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Abstract

Background: Phylogenetic profiling is widely used to predict novel members of large protein complexes and
biological pathways. Although methods combined with phylogenetic trees have significantly improved prediction
accuracy, computational efficiency is still an issue that limits its genome-wise application.

Results: Here we introduce a new tree-based phylogenetic profiling algorithm named GFICLEE, which infers
common single and continuous loss (SCL) events in the evolutionary patterns. We validated our algorithm with
human pathways from three databases and compared the computational efficiency with current tree-based with 10
different scales genome dataset. Our algorithm has a better predictive performance with high computational efficiency.

Conclusions: The GFICLEE is a new method to infers genome-wide gene function. The accuracy and computational
efficiency of GFICLEE make it possible to explore gene functions at the genome-wide level on a personal computer.
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Background
Phylogenetic profiles inferring the functions of protein-
coding genes based on shared binary patterns of hom-
ology gain and loss. For the first time, the phylogenetic
profile is used to predict gene function that using the
binary phylogenetic profile with the presence and the
absence of homologies of a reference genome across
organisms [1]. Phylogenetic profile plays a critical role in
exploring gene functions. Such as, phylogenetic profiles
have been used to infer the function network [2], gene
fusions [3], protein-protein interactions [4–6], and gene
function explored [7–10]. Over the past decade, the
rapid development of sequencing technologies, especially
the development of high-throughput sequencing tech-
nologies, has led to a linear decline in sequencing costs,

enabling phylogenetic techniques to be applied at the
genome-wide level of eukaryotes. For example, our pre-
vious work introduced PrePhyloPro, web-based software
that is based on the phylogenetic profile for accurately
predicting proteome-wide linkages [5]. There are also
other applications of the phylogenetic profile in Saccha-
romyces cerevisiae (S. cerevisiae) [3], Drosophila melano-
gaster (D. melanogaster) [11], and Caenorhabditis
elegans (C. elegans) [12]. The binary phylogenetic profile
that can be used to explore gene function. However,
there has a basic challenge is how to identify co-evolve
genes with the same function by similar patterns of pres-
ence and absence. The measure methods always used to
compare phylogenetic profiles are Hamming distance [1,
13], Jaccard similarity [14, 15] and Pearson correlation
[16]. On other hand, in non-binary phylogenetic profiles,
Mutual information is often used to measure similarities
between phylogenetic profile vectors [17–19]. A com-
mon feature of the distance-based or information-based
approach is that computational speed is very fast and
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requires less computational resources, but it can lead to
high false positives.
To reduce the predictions of false positives, the phylo-

genetic profile combined with the species tree to explore
the protein function, many methods have been pro-
posed. For example, Pagel et al. proposed the relation-
ship between the co-evolution of proteins based on the
likelihood estimation [20, 21]. This method specifically
estimates the direct coupling of two proteins to indicate
that there is a direct co-evolution relationship between
the two proteins. However, this method has obvious dis-
advantages as compared with the simple vector correl-
ation as the measurement method, which requirements
on computing resources and not suitable for the gen-
omic level. Li et al. proposed a clustering of evolutionary
conservation modules based on the hidden Markov
model combined with phylogenetic and species evolu-
tionary trees [7]. In this model, the author proposed an
algorithm called CLIME that clusters known biological
pathway proteins by the Dirichlet distribution and then
infers the unknown proteins based on the evolutionary
relationship of the species tree. The algorithm can ac-
curately estimate the likelihood of predicted proteins in
each evolutionarily conservative module. However, to es-
timate the zero hypothesis Gibbs sampling and simulat-
ing the annealing algorithm process must be run, which
is much more time-consuming than the traditional co-
evolutionary relationship measurement algorithm and
take up a lot of computing resources. Dey et al. used
phylogenetic profiles combined with a 177 eukaryotic
tree constructed a homologous phylogenetic profile of
humans to predict the function of human unknown
genes [10]. Although this method extended more species
tree to explored gene functions, the definition of protein
interaction scores by phylogenetic tree deletion and
transfer is not considered that the tree is rotatable. The
different species ordering may bring completely different
results that will lead to high false positives in predic-
tions. The other methods proposed to reduce the rate of
false positive predictions by normalization, such as
singular value decomposition (SVD) [22, 23] and normal-
ized phylogenetic profile (NPP) [12, 24, 25].
In this work, we propose Gene Function Inferred by

Common Loss Evolutionary Events (GFICLEE) as a new
method that infers genome-wide gene function. This
work aims to discover new genes that are potentially in-
volved in know biological pathways or cellular com-
plexes. GFICLEE by mapping current gene profile
presence and absence states to species tree with single
and continuous loss events and finding which genes had
the same loss events pattern by scanning the genome
phylogenetic profile (Fig. 1). Notably, our algorithm is
efficiently applied to genome-wide data, it’s about 30
times faster than the current best algorithm CLIME

under the same-size gene sets. Aiming to address the
challenge of the traditional algorithm always produce ex-
cessive false positive in the predictions. We designed
GFICLEE with the tree-based method and the single and
continuous loss score (SCL score) as scoring metrics
that explore the genomic phylogenetic profile and infer
which genes are informative shared the same evolution-
ary pattern with the input genes across genomic data
(method). Strikingly, our algorithm is accurate, the
cross-validations of Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [26], Gene Ontology (GO)
database [27] and comprehensive resource of mamma-
lian protein complexes (CORUM) database [28] database
with constructed sensitivity and specificity curves mani-
fest outperform current tree-based algorithm and dis-
tance/similarity method.

