) contained both GT1 domain and Myb DNA-
binding domain. The ratio of SOTH genes to total genes
in the S. bicolor genome was about 0.12% [18], which is
similar to that of Arabidopsis (0.11%) [19, 20], soybean
(0.14%) [21, 22], and rice (0.10%) [23, 24] but more that
than of tomato (0.05%) [12, 25], chrysanthemum (0.04%)
[26, 27], wheat (0.08%) [28, 29], and buckwheat (0.06%)
[30, 31].

Phylogenetic analysis of trihelix genes in S. bicolor (L.)

To better understand the phylogenetic relationship of
trihelix genes, we constructed a phylogenetic tree using
the neighbour-joining (NJ) method with a bootstrap
value of 1000 based on the amino acid sequences of 40
SbTH proteins, 27 Arabidopsis thaliana trihelix (AtTH),
and 29 Oryza sativa trihelix (OsTH) proteins (Fig. 1,
Additional file 1: Table S1). According to the topological
structure of the tree and classification method proposed
by Kaplan-Levy and Qin [32, 33], the 40 trihelix genes
were clustered into six groups (SIP1, GTy, GT1, GT2,
SH4, GTSb8) and three ‘orphan genes’. Among the 40
trihelix genes, 32 SbTH genes were clustered into five
subfamilies, which was consistent with the results of
Arabidopsis and rice. Five genes (SbTHS, SbTHI0,
SbTH16, SbTH25, and ShTH38) formed an unknown
significant branch. According to the classification char-
acteristics of trihelix gene family, we named it GTSbS.
This may represent a new evolutionary branch of the ¢ri-
helix gene family in sorghum. Additionally, three genes
(ShTH07/34/37) branched independently and were
named ‘orphan genes’, suggesting that the three genes
may have unique functions. The SIP1, GTy, SH4, GT1,
GT2, and GTSb8 subfamilies contained 12, 4, 6, 5, 5,
and 5 ShTH genes, respectively. There were no differ-
ences in the sequences of the 32 proteins shared with
Arabidopsis thaliana and rice during S. bicolor evolu-
tion, however, eight gene duplication events occurred in
the sorghum genome.

Gene structure and motif analysis of trihelix genes in S.
bicolor (L.)

Structures and phases of introns/exons were determined
by aligning the genomic DNA with full-length cDNAs of
SbTH genes. Generally, trihelix members grouped in the
same branch shared similar exons/introns organization
based on the exon/intron number (Fig. 2a, b). Structural
characteristics of the SOTH genes, including the number
and distribution of exons and introns, are shown in Fig.
2b. The CDS of more than half (25,62%) of the trikelix
genes were isolated by the introns. By analysing the gene
structural characteristics, we determined that 15 (38%)
of the SbTH genes had no intron, 11 (28%) had only 1
intron, 8 (20%) had 2 introns, 2 (5%) had 3 introns, and
2 (5%) had 4 introns, and SbTH27 (2.5%) and ShTHI8
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(2.5%) contained 5 and 16 introns, respectively. The
number of exons in the SbTH family varied from 1 to
17, with the GT1 subfamily having 1-17 exons, SIP1
subfamily having 1-6, GTSb8 subfamily having 2-4
exons, three orphan genes having 1-3, GT2 and SH4
subfamilies having 2—3, while GTy subfamily had only 1
exon and no intron. The GTy subfamily contained the
average lowest number of exons, whereas the GT1 fam-
ily contained the highest.

As shown in Fig. 2¢, we used the MEME search tool
(http:/meme.nbcr.net/meme/intro.html) to predict 10
conserved motifs (motif 1 to motif 10) of SbTH proteins
to further analyze the diversity of sorghum trikelix
genes. The lengths of the conserved motifs varied from
15 to 50 amino acids. The motif organizations of each
SbTH protein are shown with the corresponding colour
boxes in Fig. 2c. In Additional File 2 (Table S2), the de-
tailed sequence of each motif is provided. Motif 1 and
motif 2 exist in almost all SbTH proteins, and all SbTH
proteins contain motif 2. Different groups shared similar
motifs, suggesting that these conserved motifs might
play significant roles in particular functions. Moreover,
some SbTH contained more than one motif 2. For in-
stance, SbTH02, SbTH06, SbTH23, and ShTH30, which
are members of the GT2 subfamily, contained two mo-
tifs 2. However, SbTHI15, which is also a member of
GT2 subfamily, contained no motif 3 and only one motif
2. Most members of the SIP1 subfamily contained motifs
1, 2, 5, 7 and 8, except for ShTH27, ShTH31, and
SbTHO4. Members of the SH4 subfamily contained mo-
tifs 1, 2, and 9, ShTH33 and SHTHOI also contained
motif 8, and SbTH17 contained motif 5. Members of the
GTy subfamily contained motifs 1, 2, 5, and 10, and
SbTH24 contained two motifs 1. There were two motifs
1 at the same time in SbTHO7 and SbTH34, which may
be linked to their unique functions.

