
DATABASE Open Access

piRNA-IPdb: a PIWI-bound piRNAs database
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Abstract

Background: PIWI-interacting RNAs (piRNAs) are an abundant single-stranded type of small non-coding RNAs
(sncRNAs), which initially were discovered in gonadal cells, with a role as defenders of genomic integrity in the
germline, acting against the transposable elements. With a regular size range of 21-35 nt, piRNAs are associated
with a PIWI-clade of Argonaute family proteins. The most widely accepted mechanisms of biogenesis for piRNAs
involve the transcription of longer precursors of RNAs to be processed, by complexes of proteins, to functional size,
preferentially accommodating uridine residues at the 5’ end and 3’ methylation to increase the stability of these
molecules. piRNAs have also been detected in somatic cells, with diverse potential functions, indicating their high
plasticity and pleiotropic activity. Discovered about two decades ago, piRNAs are a large and versatile type of
sncRNA and that remain insufficiently identified and analyzed, through next-generation sequencing (NGS), to
evaluate their processing, functions, and biogenesis in different cell types and during development. piRNAs’
distinction from other sncRNAs has led to controversial results and interpretation difficulties when using existing
databases because of the heterogeneity of the criteria used in making the distinction.

Description: We present “piRNA-IPdb”, a database based uniquely on datasets obtaining after the defining
characteristic of piRNAs: those small RNAs bound to PIWI proteins. We selected and analyzed sequences from
piRBase that exclusively cover the binding to PIWI. We pooled a total of 18,821,815 sequences from RNA-seq after
immunoprecipitation that included the binding to any of the mouse PIWI proteins (MILI, MIWI, or MIWI2).

Conclusions: In summary, we present the characteristics and potential use of piRNA-IPdb database for the analysis
of bona fide piRNAs.
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Background
piRNAs, the most recently discovered small non-coding
RNAs, are essentially defined by their interaction with
PIWI proteins. These molecules are single-stranded
small non-coding RNAs with a regular size of about 21-
35 nucleotides. They were first discovered in germ cells
as defenders of genomic integrity in the germline, act-
ing as post-transcriptional repressors of transposable
elements [1]. Acting as guide RNAs for PIWI, piRNAs
depend entirely in their bound with Argonaute-clade
PIWI proteins to form a piRNA-induced silencing com-
plexes. The processing of piRNAs starts from longer
RNA molecules that are shortened during piRNA
biogenesis, generating, preferentially, 5’ uridine residues
and a 2’-O-methylated 3’-end, which increases the
stability of these molecules [2]. A secondary piRNA
biogenesis pathway has been proposed, in which a
piRNA acts as template to recruit an antisense-
complementary sequence to be processed into a new
piRNA. Despite their being initially discovered and
mostly studied in germ cells, piRNAs have also been
detected in somatic cells [3] associated with diverse,
not previously identified, potential functions, indicating
their high plasticity and pleiotropic activity [2, 4–7],
even though they are far from being fully characterized.
The distinction of piRNAs from other sncRNAs has

led to controversial results and interpretation difficul-
ties when existing databases are used because of het-
erogeneity in the criteria used to characterize piRNAs.
Various databases are emerging to facilitate piRNA
identification. But such bioinformatic tools could be
considered too imprecise in regard to the basic con-
sideration of what a piRNA is, in essence. Conse-
quently, many sequences may be accumulated using
different identifying criteria, such as are detected in
NONCODE or RNAdb or others, such as piRNABank,
piRNAQuest, IsopiRBank, or piRBase, that were ini-
tially considered piRNA specific. The problem has
been the lack of a gold standard protocol for piRNA
identification, so each database follows his own cri-
teria and, in consequence, discrepancies appear among
them. It seems, though, that in the claims made for
the large number of sequences that populate these da-
tabases, a central point is being missed. By definition,
piRNAs show an association with PIWI proteins [8].
Diverse characteristics have been associated with
piRNA sequences, but the unique, invariable aspect of
piRNAs should be their bond to PIWI proteins. In
addition, several regions of other sncRNAs (tRNAs,
rRNAs, snoRNAs, miRNAs) may share the essential
features of piRNAs and act functionally as such [4, 9],
but would not necessarily have to be considered as
artifacts, as has been suggested [10], precluding poten-
tial functional mechanisms of regulation.