Results
GFICLEE: gene function inferred by common loss
evolutionary events
We developed an algorithm named GFICLEE That base
on binary phylogenetic profile and species tree (Fig. 1a).
Users need to input three data (1) the gene set in the
same biological pathway or biological complex, (2) a bin-
ary species tree, (3) the binary phylogenetic profile of all
genes in this reference genome across the species. This
species tree and binary phylogenetic profile can be de-
fined by users. The input gene set belongs to the same
biological pathway or cellular complex. When the user
input gene set, the algorithm performs a genome-wide
scan of each input gene searches the genes that have the
same loss events as input genes. Firstly, GFICLEE classi-
fies all genes in the genome profile into each input gene
by the Bayesian classify method in the prediction section
of Fig. 1a. Secondly, predicting the co-evolution proteins
for each of the classified parts. Lastly, that predicted can-
didate gene scored by our defined SCL score (method).
To reduce the amount of computation-intensive, our al-
gorithm predicts informative genes began with the Naïve
Bayesian method (Fig. 1b). Here we also compared the
performance of other classification methods and the
Naïve Bayesian method, such as Random Forest, Support
Vector Machines, Nearest Neighbors. We used scikit-
learn [29], a Python-based ML library to implement
these algorithms (Additional file 1: Fig. S1). These per-
formances show that the classification algorithm does
not play a decisive role in the performance of the final
prediction in our algorithm, so we choose the simple
Naïve Bayesian method for classification.
GFICLEE has strongly assumed that genes are only

gain once in the species tree but can be lost one or more
times [30]. We use this assumption for the reconstruc-
tion of the ancestral state with the parsimony principle
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Fig. 1 The schematic and algorithm of GFICLEE. a This program began with three inputs (1) species tree (2) binary phylogenetic profile (3) gene
set. Then scan the genome profile for each input gene in the gene set with the Bayesian classification method. The final predicted the
preferential genes with the same evolutionary pattern of the input gene set and scored by SCL score. b Mapping the presence and absence
patterns of phylogenetic profile to gain and loss states in the species tree. The single absence map to species tree occurs single loss events
(green dotted arrow) and continuous absence map to species tree occurs continuous loss events (green solid arrow). A penalty of 1 to genes in
the genome which has the same single and continuous loss events with gene 1 (green solid and dotted arrow) and a penalty of − 1 to that have
different single and continuous loss events
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(Fig. 1b). In this way, we map the presence and absence
patterns of the phylogenetic profile to gain and loss on
the species tree topology. For GFICLEE algorithm, the
“loss” flags in a binary profile of gene number corres-
pond to changes of gene numbers from non-zero to zero
in a species tree. Decreasing or unchanging gene num-
bers from non-zero to non-zero is classified into the
“gain” category (Fig. 1b). The gene loss events in the
species tree have two models, one is in the tree topology
leaf node caused by genes that occur independent ab-
sence states in phylogenetic profile. We map the states
to tree topology as an independent loss event and we
defined this model as a single loss event (green dotted
arrow). The other model is caused by genes that occur
continuous absence states in phylogenetic profile. We
map the states to tree topology as the continuous loss
events and we defined this model as a continuous loss
event (green solid arrow).
In our algorithm, a basic challenge was to define a

scoring metric that effective to measure the genes in the
genome that have the same evolutionary history in tree
topology or presence and absence in profile patterns
with input pathway genes. Here, we defined a phylogen-
etic co-evolution score (SCL score) (method) to distin-
guish the confidence of genomic genes. The SCL score
is based on the genes that occur single and continuous
loss events in tree topology. For example, Fig. 1b match
genome genes by this method, if the gene x in the gen-
ome has the same single or continuous loss event with
input genes, gene x is penalized 1 point each time (green
solid and dotted arrow). Conversely, there is no match
to a consistent loss event that penalty is − 1 (black dot-
ted arrow). By this method, we measure all genes in the
genome phylogenetic profile by the same scale, the high
SCL scores represent informative genes in the predicted
result.