Chromosome distribution and synteny analysis of trihelix
gene in S. bicolor (L.)

The chromosome positions of SbTH genes were ex-
tracted from the genome annotation files. As shown in
Fig. S1, the 40 ShTH genes are unevenly and non-
randomly distributed at precise positions on chromo-
some 1 to chromosome 9. The SbTH genes were named
according to their physical positions on the S. bicolor
chromosome from top to bottom. Chromosome 4
(Chr4) contained the largest number of SbTH genes (9,
22.5%), followed by Chr6 (8, 20%), Chrl (6, 15%), Chr2
and Chr3 (4 genes each, 10%), Chr8 (3, 7.5%), and Chr5,
Chr7, and Chr9 (2 genes each, 5%). SbTH04 and SbTHOS5
formed a tandem repeat at one end of Chrl to form a
gene cluster. Except for one ShTH gene in the middle of
Chr2, the others were unevenly and non-randomly dis-
tributed on both ends of the chromosome. Additionally,
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Fig. 1 Unrooted phylogenetic tree showing relationships among Trihelix domains of S. bicolor and Arabidopsis. The phylogenetic tree was derived

using the NJ method in MEGA7.0. The tree shows the 24 phylogenetic subfamilies and 1 unclassified group (GTSb8) marked with red font on a
white background. Trihelix proteins from Arabidopsis are marked with the prefix ‘At’
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there was a pair of tandem duplication gene (SbTH04/  were unevenly distributed in 10 S. bicolor linkage groups
SbTHOS, SIP1 subfamily gene) on chrl and seven pairs  (LGs) (Fig. 3). Some LGs had more ShTH genes than
of segmental duplication genes (Fig. 3, Additional File 3:  others (LG1, LG4), with LG1 having the most SbTH
Table S3). A chromosomal region within 200 kb exhibit-  genes (3). Further analysis of the subfamilies of these
ing two or more identical genomic regions is defined as  genes showed that all of them were linked within their
a tandem duplication event. subfamily. Among the six SbTH gene subfamilies, the

As shown in Fig. 3, 13 (32.5%) paralogs were identified ~ SIP1 subfamily had the largest number of linked genes
in the SbTH gene family, indicating an evolutionary rela-  (6/13), whereas the GT2 and GTy subfamilies had 3
tionship among these SbTH members. The ShTH genes  linked genes each.
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Evolutionary and synteny analyses between SbTH genes
and those of several other species

To analyse the evolutionary relationship of the trihelix
gene family between sorghum and five plants (Arabidop-
sis, wheat, rice, tomato, and buckwheat), an unrooted NJ
tree with 10 conserved motifs was constructed using the
NJ method of Geneious R11 according to the protein se-
quences of 40 ShTH genes and the trihelix genes of five
other plants (Fig. S2, the detailed genetic correspond-
ence can be found in Additional File 4: Table S4). The
distribution of SbTH in the phylogenetic tree was rela-
tively dispersed. Most members of the trihelix family
from different species, shown in Fig. S2, shared motifs 2,
and most trihelix family members contained motifs 1
and motifs 5. Generally, trihelix proteins in the same
subfamily had similar motif compositions, and similar
serial motifs tended to cluster in sorghum, wheat, and
rice, indicating that SbTH proteins may be more closely
related to those of rice and wheat than those of the
other plants.

