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Abstract

which the latter task is often more complicated.

Background: When it comes to the co-expressed gene module detection, its typical challenges consist of overlap
between identified modules and local co-expression in a subset of biological samples. The nature of module
detection is the use of unsupervised clustering approaches and algorithms. Those methods are advanced
undoubtedly, but the selection of a certain clustering method for sample- and gene-clustering tasks is separate, in

Results: This study presented an R-package, Overlapping CoExpressed gene Module (0CEM), armed with the
decomposition methods to solve the challenges above. We also developed a novel auxiliary statistical approach to
select the optimal number of principal components using a permutation procedure. We showed that oCEM
outperformed state-of-the-art techniques in the ability to detect biologically relevant modules additionally.

Conclusions: oCEM helped non-technical users easily perform complicated statistical analyses and then gain robust
results. oCEM and its applications, along with example data, were freely provided at https://github.com/

huynguyen250896/0CEM.
Keywords: Identification of modules, Analysis of modules, Co-expression, Clinical feature association, Gene
expression
Background The nature of module detection is the use of unsuper-

The introduction of genome-wide gene expression pro-
filing technologies observed so far has turned the bio-
logical interpretation of large gene expression
compendia using module detection methods to be a cru-
cial pillar [1-3]. Here, a module itself is a set of genes
that are similarly functioned and jointly expressed. Co-
expressed modules do not only help to globally and ob-
jectively interpret gene expression data [4, 5], but it is
also used to discover regulatory relationships between
putative target genes and transcription factors [6-8].
Also, it is useful to study the origin [9] and development
[10] of complex diseases caused by many factors.
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vised clustering approaches and algorithms. Those
methods are advanced undoubtedly, but the selection of
a certain clustering method for sample- and gene-
clustering tasks is separate, in which the latter task is
often more complicated. Indeed, users should predeter-
mine the following limitations before applying clustering
methods to gene expression. Firstly, not all clustering
methods have the ability to tackle the problem of over-
lap between modules. While clustering patients into bio-
logically distinct subgroups is our ultimate goal, the way
to group genes into functional modules need to be more
careful since genes often do not work alone; e.g., previ-
ous studies have reported that at least five genes work in
concert [11] and that their interaction is associated with
multiple pathways [12]. Secondly, clustering methods
often ignore local co-expression effects which only ap-
pear in a subset of all biological samples and instead are
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interested in co-expression among all samples. This re-
sults in loss of meaningful information due to highly
context-specific transcriptional regulation [13]. Among
existing clustering methods, decomposition methods
[14] and biclustering [15] are said to possibly handle the
two above restrictions. These obviously affect the selec-
tion of which clustering method in the context of gene
expression; however, it is rarely examined sufficiently,
leading to a typical example is the tool weighted gene
co-expression network analysis (WGCNA) [16] with a
hierarchical agglomerative clustering [17].

Wouter Saelens et al [18] have conducted a holistic
comparison of module detection methods for gene ex-
pression data and realized that the decomposition
methods, including independent component analysis
(ICA) [19-21], principal component analysis (PCA) [22],
and independent principal component analysis (IPCA)
[23], are the best. In this study, we have proposed an R
tool, named Overlapping CoExpressed gene Module
(0CEM), which integrated these methods in the hope
that it could be a potential alternative to rectify the limi-
tations above. In particular, we developed a state-of-the-
art statistical method, called optimizeCOM, to specify
the optimal number of principal components in advance
required by the decomposition methods. Then, the func-
tion overlapCEM available in oCEM supported users to
implement the module detection and analysis automatic-
ally. These helped non-technical users to easily perform
complicated statistical analyses and gain robust results
in a surprisingly rapid way. We also demonstrated better
performance of oCEM in comparison to other high-tech
methods in terms of identification of clinically relevant
co-expressed modules.