The pathway genes occur gain event on the same
common ancestor
Our algorithm scans the input genes one by one in the
genome-wide phylogenetic search for genes that have
the same evolutionary pattern. Instead of clustering the
input genes and then predicting the informative genes,
the goals just like the CLIME algorithm [7]. Our meth-
odological approach is based on gene phylogenies to
infer genes that have the same evolutionary in all ge-
nomes. GFICLEE scan all genes in the genome and filter
gene by the same common ancestor since we scan all
genes in the Arabidopsis thaliana (A. thaliana) and Try-
panosoma brucei (T. brucei) dataset respectively and rec-
ord genes occur gain node event (Fig. 2a, b). The
distributions of gain nodes are showing that genes in
one pathway can be clustered into different nodes. In
the A. thaliana genome genes, all pathway genes in the

figure are clustered into 12 different nodes, which indi-
cates that the genes have the same evolutionary pattern
with the common ancestor in the same node (Fig. 2a).
This phenomenon is more obvious in T. brucei that has
a smaller genome, and these genes are clustered in 5 dif-
ferent nodes only (Fig. 2b). We also test the pathway in
CORUM database (Additional file 1: Fig. S2a), GO data-
base (Additional file 1: Fig. S2b) and KEGG database
(Additional file 1: Fig. S2c) also shows that most genes
gain event occur in the common ancestor. The distribu-
tions of the common ancestor showing that in each
pathway only 10% of the genes have the same common
ancestor and cover 86.1% in A. thaliana 75.6% in T. bru-
cei. It also indicates that it is necessary to perform a
genome-wide scanning of every input gene. Although
genes in one pathway always occur gain event in a com-
mon ancestor, their genes in one pathway usually cluster
in a different node. For example, the genes in the path-
way “Arachidonic acid metabolism” clustered into 4 dif-
ferent nodes and genes in the “Ribosome” pathway
clustered into 6 different nodes (Fig. 2a). it indicates that
genes in one pathway first occur gain event can form
different nodes that lead to genes functions appeared
later or earlier than input genes. There has a strong as-
suming that the genes with similarity function appear in
the common ancestor for GFICLEE (Additional file 1:
Fig. S3a (1)). Hence, we set GFICLEE to predict genes
that have a similar function from the common ancestor
as the default parameter. For gene functions that appear
later or earlier than the input gene (Additional file 1:
Fig. S3a (2,3,4)), GFICLEE also provided an interface for
users to choose from. We test the performance of differ-
ent cases (Additional file 1: Fig. S3b) show that The per-
formance of search node form input genes node is best
(Additional file 1: Fig. S3b (1)) than the other three set-
tings. Interestingly, setting the search node earlier than
the input genes node (Additional file 1: Fig. S3b (4)) is
very similar to the search node from the input genes
node (Additional file 1: Fig. S3b(1)).

Predictive performance of GFICLEE
We compared our algorithm with a tree-based algorithm
CLIME (version 1.1) [31], the similarity-based method
Jaccard and distance-based Hamming distance by using
5-fold-leave-half-out cross-validation on the biological
pathway or cellular complex. To validated the robustness
of our algorithm, we used the human genome with the
biological pathways and cellular complexes from
CORUM (1056 complexes) [28], KEGG (116 pathways)
[26] and GO (911 gene sets) [27] databases. For each
pathway, complex and gene set we constructed sensitiv-
ity and specificity curves to show that all methods are
substantially better than random chance at all specificity
values (Fig. 3). In comparison to CLIME, GFICLEE had
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Fig. 2 The common ancestor of genes in different pathways. a The distribution of gene’s common ancestor in A. thaliana pathways. b The
distribution of gene’s common ancestor in T. brucei pathways
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enhanced sensitivity upon decreasing the specificity (1-
specificity was increasing) in the CORUM and GO data-
base. For example, the specificity from 0.993 to 1.00 in
CORUM complex (Fig. 3a) and from 0.986 to 1.00 in
GO gene set (Fig. 3b) GFICLEE have higher sensitivity,
showing a noticeable improvement. Interestingly, we
found that GFICLEE performed exceptionally better
than the other three methods in the GO and CORUM
databases, while the KEGG database showed similar per-
formance with CLIME (Fig. 3c). This indicates that GFIL
CEE is more robust as the test dataset increases. Specif-
ically, the CLIME algorithm using log-likelihood Rate
(LLR) scoring predicted genes with threshold greater
than 0 (Test ROC curve with thread from 0 to 60) and
our algorithm does not have artificially set thresholds
(Test ROC curve with thread from − 19 to 34). Our al-
gorithm can cover more genes in the entire genome and
had a wider threshold. In the verifications of the three
databases, our algorithm is still better than the CLIME
algorithm at threshold 0 of the CLIME algorithm. For
example, As of the LLR scoring threshold of 0, the sensi-
tivity of CLIME was 0.068, 0.141 and 0.358, whereas the
sensitivity of GFICLEE was 0.096, 0.161 and 0.360 in
CORUM, GO and KEGG dataset respectively showing
the GFICLEE had higher sensitivity than CLIME in
threshold lower bound 0. We calculated the area under
the curve (AUC), we observed that the AUCs of GFIC
LEE were large (0.550, 0.594, 0.713) in comparison to
CLIME and hamming/Jaccard method in three database

gene set (Fig. 3a, b, c). The test results show that tree-
based algorithms do perform better than traditional dis-
tance or similarity methods in predicting gene function.
The cross-validation shows that our algorithm is ro-

bust and gives good prediction results across genome-
wide. We also validated our algorithm with the different
genomes, we papered the A. thaliana phylogenetic pro-
file and the input dataset to download from the KEGG
database (Release 88.1) [26]. The sensitivity and specifi-
city curve showed that our algorithm is still practical in
the model organism A. thaliana (Additional file 1: Fig.
S4a). Moreover, to further verify the universal applicabil-
ity of our algorithm in eukaryotic genomes, we used Try-
panosoma brucei (T. brucei) genomes that belonged to
protists to validate our algorithm (Additional file 1: Fig.
S4b). The validations of the three pathway datasets from
different databases, A. thaliana and T. brucei genome
demonstrated that the robustness and practicability of
our algorithm.