To examine the gene replication mechanism of sor-
ghum trihelix family, we constructed six comparison
system diagrams between sorghum and five representa-
tive species, including two dicotyledonous plants (Ara-
bidopsis and tomato) and three monocotyledonous
plants (buckwheat, wheat, and rice) (Fig. 4). From the
details provided in Additional File 4 (Table S4), the
number of collinear genes between sorghum and wheat,
rice, tomato, and Arabidopsis were 27, 26, 5, and 4,
forming 73, 35, 9, and 4 homologous gene pairs, re-
spectively. By comparing the diagrams, we found that
sorghum was the most similar with wheat and the least
similar with buckwheat, which might be closely associ-
ated with the phylogenetic evolutionary relationship
among them. ShTH0O3 gene showed collinearity in two

monocots and two dicots, indicating that SbTHO3 may
be conserved in gene expansion induced by monocoty-
ledon and dicotyledon differentiation, and play an im-
portant role in plant evolution and environmental
adaptation. A total of 16 ShTH genes (SbTH01/12/13/
15/ 17/20/22/23/24/27/28/30/32/33/36/39) were
unique to monocots, indicating that these genes might
have evolved after differentiation of monocots. Some
SHTH genes were found to be associated with five syn-
onymous gene pairs, including SbTH15/32/40. These
genes may play a key role in the trikelix gene family
during evolution. To better understand the evolutionary
role of SOTH gene family, we performed Tajima D neu-
trality test (Additional File 5: Table S5). The results
showed that the Tajima D value was far from 0, indicat-
ing that this gene family was strongly selected in the
evolution of sorghum.

Expression patterns of SbTH genes in different tissues

and organs

In the plants that have been studied and reported, the
functional studies of many genes indicate that trikelix
genes play a key role in crop growth and development
[34]. To understand the physiological role of ShTH
genes in sorghum growth and development, the expres-
sion levels of two selected genes from the seven subfam-
ilies in different sorghum organs and tissues was
examined using quantitative reverse transcription poly-
merase chain reaction (qPCR). The expression profiles
of the ShTH genes in selected tissues, including of root,
stem, leaf, pericarp, stamen, and pistil, are shown with
histograms (Fig. 5a). The SbTH genes were highly
expressed in specific tissues and organs, indicating that
SbTH family members had multiple functions in the
growth and developmental stages of sorghum. We
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observed that 10 SbTH genes (SbTH02/07/10/14/24/25/
32/33/36/39) were relatively highly expressed in sor-
ghum leaves, five (SbTH10/25/27/28/37) were relatively
highly expressed in sorghum pericarps, and three
(ShTH10/14/15) were relatively highly expressed in the
stems,stamens and pistils. The relative expression of
ShTHI10 was the highest in leaves, pericarps, stamens
and pistils, and ShTHI5 was the highest in stems.

Generally, the relative expression of the 14 ShTH genes
in the sorghum seedling roots was low (Fig. 5a).
Furthermore, we examined the correlation between
the expression profiles of the 14 SbTH genes, and the re-
sult showed that majority of the SbTH genes were posi-
tively related, especially these SbTH genes (SbTH25/10/
32/14/24/07/36/39) that were significantly correlated
with several other SbTH genes. SOTH15 was negatively
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correlated with 12 ShTH genes except ShTH39, while radiation) using qPCR. Figure 6 shows that most of the
SbTH28 was negatively correlated with SbTH32/14/24/  SbTH genes were expressed in different organs of sor-
36/39. Additionally, SbTH28, SbTH27, and SbTH30 were  ghum after 2h under high temperature, low
significantly positively correlated with one another. The temperature, and water flooding, whereas most of the
correlation coefficient of SbTH24, SOTHO7, and SbTH36  SbTH genes were expressed after 24 h under osmotic,
was 1 (Fig. 5b). salt, and ultraviolet irradiation. There was a significant