Implementation

Overview of oCEM

Figure 1 shows the automatic framework for module de-
tection and analysis included in oCEM. Gene expression
matrix first suffered from the two pre-processing steps:
excluding outlier individuals and normalization prior to
being the input of oCEM. The result of normalization
was that the distribution of each gene expression was
centered and standardized across samples. The user now
put the data to oCEM, and it printed automatically out
the following results: (i) co-expressed gene modules (the
module was determined from a particular component by
using one of the optional post-processing steps de-
scribed above), (i) hub-genes specific to each module,
and (iii) analysis result of associations between each
module and each clinical feature of choice (e.g., tumor
stages, glycemic index, weight,...). Note that oCEM
decomposed the expression matrix into the product of
two or more sub-matrices by only using one of the two
decomposition methods, including ICA (the fastICA
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algorithm) and IPCA (the ipca algorithm). oCEM did
not include PCA because of the following reasons: (i)
PCA assumes that gene expression follows a Gaussian
distribution; however, many recent studies have demon-
strated that microarray gene expression measurements
follow a non-Gaussian distribution instead [24-27], (ii)
The idea behind PCA is to decompose a big matrix into
the product of several sub-matrices and then retain the
first few components which have the maximum amount
of variance. Mathematically, this helps to do dimension
reduction, noise reduction, but the highest variance may
be inappropriate to the biological reality [28, 29].

Since the output of the decomposition methods gener-
ally consisted of two parts, the components for genes
and the components for samples, we, in this study, dis-
tinguished the two by the term of signatures and pat-
terns, respectively (Additional file 1:Supplementary
Methods and Additional file 1:FigureS1). When it comes
to the first matrix product (vertical rectangle in Add-
itional file 1:FigureS1), oCEM described the characteris-
tic of different signatures by, between them, a set of
genes of which the overlap was allowed. In contrast, for
the second matrix product (horizontal rectangle in Add-
itional file 1:FigureS1), oCEM characterized each com-
ponent by its expression patterns in biological samples.

OptimizeCOM algorithm

The first step of oCEM involved deciding how many
principal components should be. To support the user to
possibly make a good decision, we developed an R func-
tion called optimizeCOM. The idea behind this function
was based on random permutations adapted from [30],
aimed not only to help the user to know which method
should be selected but also to specify the optimal num-
ber of principal components to extract by ICA or IPCA
(detailed in Additional file 1:Supplementary Methods
and Additional file 1:FigureS2).

Keep components with non-Gaussian distribution

oCEM equipped with ICA and IPCA required the distri-
butions of the signatures across genes must be as non-
Gaussian as possible; ideally, they should be heavy-tailed
normal distributions. Due to this requirement, the kur-
tosis was recruited, which statistically describes the
“tailedness” of the distribution [20], and only kept signa-
tures whose kurtosis value > 3.

Detection of co-expressed gene modules

It was evident that a few genes at the tails of a heavy-
tailed distribution would be the most important ele-
ments in a particular signature, and conversely, the in-
fluence of the majority of genes became weaker and
weaker, or even was over, in that signature when they
lay at the center of the distribution [20, 21]. Based on
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Fig. 1 Automatic analysis framework of oCEM. Gene expression data first underwent the two pre-processing steps: removal of outlier samples
and normalization. Then, the user could refer to the recommendation of oCEM regarding which decomposition method should be selected and
how many component numbers were optimal by using the function optimizeCOM. Next, the processed data were inputted into the function
overlapCEM, rendering co-expressed gene modules (i.e., Signatures with their own kurtosis = 3) and Patterns. Kurtosis statistically describes the
“tailedness” of the distribution relative to a normal distribution. Finally, corresponding hub-genes in each module and the association between

this, oCEM provided the users with three optional post-
processing steps attached with ICA and IPCA (two for
ICA and one for IPCA) to detect co-expressed gene
modules.

For the first option of the post-processing step (“ICA-
FDR” assigned to the method argument of the function
overlapCEM), oCEM did the extraction of non-Gaussian
signatures by ICA (the fastICA algorithm was configured
using parallel extraction method and the default meas-
ure of non-Gaussianity Jogcosh approximation of

negentropy with a = 1), then the fdrtool R tool [31]
modeled those signatures as a two-distribution mixture
(null and alternative). The null (Gaussian) distribution
was fitted around the median of the signature distribu-
tion. At last, a user-defined probability threshold (e.g.,
0.1, 0.01, 0.001, ...), called tail area-based false discovery
rate (FDR), was chosen to distribute genes to modules
on the condition that a gene whose FDR lesser than the
threshold at a signature was assigned to that signature
(module). Here we suggested the selection of the
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sufficiently stringent threshold of 0.001 if appropriate for
robustness.

The second option (“ICA-Zscore” assigned to the
method argument of the function overlapCEM) was
similar to the first one, but oCEM first did z-score trans-
formation for genes in each signature. A gene belonged
to a module if the absolute of its z-score was greater
than a user-defined standard deviation threshold (e.g.,
0.5 0,1 o, 1.5 0,...). We suggested choosing the suffi-
ciently strict threshold of 3 ¢ on either side from the
zero mean, which picks only out a few genes in the tails
of the distributions at any time as possible.