Algorithm implementation and computational efficiency
We implemented GFICLEE in Java programming
language and Supported Linux, Windows, and Mac OS
platforms (https://github.com/yangfangs/GFICLEE1.0).
We compared the computational time between our algo-
rithm with CLIME algorithm by using different scale
genome-wide datasets (Additional file 2: Table S2).
About that genomes, 5 of them are more than 10,000
genes, and the other five not more than 10,000 genes.

Fig. 3 The performance of GFICLEE compares with existing approaches by three databases. The sensitivity and specificity curves constructed by
5-fold-leave-half-out cross-validation are shown in a CORUM database, b GO database and c KEGG database with the human genome
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We recorded the computational time with the same in-
put gene set contains 17 genes. The computational time
of our algorithm showed that our algorithm runs very
fast for small genomes. For example, our algorithm scans
T. brucei (8712 genes), S. cerevisiae (5882 genes), Plas-
modium falciparum (P. falciparum) (5331 genes) and
Caenorhabditis elegans (C. merolae) (5013 genes) only
used 1 s. However, the CLIME algorithm takes 90, 68, 25
and 37 s to complete the prediction, respectively (Fig. 4).
As the scale of genomic data increases, our algorithm is
still faster than the CLIME algorithm in terms of com-
putational speed. Such as, in A. thaliana genome
(27,369 genes) the computational time about 30 times
faster than CLIME algorithm, test in Mus musculus (M.
musculus) (23,200 genes), Homo sapiens (H. sapiens)
(20,834 genes), C. elegans (20,183 genes) and Drosophila
melanogaster (D. melanogaster) (13,776 genes) genomes
the computational time average of 24 times faster than
CLIME algorithm (Fig. 4). Additionally, we designed
GFICLEE with parallel computation, using 4 cores to
scan the ten genomes in parallel that was very significant
for the improvement of computational efficiency (Fig. 4).
We test 5-fold-leave-half-out cross-validation for three
different datasets (KEGG, GO, CORUM) and recorded
the running time that shows in Additional file 1: Fig. S5

and Additional file 2: Table S1. For three datasets,
CLIME used 1856, 1389, 337 min and our algorithm
only takes 128, 117 and 19min running each test data-
set, respectively. These results suggest that our algorithm
has very high computational efficiency and can retrieve
highly informative genes from the genome in a very
short time.

Validated algorithm by cilia components and WASH
complex
To validate the ability of our algorithm to predicting
new gene members associate with the known biology
pathway and complex. We choose cilia components and
WASH complex as a study case, We applied GFICLEE
to the module that contains 11 genes (Fig. 5a) named
cilia that was an important organelle of human that
well-studied and successful in previous phylogenetic
profiling studies [7, 10, 11, 32]. The input 11 genes in
the cilia module had a relatively consistent absence pat-
tern in the phylogenetic profiles, such as the occurrence
of large-scale absence events in fungi, which is consist-
ent with the description of the review by Carvalho-
Santos et al. [33] (Fig. 5a). We show the predicted genes
at the top of scored by SCL score. Here the gene named
CCDC37 was of particular interest to us because not

Fig. 4 The computational time of GFICLEE compares with other methods with different genomes. The computational time of our algorithm
compares with CLIME algorithm with 10 different scale genomes. The yellow histogram represents CLIME, the red histogram represents our
algorithm GFICLEE and the blue histogram represents GFICLEE that implemented parallel computing method (4 cores)
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Fig. 5 The prediction of cilia components and WASH complex. a The predictions of cilia module in cilia components. b The predictions of
cytoskeleton module in cilia components. c The predictions of WASH complex
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only it was had highly SCL score of our predictions but
also experiments have confirmed that this gene was a
component of the cilia module [10]. There are also have
informative genes of the predictions, such as, the genes
named ATAT1, C20orf26, CCDC96 with the SCL score
more than zero, which also belong to cilia components
was proved by experiments [10]. Next, we applied GFIC
LEE to the cytoskeleton module of cilia, which contains
35 genes (Fig. 5b). The GFICLEE also predicted a high
SCL score of genes, such as C20orf26, CCDC96 and
ATAT1, CCDC104 with SCL score more than zero are
completely uncharacterized. Moreover, the WASH com-
plex has accumulated a wealth of research results, such
as involved in endosome trafficking [34] and regulating
endosome morphology [35]. Here we input the WASH
complex gene set contains 9 genes into GFICLEE (Fig.
5c). In the prediction of genes that include DSCR3 with
2 points that recent experiments revealed have strongly
physically associated with the WASH complex [10].
Other predicted genes, such as CAPZA2 had top SCL
scores (SCL score = 13) that are completely uncharacter-
ized (Fig. 5c). These predictions demonstrate the ability
of our algorithm to predict biological pathways or com-
plexes at the genome-wide level.