upregulation of the expression profiles of the 12 SbTH
Expression patterns of SbTH genes in response to abiotic genes in the stems after 2h under high temperature
stress stress, however, SbTH37 expression was significantly up-
To determine the role of SOTH genes in abiotic stress re-  regulated in the roots after 24 h under high temperature
sponses, we examined the expression profiles of 12 rep-  stress. Most of the SbTH genes were highly expressed in
resentative genes from the seven subfamilies under the leaves after 2h exposure to low temperature, while
different abiotic stress conditions (high temperature, low  SbTH07 and SbTH37 were highly expressed in the stems
temperature, osmotic, flooding, salt, and ultraviolet and roots, respectively, after 24h exposure to low
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Fig. 5 Tissue-specific gene expression and correlation between gene expression patterns of 14 sorghum trihelix genes a The expression patterns
of 14 sorghum trihelix genes in the root (R), stem (SE), leaf (L), pericarp (PC), stamen (ST), and pistil (PS) tissues were examined by qPCR. Error bars
were obtained from three measurements. Lowercase letter(s) above the bars indicate significant differences (a = 0.05, LSD) among the treatments.
b The red round spot: positively correlated, the purple round spot: negatively correlated. The deepest and largest red round spot indicate a

significant correlation at the 0.05 level.

temperature. Furthermore, most of the genes were up-
regulated in the roots after 24 h exposure to osmotic
condition, however, SbTH25 and SbTH28 were relatively
downregulated. Most of the genes (SbTH02/07/10/24/
25/28) were upregulated in the leaves after 2 h exposure
to flooding, while SbTHI15, SbTH27, and SbTH32 were
upregulated after 24 h exposure. Additionally, SbTH36
and ShTH37 were upregulated in the stems after 2 h ex-
posure to flooding, while SbTH39 was upregulated in
the roots after 24h of exposure. Most of the genes
(ShTHO02/10/15/24/25/27/28) were upregulated in the
leaves, while SbTH07, SbTH37, and SbTH39 were upreg-
ulated in the stems after 24 h exposure to ultraviolet ra-
diation. However, SbTH32 was not upregulated in the
roots, stems, and leaves. All the SbTH genes were highly
expressed in leaves after 24 h of exposure to salt stress,
in which the relative expression of SbTHI10/24/37
reached hundreds or even thousands fold. Figure 7
shows the correlation coefficient diagram of 12 thrihelix
genes transcriptional expression fold changes in re-
sponse to abiotic stress. According to the analysis, there
was a significant correlation between the relative expres-
sion of most genes at 2h and 24 h, but no significant
correlation between ShTH32 /37 and other genes. After
2h of treatment, there was a negative correlation be-
tween ShTH32 and SbTH37, no significant correlation
between SbTH37 and the other 11 thrihelix genes, be-
tween ShTH32 and SbTH39/24 was significant (Fig. 7a).
After 24h of treatment, the relative expression of
SbTH37/07/32 was not significant compared with most
other genes, between SbTH37 and SbTHO7 was signifi-
cant, between SbTH32 and SbTH37/07/25/36/10/24/15/
27 was not significant, between ShTHO7 and SbTHI10/
24/15/27/39/21 was not significant (Fig. 7b).

Discussion

Sorghum is the dietary staple of over 500 million people
in more than 30 countries in the tropics and semitropics
[35]. Sorghum is a typical C4 crop and an important raw
material for livestock nutrition and brewing industry.
The sorghum reference genome was published in 2009
[36], however, whole genome studies of sorghum trihelix
gene family have not been published. In the present
study, 40 SbTH genes were identified in sorghum, simi-
lar to the number of SbTH genes in tomato and rice [12,
24]. Trihelix family genes were previously classified into
three distinctive subfamilies (GTa, GTf, and GTy) [37].

Kaplan-Levy et al. classified trihelix genes from rice
(Oryza sativa) and Arabidopsis into five clades namely
GT-1, GT-2, SH4, SIP1, and GTy [33]. Recently, a new
subfamily, GT§, was identified in tomato (Solanum lyco-
persicum) and rice [12, 24]. In the present study, phylo-
genetic analysis showed that sorghum trikelix genes
were classified into six subfamilies (GT-1, GT-2, SH4,
SIP1, GTy, GTSb8) (Fig. 1). Based on the constructed
phylogenetic tree, we identified at least one trihelix pro-
tein from S. bicolor in each subgroup of AtTHs and
OsTHs [20, 24], indicating that the time of differenti-
ation of the trihelix family may have been earlier than
differentiation of monocotyledons and dicotyledons. The
trihelix genes within the reported subfamilies may play a
fundamental role in the tissue development, environ-
mental adaptation and gene evolution in dissimilar plant
species, including Arabidopsis thaliana [20], tartary
buckwheat [30], Brachypodium distachyon [38], Moso
bamboo [39], and wheat [29]. Compared to A. thaliana,
the group SbSH4 (6, 15.0%) has more members, and in-
dicates that those SbSH4 members may have undergone
stronger partial differentiation in the long-term evolu-
tionary process. A new subfamily (GTSb8) and three
new ‘orphan genes’ were found in sorghum, suggesting
the possibility of further differentiation of TH family in
sorghum. This new cluster of ‘GTSb8 indicates the
complexity of genetic structure and physiological func-
tion of trihelix gene members. However, more evidence
is needed to determine whether the new cluster is
unique to C4 plants.