The aim of the present work is to elaborate and
assess a database, piRNA-IPdb, based on the recent
update of piRBase [11] and adjusting the piRNA identi-
fication criterion exclusively to PIWI-bound detected
sequences after immunoprecipitation approaches in the
mouse. Among the 21 species represented in the
piRBase, the largest number of sets collected in the
database corresponds to Mus musculus. Moreover, in
vertebrates, mouse is the species with the highest
number of piRNA datasets identified by immunoprecip-
itation with PIWI proteins. Overall, the present piRNA-
immunoprecipitation database (piRNA-IPdb) can serve
as a useful and trustworthy piRNA sequence resource
for future piRNA research.

Construction and content
Database building and analysis
We have selected those sequences, from non-genetically
modified mice at any developmental stage (from 10 days
postpartum to adult testes or spermatids), exclusively
obtained after immunoprecipitation with any PIWI pro-
tein (in mice, there are three PIWI proteins: MIWI,
MILI, and MIWI2). From piRBase, we selected the data-
sets called: 5, 11, 12, 13, 31, 32, 33, 34, 35, 36, 37, 38, 60,
61, 72, 81, 82, 87, 88, 132, 133, 134, and 217 to extract
piRNA ID, sequence, and reported read information
(summarized in Table 1).
From the whole piRBase data we filtered sequences for

each of selected datasets (all from PIWI immunoprecipita-
tion sequencing assays), with custom scripts (publicly avail-
able), obtaining sequences and expression data for each
piRNA in each dataset. In parallel, the expression data was
transformed from raw counts to count per million (dividing
each sequence count by total count of the dataset and multi-
plying by one million) in order to normalize the diversity of
sequencing methods of each dataset. With these data, we
selected the most expressed 1% of piRNA sequences and
labeled them as “highly expressed centile” (“hec”).
The genome coordinates were obtained by aligning

database sequences against the last published genome of
the mouse (GRCm39/mm39) using Bowtie aligner,
allowing one mismatch (-v1 parameter), and sorting the
sequences with more than one possible valid alignment
(-m1 option).
Scripts to generate the database are publicly available

from project GitHub (https://github.com/OdBT/piRNA-
IPdb_v2). Specific scripts were used for each of the ana-
lyses carried out, using mainly shell scripts for data ana-
lysis and R scripts [12] for data plotting.
We use the widely known NGS toolbox’s script (basic-

analyses.pl) [13] to obtain the piRNA-IPdb sequence
length distribution and the nucleotide composition. The
detection of piRNA amplification cycle (ping-pong cycle)
(reverse-complementary piRNA sequences overlapping
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10 nucleotides) was performed using the signature.py
Python script [14]. The presence of miRNAs related to
piRNA-IPdb sequences was checked by mapping piRNA
sequences against pre-miRNA, downloaded from miR-
Base using Bowtie sequence aligner and miRBase as
microRNA database.

Database details
For this piRNA-IPdb, a total of 18,821,815 unique se-
quences were pooled (obtained from 23 individual data-
sets from piRBase). Some interface functions have been
integrated for the different piRNAs registered in the
database with associated functions determined on the
basis of the RepeatMasker database, including repetitive
elements, different transposable elements (LINEs, SINEs,
etc.), rRNAs, tRNAs, and, others (Table 1).

In the following sections, we will discuss the results of
the exploratory analysis of this database, emphasizing the
expected classical characteristics reported for piRNAs.

Sequence length distribution
The distribution of sequence lengths in this piRNA-IPdb
showed that 90.23 % of sequences have lengths between
24 and 31 nt (Fig. 1A). These data are consistent with
the sequences typically identified in the literature.

Nucleotide composition
The pre-piRNA trimming process generates piRNAs that
preferentially (but not unequivocally) start at 5’ with a
uridine (1U-bias) [15]. We also checked the complete
nucleotide composition of the first 15 nucleotides of all
sequences. Results indicate that this 1U-bias is also

Fig. 1 Database sequence analysis. A, Sequence length distribution of piRNA-IPdb. B, Nucleotide frequency of first 15 nucleotides from all sequences
in the database. C, Frequency in the database of overlapping sequences among 10 nucleotides generated by potential ping-pong amplification cycles
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present in piRNA-IPdb (Fig. 1B). Specifically, 62 % of the
sequences start with this base.

Ping-Pong cycle hallmark
A substantial number of piRNAs in the germline partici-
pate in a transposable element-mediated amplification
process called a “ping-pong” pathway, initially character-
ized by the presence of piRNAs with the 1U-10A hallmark
sequence [16], although this pattern is not unequivocally a
consequence of the 1U-bias [17]. Using the signature.py
Python script [14], we measured the quantity of antisense
overlapping sequence pairs between database sequences.
The results (Fig. 1C) confirmed that our piRNA database
is also abundant in sequences showing this characteristic,
with a high proportion of sequences overlapping in these
10 nucleotides.