The horizontal genes transfer (HGT) effect on GFICLEE
We inferred the genes common ancestral by naïve Dollo
parsimony, which are very sensitive to horizontal trans-
fer genes. When inferring common ancestors, HGT
events often have a large impact on inferred results [36,
37]. The HGT events might lead to the false presence
events in the phylogenetic profile, which can be caused
by falsely inferred common ancestral and consequently
higher loss events estimates. To verify the HGT events
that impact the robustness of our algorithm, we revised
the phylogenetic profile by inferred the suspected HGT
events (method). By phylogenetic profile approach, we
detected 3732 genes might arrive by HGT events in hu-
man phylogenetic profile, in the total human genome
genes (20834) the HGT events occur in Animals group
(3.9%) less than the other three subgroups (Fungi %4.8,
Plants 4.5%, Protists 4.7%) (Additional file 1: Fig. S6 a).
This indicated that HGT events occur more rarely in
human animals. After that, we test GFICLEE by revised
phylogenetic profile and compared it with the origin re-
sult in three different databases. The sensitivity and spe-
cificity curve performance show that the test results of
the revised phylogenetic profile are consistent with the
original results (Additional file 1: Fig. S7). The example
genes of HGT events detected by the revised filter
method are shown in Additional file 1: Fig. S6 b. The re-
sults indicate that our algorithm uses naïve Dollo parsi-
mony to infer the ancestor state, which has little effect
on the occurrence of HGT events and illustrates the

robustness of our algorithm. Here we also test GFICLEE
by removing suspected genes of HGT from the phylo-
genetic profile and test data set and our algorithm also
has the best performance (Additional file 1: Fig. S8). The
performance of GFICLEE suggests that our approach
centered around the use of naïve Dollo parsimony to
infer gene function for all genes in all genomes, is robust
to the effect of HGT, variable genome size and genome
completeness, factors that strongly affect gene function
inferred.

Discussion
The GFICLEE algorithm based on the parsimony
principle. By this principle, mapping the gene’s presence
and absence states to gain and loss states in the species
tree topology. We use both the phylogenetic profile
presence/absence state pattern information (Bayesian
classification) and the gain/loss and information of the
species tree (single and continuous loss events) to infer
gene function. This avoids the Hamming/Jaccard
method that merely considers the phylogenetic profile
presence/ absence patterns leads to excessive false posi-
tive results. Due to our algorithm inferred ancestral
states by parsimony principle, it is observed that our al-
gorithm was only applied to eukaryotes and it performed
was not well for prokaryotes. Because using parsimony
methods to accurately inferred ancestral states requires
the rates of changes are low [38]. This requirement is
met in eukaryotes because the HGT events between dif-
ferent non-endosymbiotic origin are rare but in prokary-
otes are very common [39]. Although our algorithm is
still very robust performance with HGT events, we still
recommend GFICLEE for eukaryotic genome prediction.
To reduce false positives in gene function predicted,

we scored the predicted genes with our defined SCL
score. However, we know that our defined SCL score
can generate false-negative results in predictions, which
genes have co-evolution relativity but predicted the re-
sult with lower scores. In the review [40], the author il-
lustrated four scenarios for the evolution of states of
characters gene X and Y. We describe the four evolu-
tionary relationships corresponding to our algorithm as
shown in Additional file 1: Fig. S9. We argue that two
scenarios (Additional file 1: Fig. S9a, b) provide good
evidence for the functional relationship among gene X
and Y because it corresponding to our algorithm model
single/continuous loss events and continuous loss events
only. Our defined SCL score to measure the predicted
genes can give the scenarios of “replicated co-
distribution” and “Darwin’s scenario” with a high SCL
score. For the scenario of “Replicated bursts” and “Unre-
plicated burst” (Additional file 1: Fig. S9 c, d), the GFIC
LEE can give a lower SCL score than the previous two
scenarios. In our prediction result, if there have the latter
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two scenarios, it will be predicted as a false negative result.
The SCL score also has problems that it does not solve all
four scenarios that are described in the review.
We designed GFICLEE was a tree-based method algo-

rithm, input a correct species tree is very necessary for
our algorithm. Because we used the Dollo parsimony ap-
proach for the ancestral state reconstruction, the top-
ology of the species tree has a great influence on the
determination of the common ancestor state that occurs
single/continuous loss event. Here, we test our new
method with four different reconstructed tree software
(FastTree [41], IQ-Tree [42], MEGA [43] and PhyML
[44]) and random topology tree (generate by the R pack-
age “ape” [45]) (Additional file 1: Fig. S10). The results
show that our new method is robust to various software
reconstruct tree, but the random topology tree gets the
worst performance. It suggests that a correct species tree
is very necessary for our new method. Our algorithm
used a homology-based binary phylogenetic profile (de-
rived from BLASTP with expect threshold), multiple rea-
sons cause the errors in binary phylogenetic inference.
For example, When genome sequencing, there had many
technical difficulties in it [46], using faulty protein pre-
dictions [47], there had some bias when we detecting se-
quence similarity [48]. It is also crucial to input an
accurate phylogenetic influence on the predicted results.
In this study, we use BLASTP (threshold with E-value <
10–3) to generate homology-based binary phylogenetic
profile to test our new algorithm. We also compared our
new method with different threshold build binary phylo-
genetic profile (Additional file 1: Fig. S11). The result
suggests that the appropriate threshold to detect ortho-
logs and build phylogenetic profile is necessary to our
new algorithm. Our algorithm aims to provide a fast and
efficient algorithm for searching genes with similar func-
tions across the genome. So, we did not optimize the
phylogenetic profile like singular value decomposition
(SVD) [22, 23]. Therefore, when the users used GFIC
ELEE, they need to input the correct phylogenetic profile
and species tree to get better prediction results.
The different taxon sampling may be impacts the pre-