The results of motif composition and gene structure
analysis of the trihelix genes were consistent with the
phylogenetic classification results. The ShTH genes in
the GTSb8 and ‘orphan gene’ subfamilies had only the
trihelix domain (GT domain), whereas all members of
the SH4, SIP1, and GTy subfamilies had MYB DNA-
binding domains. The similarity of most members in the
same subfamily indicate that the conserved motifs may
play a critical role in the functions of specific groups. Se-
quence distribution indicated that genes with the same
motif may be generated by gene amplification in the
identical population, which is similar to the report in
chrysanthemum [40]. Among the seven subfamilies, GT-
1 and GT-2 have been examined in previous studies,
and their homology is much higher than that of other
subfamilies [41]. Gene duplication is one of the major
evolutionary mechanisms for generating novel genes that
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Fig. 6 Correlation coefficient diagram of relative expression of 12 thrihelix genes in roots, stems and leaves of sorghum seedlings treated with 2 h
(@) and 24 h (b) under different abiotic stress (FL: Flooding, HT: High temperature, LT: Low temperature, PEG: Osmotic, SA: Salt, UV: Ultraviolet
radiation). The red round spot: positively correlated, the blue round spot: negatively correlated. The deepest and largest red round spot indicate a

significant correlation at the 0.05 level

help organisms adapt to different environments [42, 43].
Generally, gene families expand mainly by tandem and
segmental duplications [42]. Tandem and segmental du-
plications are key factors in enriching protein function
and promoting gene evolution and expansion [44]. Sor-
ghum had fewer trikelix genes than did soybean (71),
Populus trichocarpa (56), and Brassica napus (52) [45—
47], but more trihelix genes than did chrysanthemum
(20), buckwheat (31), and tomato (36) [12, 27, 30]. This
difference may be due to whole-genome duplication
event that occurred after the earliest ancestors of the
other species diverged. It is assumed that the occurrence
and evolution of some SHhTH genes may be driven by
these fragment duplication events, which is similar to
the report on Populus trichocarpa [46]. Based on the re-
sults of chromosome distribution, there was no SbTH
gene on chromosome 10, indicating that the SbTH gene
family may have been affected by gene deletion during
the evolutionary process [48]. A similar phenomenon was
reported in the rice and soybean trikelix gene families,
which contained only 6 and 13 pairs of duplicated genes
among a total of 41 (29.3%) rice trihelix genes and 71
(36.6%) soybean trihelix genes, respectively [21, 24]. Some
SHbTH gene deletions can be attributed to dynamic
changes after fragment duplication, which is consistent
with the findings of Populus trichocarpa [46]. In this
study, tandem repeat events (SbTHO04 / SbTHO5) contrib-
uted less to the increase of sorghum trihelix membership
than segmental duplicated (12 trikelix genes, 30.0%). Fur-
ther analysis of these Trihelix members revealed that they
were all linked within subfamilies. Therefore, some Trihe-
lix genes may be generated by some replication events,
which further confirms that replication events may be an
important mechanism for the rapid expansion of Trihelix
family members in plants.