Measuring piRNA expression
We extracted information from the reads in each dataset
(excluding ds5 and ds134, which did not contain such
data). Due to the large variability in total library size for
each dataset, reads were normalized using counts per
million. The vast majority of piRNA sequences have a
very low number of detected reads, although some
groups of sequences displayed sequences with very well-

detected expression. To highlight this feature, we
labelled as FASTA files the most highly expressed 1 % of
sequences with the “hec” label (as “highly expressed
centile”). The sequence-length distribution of these
sequences is shown in Fig. 2A. Compared to the whole
database, hec sequence length distribution showed
greater length and higher 1U-bias (Fig. 2B).

Mapping piRNAs
The genome alignment of database piRNAs showed that
91.16 % of the sequences map, with only 1 mismatch al-
lowance, to the mm39 genome database. However,
19.09 % of the total sequences map to multiple positions.
The sequence FASTA file is uploaded together with a

BED file containing the genome coordinates of each
piRNA with a unique aligned position.

Web interface
In order to make the database accessible, we also created
a web page available at (https://ipdb2.shinyapps.io/
ipdb2/). The web page hosts the downloadable database
files with a summary of the piRNA immunoprecipitation
database.

Fig. 2 Sequence length distribution A and frequency of nucleotides of the first 15 nts in the sequences labelled as “hec” sequences B
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Utility and discussion
Case study: Identifying miRNAs from the database
sequences
As an exploratory example of interactive studies based
on this database, we have evaluated the potential dual-
ity in the generation of miRNAs vs. piRNAs from an

RNA precursor sequence with the capacity to generate
either type of sncRNA, depending on their specific
binding to AGO or PIWI proteins. Recent studies have
raised doubts about the presence of other sncRNAs,
such miRNAs, tRNAs, rRNAs, as contaminants in
piRNA databases [10]. However, it is possible to iden-
tify cases in which both types of molecule (piRNA and
other sncRNAs) could be bifunctional and even suggest
alternative regulatory mechanisms to generate one or
the other type. In fact, alternative, non-canonical path-
ways in the biogenesis of miRNAs have been reported
[18–20]. Here, we evaluate that possibility for miRNAs/
piRNAs from precursors that might generate such a
situation.
Using miRBase as a reference, the sequences of the

piRNA-IPdb have been mapped in the search for miR-
NAs. A total of 42,704 sequences (0.23 % of the total)
potentially considered to be piRNA as well as miRNA
have been detected, of which 607 showed identical se-
quences present in both databases, the rest being par-
tially aligned or having just one nucleotide of difference
(one mismatch). Some miRNAs have been aligned with
up to 2000 different piRNAs (Table 2). A function has

Fig. 3 Examples of piRNA coverage against the top-mapping pre-miRNA sequences, figures show the number of different piRNAs sequences
mapping pre-miRNA. Mature miRNA sequence positions are highlighted in red

Table 2 microRNAs with higher numbers of piRNA sequences
mapping against each of them

Number of piRNAs miRNA

2253 mmu-mir-1194

2251 mmu-mir-3470b

1010 mmu-mir-3473f

877 mmu-mir-468

864 mmu-mir-3473 h

823 mmu-mir-5098

821 mmu-mir-3471-2

724 mmu-mir-6240

544 mmu-mir-3470a

447 mmu-mir-7222
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been integrated into the website database (https://
ipdb2.shinyapps.io/ipdb2/, by which it is possible to dir-
ectly recognize which is the coverage of piRNAs from a
specific miRNA, simply by clicking on the function
miRNA. Figure 3 shows some examples of coverage of
piRNA sequences against miRNA sequences. This ana-
lysis, performed on the three miRNAs detected as most
expressed, showed that the alignments of miRNA
regions are coincident with the regions where the high-
est number of piRNA counts are detected over the pri-
miRNA sequences (Table 3). This leads us to
hypothesize that, since PIWI appears to be unable to
bind to double-stranded RNAs, the generation of
piRNAs should be previous to the stem-loop configur-
ation of the pre-miRNAs—that is, a kind of by-product
in piRNA biogenesis, where their precursors were in
excess or the level of PIWI was limiting. Otherwise, re-
gions corresponding to the loop or single-stranded ends
of pri-miRNAs would correspond to higher abundances
of piRNAs after the processing of such pri-miRNAs.

Conclusions
In this study we present the creation of the piRNA
database “piRNA-IPdb”, a database with 18,821,815
sequences that are detected after immunoprecipitation
with PIWI proteins, we check that these piRNAs
meets the regular characteristics of bona fide piRNAs,
and we demonstrate the utility of such database for
piRNA analysis at the case study.
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