diction performance of GFICLEE. we test the GFCILEE
method by different subtree that the random sampling
are collected from 138 species tree [49]. We extract
species from each phylum classification at a ratio of 20,
40, 60, and 80% to generate subtrees by ETE3 software
[50]. For example, the ratio of 20% contains 15 animals,
6 plants, 22 fungi and 12 protists. Moreover, we also test
the performance of GFICLEE with different subtrees
generate by phylum (29 protists, 56 fungi, 38 animals
and 16 plants). We test the performance of GFICLEE by
different scale taxon sampling subtree with KEGG data-
base (Additional file 1: Fig. S12). In the result, we can
see that the 100% species taxon has the best

performance and the worst performance is 20% subtree.
As the number of sampling species increases, the predic-
tion performance gets better and better. However, the
performance of the phylum-based subtree is poor. The
best is the subtree contains 29 protists that performance
results are similar to a subtree (20%), suggesting that the
dense taxon sampling can compensate for the influence
of misidentification of the species tree.
The GFICLEE is a very fast algorithm mapping the

phylogenetic profile presence and absence states to gain
and loss states in a species tree topology. GFICLEE using
an algorithm based on the parsimony principle and com-
plexity of O(n) for each gene, where n is the number of
nodes in the tree, however CLIME algorithm of the
complexity of O(Sn2) per MCMC iteration, where S is
the number of species, and n is the number of genes in
the input gene set [7]. CLIME calculation time increases
with the square of the input gene, while our algorithm
calculates the time for each gene is constant. Compared
to CLIME, our algorithm does not require MCMC iter-
ation and Gibbs sampling. These two processes are very
time-consuming and the Gibbs sampling process does
not allow parallel calculations. Our algorithm does not
need to worry about this problem at all, which gives our
algorithm a huge advantage in computing speed.

Conclusions
Here we introduced a tree-based method, GFICLEE, for
explored genomic data predicted new gene potential in-
volved in known biological pathways or cellular com-
plexes. The phylogenetic profile is not only widely used
for protein interaction exploration, but also very active
in other fields such as, annotate genomes [51–54], pro-
tein subcellular localization [55], chromosomal location
analysis [56], Identification of small RNA [12], found hu-
man disease locus [25] In this study, GFICLEE can input
any binary phylogenetic relationship and ultrafast scan-
ning whole genomic genes reveal genes relationship,
which also makes it possible for GFICLEE to complete the
genome-wide annotate gene functions of new sequencing
organisms in a very short time. We expect that future
versions of GFCILEE may accept more different binary
phylogenetic matrix, and provide more favorable tools for
exploring the function of genes at the omics level.

Methods
GFICLEE algorithm
Step 0: mapping
For each gene, GFICLEE assumes that genes are only
gain once in the species tree but can be lost one or more
times [30], based on this methodological approach re-
constructed ancestral state with the parsimony principle.
GFICLEE using a deep first search graph algorithm build
the lowest common ancestral (gain node) [57]. After the
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lowest common ancestral was determined, GFICLEE
mapping each phylogenetic profile presence and absence
states to species tree and recorded by single and con-
tinuous loss events. In this way, GFICLEE recorded the
loss events and the lowest common ancestral in evolu-
tionary history for every gene in the genome.

Step 1: classify
For each input gene, GFICLEE uses the Naïve Bayes
Classifier [58] to classify all genes in the phylogenetic
profile by each input genes gain/loss pattern, so that
genes with similar patterns can be classified to the corre-
sponding predicted cluster. This can avoid the computa-
tional time-consuming problems caused by scanning of
all genes in the phylogenetic profile for each input gene.
For all predicted genes that have been classified,
GFCLEE infers candidate genes with similar evolutionary
history based on the same lowest common ancestor in-
formation (default).

Step 2: prediction
GFICLEE prediction informative genes form candidate
genes by single or continuous loss event. The candidate
genes have the same single or continuous events with in-
put genes that infer to be informative genes. GFICLEE
scoring all candidate genes in each classification by SCL
score. The high SCL score genes are informative shared
the same evolutionary pattern with the input genes
across the genome.