In addition, we analyzed the exon and intron struc-
tures of 40 identified ShTH genes (Fig. 2, Attached File 1:
Table S1). The number of exons in each gene ranged
from 1 to 17 (Fig. 2A/2B). The proportion of SbTH gene
without introns (15, 37.5%) was close to that of rice [24].
Interestingly, most of the intron-free genes are distrib-
uted in the GTy subfamily and the SIP1 subfamily,
which are similar to Arabidopsis thaliana [20]. A certain
number of introns can increase the length of genes and
the frequency of recombination between genes, which is
beneficial to the evolution of species. However, intron-
free genes tend to respond quickly to changes in the en-
vironment [49]. The lowest average number of exons

was observed in the GTy subfamily, whereas the highest
was observed in the GT1 subfamily, which is consistent
with the result in wheat [29] and buckwheat [30]. As the
largest subfamily, the motif compositions of the SIP1
subfamily (most of the members of this clade shared
motifs 1, 2, 5, 7, and 8) were different from that of other
subfamily members, whose motif compositions were
similar to that in cabbage, chrysanthemum [27], wheat
[29], and Medicago truncatula [50]. The SIP1 subfamily
members may have more complex and diverse functions
than other subfamily members in sorghum.

Previous studies have shown that trihelix TF family is
widely involved in the development of plant organs [30].
The expression levels of trikelix gene in sorghum stem,
root, leaf and flower were determined by qPCR. As
shown in Fig. 5a, most of trihelix gene members showed
significant differential expression (more than 2-fold dif-
ference). SbTHO2, is classified into subfamily GT2, has
the highest expression levels in leaves and pistils, which
is similar to the expression pattern of homologous gene
AT5G03680.1, which regulates collective leaf structure
and inflorescence development in Arabidopsis [49, 51].
As expected, the subfamily GT1 members, SOTH32 and
SbTH39, are highly expressed in leaves and stamens,
which was consistent with the expression pattern of the
homologous gene AT1G13450 [52]. In addition, the ex-
pression of SbTH07, SbTH10, SbTHI4, SbTH25,
SbTH33, and SbTH36 in leaves of sorghum were signifi-
cantly higher than those in roots, stems and pericarps.
These tissue-specific trihelix genes may play a role in
the growth and differentiation of corresponding organs,
but more experiments are needed to verify the function
of these genes [53]. In addition, some ShTH genes
showed significant positive correlation, such as SbTH27
and ShTH28 (Fig. 5b). For example, SbTH27, ShTH28
and AtTH]I3, both belonging to subgroup SIP1 and hav-
ing similar motif components (Fig. 2). The expression of
SbTH27 and ShTH28 in pericarp of millet were signifi-
cantly higher than those in roots, stems and leaves, and
their expression pattern is similar to that of AtTHI3
[54]. Therefore, we can further verify the possible rela-
tionship between these genes and pericarp development
through some experiments. The expression levels of
some SbTH members were significantly positively corre-
lated, indicating that they may play a synergistic effect in
six sorghum organs (Fig. 5b).

To further explore the physiological role of the trihelix
family in environmental adaptation, we systematically
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Fig. 7 Expression patterns of 12 S. bicolor trihelix genes in roots, stems and leaves of sorghum seedlings treated with 2 h and 24 h under different
abiotic stress (FL: Flooding, HT: High temperature, LT: Low temperature, PEG: Osmotic, SA: Salt, UV: Ultraviolet radiation) were examined by gPCR.
Error bars were obtained from three measurements. Lowercase letter above the bar indicates significant difference (a=0.05, LSD) among