Definition of SCL score
For all predicted genes in the genome, we scored by sin-
gle continuous loss score (SCL score) that we defined as
a measure score. The SCL score of gene A and gene B
we defined as follow:

SCLscore A;Bð Þ ¼
X

i∈loss branch of A;
i∈loss branch of B

anc aið Þ−desc aið Þf g

−
X

i∈loss branch of A;
i∉loss branch of B

anc aið Þ−desc aið Þf g 1ð Þ

Here, the eq. (1), a denotes arbitrary gene, anc(ai), des-
c(ai) ∈ {0, 1} denotes the ancestral state and descendant
state for the branch i inferred for the gene A and B
profile respectively. The loss branch includes a single
loss branch and a continuous loss branch. The
P

i∈loss branch of A;
i∈loss branch of B

fancðaiÞ−descðaiÞg denotes loss score calcu-

late by gene A and gene B that have the same loss branch
which penalty of 1. The

P
i∈loss branch of A;
i∉loss branch of B

fancðaiÞ−descðaiÞg

denotes loss score calculate by gene A but gene B did not
have the same loss branch.

Naïve Bayes classifier (NBC)
To predict the genes in phylogenetic profile are belong
to which input genes, we trained a Naïve Bayes Classi-
fier. The Naïve Bayes Classifier (NBC) is a machine
learning probabilistic classifier based on learns from
training data and then predicting the class of the given
instance with the highest posterior probability [58]. For
the input genes g, let g ∈ {C1,…, Cg} denotes a set of g
classes, if the input gene sets have different phylogenetic
patterns. Here we predict a gene Xt from genome phylo-
genetic profile that is an unknown class to G. Based on
the Bayes’ theorem (also called the Bayes rule), Accord-
ing to it the class ci for Xt should is the one, which max-
imizes the probability:

P CijXtð Þ ¼ P Cið ÞP Xt jCið Þ
P Xtð Þ 2ð Þ

Where Ci is the ith class we total input gene g, Xt is a
binary vector in phylogenetic profile. For each gene pro-
file across N species equal it has N feature because of fi
are independent given the class then P(Xt|Ci) can be
decomposed into the product P(x1|Ci) ∗ , …, ∗ P(xN|Ci).
Thus, the predicted class Ci belong to the one, which
maximizes the probability:

P CijXtð Þ ¼ P Cið Þ
P Xtð Þ

YN

j¼1

P xjjCi
� �

3ð Þ

Estimating the probability P(Xt) is unnecessary because
it is the same for all classes Ci, we only maximize the
probability:

P CijXtð Þ∝P Cið Þ
YN

j¼1

P xjjCi
� �

4ð Þ

Pathways and genome data
The KEGG biological pathways, GO cellular component
dataset, human genome phylogenetic profile and the 10
genomes for test computational time with 138 species
tree and corresponding phylogenetic profiles are the
same with CLIME paper description, downloaded from
http://gene-clime.org/ [7]. The CORUM human bio-
logical pathways and complexes were downloaded from
CORUM database (02.07.2017 Release) [28]. The A.
thaliana metabolic and signaling pathways were down-
loaded from the KEGG pathway database (Release 88.1)
with three large terms “metabolism”, “cellular processes”
and “Genetic information processing” [26]. BLASTP [59]
was used to comparing 27,396 A. thaliana protein se-
quences with the selected species. We set the BLASTP
E-value 0.001 as the threshold (E-value < 0.001) con-
structed the homology matrix, in which 1 denoted those
homologies of Arabidopsis thaliana proteins found in
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the corresponding organism, otherwise 0. The T. brucei
metabolic and signaling pathways were downloaded
from KEGG pathway database (Release 88.1) and remove
the terms of “Human Diseases”,” Brite Hierarchies”,”
Not Included in Pathway or Brite” [26].

5-fold-leave-half-out cross-validation and construct ROC
The human biological pathways and cellular complexes
contain 1056 protein complexes from the CORUM data-
base [28], 116 biological pathways from KEGG database
[26] and 911 cellular component database from GO cel-
lular component dataset [27]. We compared our algo-
rithm to CLIME software using 5-fold-leave-half-out
cross-validation. For each pathway, we separated it into
two parts, one as the input genes, and the other as vali-
dated genes and executed this separated 5 times. About
CLIME software we carry out with the description in
that paper, for a range of LLR thresholds, sensitivity was
calculated as the percent of the genes correctly recov-
ered in any ECM+ derived from the leave half out input
gene set and specificity was calculated as the percent of
non-pathway genes correctly absent from all ECM+ de-
rived from the leave half out input gene set [7]. About
our algorithm, we used the same method to calculate
sensitivity and specificity for a range of SCL score
thresholds. For each threshold, we can get the number
of TP true positives (TP) and true negative (TN) repre-
sented the positive and negative predicted genes above
this threshold. In contrast, the false positive (FP) and
false-negative (FN) were detected as positive and negative
predicted genes below this threshold. The sensitivity and
specificity were calculated by the following equations.

Sensitivity ¼ TP
TP þ FN

5ð Þ

Specificity ¼ TN
TN þ FP

6ð Þ

Distance and similarity method
We carry out the distance and similarity method to pre-
dict the informative genes and validated by a 5-fold-
leave-half-out cross-validation method in three human
biological pathways and cellular complexes. For this
method, we calculated the two binary profile distances
between each input gene with all genes in the genome
phylogenetic profile and then we choose the minimum
distance or similarity as the predicted genes. We carry
out the Hamming and Jaccard method by SciPy [60] that
a Python-based ecosystem of open-source software.