the treatments

analyzed the expression of 12 SbTHs in sorghum seed-
lings under six stresses (Fig. 6). For example, under NaCl
stress, the expression levels of 10 SbTH genes were sig-
nificantly up-regulated in roots, 8 in stems, and 7 in
leaves and which may help sorghum adapt to drought
conditions. In this study, under UV, PEG and NaCl
treatment, SbTHIS5 showed obvious induction effect at
seedling stage, and its expression level in stems and
leaves were significantly increased. AtTH26 and ShTH1IS5,
are the members of subfamily GT2, have similar motif
composition. Previous studies have shown that AtTH26
(At5G28300) can be induced by NaCl, drought, cold,
and abscisic acid, and highly expressed in Arabidopsis
inflorescence and leaves to help improve its resistance to
adversity [55]. ShCIGT, a cold-inducible gene isolated
from wild tomato, contributes to the improvement of
abiotic stress tolerance in tomato [56]. Similarly, the ex-
pression of SbTH39 was significantly up-regulated in al-
most all abiotic stresses, which may enhance the
adaptability of sorghum to the environment in a similar
pattern. In Arabidopsis, the GT1 cis element interacts
with the GT-1-like transcription factor AtGT-3b in vitro
and in the yeast system. Transcription of AtGT-3b was
also rapidly induced within 30 min after sodium chloride
treatment, thus helping to enhance its resistance to salt
stress [57]. Yoo et al. [58] found that GT2-like 1 (GTLI)
in Arabidopsis thaliana is a transcriptional suppressor
for promoter of STOMATAL DENSITY AND DISTRI-
BUTION 1 (SDD1I), which can negatively regulate sto-
matal development and transpiration [57, 59].
Interestingly, SbTH37 is highly expressed in response to
almost all stresses in some tissues, suggesting that some
new evolutionary directions in sorghum may be the re-
sult of multiple adaptations to the environment. In
addition, many studies have shown that TH-TFs are not
only involved in response to abiotic stress, but also in
disease resistance [15]. After being infected by Magna-
porthe grisea, the GT-1-like gene in rice, rmll, can be
rapidly up-regulated in seedlings to reduce the damage
of the pathogen [14]. The GTLI gene plays a key role in
the MPK4 pathway in Arabidopsis by regulating the bal-
ance of salicylic acid and acting as a bacteria-induced
immune factor [60]. SbTH28, a member of the subfamily
GTSb8, was significantly down-regulated in roots under
six stresses. This shows that it may actively participate in
the response to abiotic stress. In summary, the expres-
sion patterns of SbPTH members of the six subfamilies
show great differences, which indicates that different

genes may play a role with unique physiological func-
tions. These results indicate that the trikelix gene family
may play an important role in the tissue development
and abiotic stress of sorghum, which needs further ex-
perimental verification.

Conclusion

In summary, the study is the first genome-wide analysis
of trihelix genes in sorghum. We identified 40 trihelix
genes in sorghum, which were classified into seven sub-
families and distributed in nine chromosomes. Addition-
ally, we identified one pair of tandem duplication gene
and seven pairs of segmental duplication genes in the
SbTH gene family, indicating that gene duplication is the
main force driving trihelix gene evolution in sorghum.
Based on the expression profiles of the SbTH genes in
different organs and tissues of sorghum under different
abiotic stress conditions, some of the key candidate
genes were screened out. For example, SbTHIO,
SbTH37, and ShTH39 may play important roles in the
tissues development and abiotic stresses of sorghum.
The findings of our study serve as a basis for further in-
vestigation of the functions of ShTH genes and provide
candidate genes for increasing sorghum yield.

Methods

Gene identification

We downloaded the complete S. bicolor genome se-
quence (Accession: GCA_000003195) from the Ensembl
Genomes website (http://plants.ensembl.org/Sorghum_
bicolor/Info/Index). The trihelix family members were
identified by two BLASTp searches [61, 62]. First, all
possible trihelix proteins with score value =100 and e-
value <1~ '° were identified from the S. bicolor genome,
referring to trihelix protein sequences of A. thaliana by
BLASTp search. Second, the HMM profile consistent
with the trihelix domain was obtained from the Pfam
protein family database (http://www.pfam.sanger.ac.uk).
Candidate SbTH proteins containing the trihelix were
screened out using HMMER3.0 (default parameters)
with a cutoff of 0.01 (www.plants.ensembl.org/hmmer/
index.html) [63] and SMART http://www.smart.embl-
heidelberg.de). [64, 65]. In addition, information on basic
features of the trihelix proteins of the SbTH gene family,
including coding sequence length, isoelectric point, pro-
tein molecular mass, and subcellular localization, was
obtained from the ExPasy website (http://web.expasy.
org/protparam/).
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Trihelix gene structure

The trihelix domain sequences of the characterised SbTH
proteins were used to create multiple protein sequence
alignments using ClustalW with default parameters [66].
The deduced amino acid sequences in the trihelix do-
mains were then adjusted manually using Mega 6.0 and
GeneDoc 2.7. The exon/intron structures of the ShTH
genes were generated by the Gene Structure Display Ser-
ver (GSDS: http://GSDS.cbi.pku.edu.cn) [67]. To compare
the differences in SbTH proteins, the conserved motifs of
the trihelix proteins were determined. The analysis of the
conserved protein motifs in SbTH proteins was performed
with the protein conserved motif online search program
MEME (http://meme-suite.org/tools/meme) [68, 69]. The
optimization parameters were set to the maximum num-
ber of motifs of 10 and the motif breadth as 6 to 200
amino acid residues [62, 69, 70].

Chromosomal distribution and gene duplication

All SbTH genes were mapped to S. bicolor chromosomes
based on physical location information from the data-
base of the S. bicolor genome using Circos [71]. The de-
tection and study of the gene duplication events in
SbTH genes were performed using the multiple collinear
scanning toolkits (MCScanX) with default parameters
[72]. We analysed the homology of the trikelix genes be-
tween S. bicolor and five plants (A. thaliana, V. vinifera,
S. lycopersicum, B. distachyon, O. sativa subsp. indica,
and Z. mays) using Dual Synteny Plotter (https://github.
com/CJ-Chen/TBtools). Non-synonymous (ka) and syn-
onymous (ks) substitutions of each duplicated trihelix
gene were calculated using Ka/Ks-Calculator 2.0 [73].

Phylogenetic analysis and classification of trihelix gene
family

The Arabidopsis trihelix and SbTH protein sequences
were used for multiple amino acid sequence alignments
using MEGA X software, and we used the NJ method
with a bootstrap value of 1000 replicates and default pa-
rameters to construct the unrooted phylogenetic tree.
The full-length amino acid sequences of the trihelix pro-
teins (Additional file 1: Table S1) of SbTH in A. thali-
ana, V. vinifera, S. lycopersicum, B. distachyon, O. sativa
subsp. indica, and Z. mays were used to construct the
phylogenetic trees. The trihelix protein sequences were
obtained from the UniProt database (UniProthttps://
www.uniprot.org/). The identified SbTH genes were clas-
sified into different subfamilies.

Plant materials, growth conditions, and abiotic stress in S.
bicolor

Sorghum bicolor ‘Hongyingzi’ was used for this study.
The sorghum plants have been under cultivation in the
greenhouse of Guizhou University since 2019. The
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plants were grown in pots filled with soil and vermiculite
(1:1) in a growth chamber under a 16 h/25°C day and 8
h/20 °C night regime and 75% relative humidity. We col-
lected the stems, roots, leaves, pericarp, stamen, and pis-
til from five healthy sorghum plants. The organs were
quickly fixed in liquid nitrogen and stored at —80°C
until further analysis. The expression profiles of selected
SbTH genes in different organs of 21-d-old sorghum
plants after 2h and 24 h under different abiotic stress
conditions were examined using qPCR analysis. The
seedlings were subjected to salt (900 mM NaCl), water
flooding (whole plant), osmotic (30% PEG6000) [74, 75]
[1], UV exposure (70 uW/cmz, 220V, 30W), high
temperature and low temperature stress conditions (The
plants were placed in light incubators at 40 °C and 4 °C,
with 80% light, 16 h during the day, 8 h at night and 75%
humidity.). Each stress treatment was performed with
five replicates. Sorghum plants used for later sampling
were planted in the teaching experimental field of Gui-
zhou University, and the cultivation and management
measures were consistent with the field production.

Total RNA extraction, cDNA reverse transcription, and
gPCR analysis

Total RNA of each sample was extracted using a plant
RNA extraction kit (TTANGEN DP441), and the se-
quences were used for cDNA library construction. qPCR
SYBR Green Premix (Vazyme, China) was used to con-
duct qPCR analysis in a CFX™ real-time PCR detection
system (Bio-Rad, USA). The primer sequences used were
designed by Primer 5.0 (Additional File 6: Table S6). We
used the Actin gene, which was stably expressed at each
growth stage in almost all tissues, as the internal control
[76]. The ACTIN gene was used as calibration to detect
three technical repeats of the three biological repeats,
and 22T method was used to analyze the expression
[77].

Statistical analysis

Data obtained during the study were subjected to ana-
lysis of variance (ANOVA) using SPSS software (IBM
Corporation). Mean values were compared using Fisher’s
least significant difference (LSD) test at 0.05 significance
level. The histograms were drawn using Origin 8.0 soft-
ware (OriginLab Corporation, Northampton, Massachu-
setts, USA).

Abbreviations

TH: Trihelix; SbTH: Sorghum bicolor Trihelix; GAPDH: Glyceraldehyde-3-
phosphate dehydrogenase; qPCR: Quantitative real-time polymerase chain re-
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