Running environment
Here we compare our algorithm GFICLEE with CLIME
software (version 1.1) in computation time with different

datasets. Firstly, we used the human genome (20,063
genes) with three different databases are CORUM, GO
and KEGG. We control the comparisons in the same
scale of genomes and pathway genes set with different
databases (Additional file 2: Table S1). Tested this data-
set used 5-fold-leave-half-out cross-validation method
within 10 cores (Intel Xeon E5620 2.4GHz, 48Gb mem-
ory) parallel processing running environment. Secondly,
we tested computation time in different organisms (10
genomic data) with the same input gene set. (Additional
file 2: Table S2). This test with the same input gene set
contains 17 genes in different genomes run the software
by a personal computer (i7–4790 3.6GHz, 16GB mem-
ory) with Fedora Operating System.

Filter the HGT of individual genes
We infer suspected genes of HGT events by the phylo-
genetic profile approach. This method’s basic theory is
an isolated presence gene that occurred in the absence
of homology in the closely related species, that event is
indicated that the isolated presence gene might have ar-
rived via HGT event [61]. To find which genes have an
HGT event we divided the 138 species into five super-
groups by level of phylum: Animals (37), Plants (16),
Fungi (56), Protists (29). Then we scan each gene in the
phylogenetic profile that if isolated presence genes oc-
curred in any of five subgroups we revised those genes
as absence stated. The performance of GFICLEE showed
by sensitivity and specificity curves display. At the same
time, we also tested our method by removing the sus-
pected genes of HGT from the phylogenetic profile and
the performance of GIFLEE showed by sensitivity and
specificity curves. In addition, the filter HGT method
are Integrate to GFILCEE and the users can explore
gene function by “-rm” and “-rv” option.
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Additional file 1: Supplementary Fig. S1. The performance of
different classifies methods. The performance of naïve Bayesian method
compares with Random Forest, Support Vector Machines and Nearest
Neighbors classify methods. In the figure, NB: naïve Bayesian, SVC:
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Support Vector Machines classification, NC: Nearest Neighbors
classification and RF: Random Forest classification. Supplementary Fig.
S2. The common ancestor of genes in different databases. a) The
common ancestor of genes in the human pathway with CORUM
database. b) The common ancestor of genes in the human pathway with
GO database. c) The common ancestor of genes in the human pathway
with KEGG database. Supplementary Fig. S3. The comparison of genes
functions appeared in later or earlier than input genes. a) Setting the
search node is same with input genes node (1), Setting the search node
later and earlier than input gene node (2), Setting the search node later
than input genes node (3), Setting the search node earlier than input
genes node (4). b) The performance of setting the different search gain
node. Supplementary Fig. S4. The performance of GFICLEE compares
with existing approaches by different genomes. a) The A. thaliana
metabolic and signaling pathways. b) The T. brucei metabolic and
signaling pathways. Supplementary Fig. S5. The computational time of
three different databases. The test used the human genome with the GO
database that contains 911 pathways, CORUM contains 1056 pathways
and KEGG with 116 pathways. The test parallel running with 10 cores for
CLIME and GFILEE software, respectively. Supplementary Fig. S6. The
HGT events occurred in the human phylogenetic profile. a) The HGT
events occurred in each subgroup. b) The example of the revised HGT
profile. Supplementary Fig. S7. The performance of GFICLEE by
phylogenetic profile compares with the revised phylogenetic profile in
three databases. Supplementary Fig. S8. The performance of GFICLEE
compares with CLIME by the phylogenetic profile that removes
suspected HGT genes. Supplementary Fig. S9. GFICLEE algorithm
corresponding four scenarios for the evolution of states of characters
gene X and Y. a) The replicated co-distributions contain single and con-
tinuous loss events. b) Darwin’s scenario only contains continuous loss
events. c) and d) The scenarios of Replicated bursts and Unreplicated
burst, respectively. Supplementary Fig. S10. The performance of GFIC
LEE with different software reconstruct species tree and random topology
tree. FastTree, IQ-TREE, MEGA_ML and PhyML are maximum likelihood
method reconstruct species tree. The MEGA_ML is the Neighbor-Joining
method reconstruct species tree. Supplementary Fig. S11. The per-
formance of GFICLEE with different threshold generate phylogenetic
matrix. The various BLASTP threshold to (E-value < 10–2, E-value < 10–3,
E-value < 10–4 and E-value < 10–5) generate ortholog matrix and test the
performance of GFICLEE. Supplementary Fig. S12. The taxon sampling
effect on the performance of GFICLEE. We extract species from each
phylum classification at a ratio of 20, 40, 60, and 80% to generate sub-
trees. The contains each phylum only also extracted for the performance
test.

Additional file 2: Supplementary Table S1. The datasets of the
human genome with KEGG database, CORUM database and GO
Database. Supplementary Table S2. The datasets of 10 different scale
genomes.
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