The last option (“IPCA-FDR” assigned to the method
argument of the function overlapCEM) was similar to
the first one, but here oCEM used IPCA (the ipca algo-
rithm was configured using deflation extraction method
and the default measure of non-Gaussianity logcosh ap-
proximation of negentropy with a = 1) instead of ICA.
This algorithm was more robust to noise.

Genes at both extremes of the distribution were con-
sidered hub-genes. The Pearson’s correlations of each
resulting co-expressed module to each clinical feature of
interest were then calculated and reported in R.

Performance validation of oCEM

Gene expression data

We used three example data, human breast cancer [32],
mouse metabolic syndrome [33], and Escherichia coli
(E.coli) [34], to illustrate the straightforward use of
oCEM as well as be convenient for comparing its ability
with other tools. In particular, the first case study, down-
loaded from the cBioPortal for Cancer Genomics [35,
36], was the METABRIC breast cancer cohort in the
United Kingdom and Canada. The gene expression data
were generated using the Illumina Human v3 microarray
for 1904 samples. The second case study, related to
mouse metabolic syndrome (obesity, insulin resistance,
and dyslipidemia), was liver gene expressions from 134
female mice including 3600 physiologically relevant
genes. The data were employed by the authors of
WGCNA [16] to indicate how to use this tool. Finally,
the expression values of 4296 genes from 805 E.coli sam-
ples were downloaded from the DREAMS5 network infer-
ence challenge website.

Comparison of oCEM with WGCNA and its improved version
iWGCNA

We used the two expression data above to validate the
performance of oCEM with WGCNA and an improved
version of WGCNA proposed by us [37], temporarily
called improved WGCNA (iWGCNA) in this study. For
WGCNA, we applied it to the gene expression data
using the blockwiseModules function (v1.69). All tuning
parameters were left as default. For iWGCNA, its
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improvement was that we added an additional step to
the gene clustering process, the determination of the op-
timal cluster agglomeration method for each particular
case. All other tuning parameters were set to their de-
fault value, except for the selection of the soft-
thresholding value [16].

To compare the power of them, we estimated the pair-
wise Pearson’s correlation coefficients, r, between mod-
ule eigengenes (MEs, characterized by its first principal
component) of resulting modules given by WGCNA
(WME) and iWGCNA (iME) versus patterns (i.e., sample
components) given by oCEM. This helped us to deter-
mine which modules could be missed by WGCNA and
iWGCNA. Then, g:Profiler (https://biit.cs.ut.ee/gprofiler/
gost) (ver el02_eg49 pl15_7a9b4d6; accessed on 20 Feb.
2021) [38] verified biological processes and KEGG path-
ways related to those missed modules. Biological pro-
cesses and KEGG pathways with adjusted P-values <0.05
(G:SCS multiple testing correction method [38], two-
tailed) were considered to be statistically significant. Im-
portantly, as the g:Profiler database did not support to
perform the enrichment analysis from a set of genes in
E.coli, we decided to use the Gene Ontology (GO) data-
base [39] for the same task instead.

Results

Human breast cancer

In our previous study [37], the breast cancer data were
used to detect 31 validated breast-cancer-associated
genes, and we then clustered those genes to functional
modules using iWGCNA. Here, we revisited the results
to be convenient for the comparison. Due to the small
number of genes, WGCNA failed to identify any co-
expressions across the 1904 breast cancer patients (the
31 genes were in wMO or called a gray module), while
iWGCNA and oCEM indicated two (iM1 and iM2 re-
spective to turquoise and blue modules) and three mod-
ules (0M1, oM2, and oM3), respectively. These implied
that the ability of iWGCNA and oCEM was better than
WGCNA in the co-expressed gene module identifica-
tion. Figure 2a indicates that oCEM discovered the three
co-expressed modules including a corresponding set of
genes of which the overlap was allowed. The correlation
analyses of the three identified modules were performed
automatically by oCEM (Fig. 2b). As a result, oM1
showed a significant negative association with the Not-
tingham prognostic index only. In particular, oM3 was
positively significantly correlated with all three clinical
features, including the number of lymph nodes, Notting-
ham prognostic index, and tumor stages of the breast
cancer patients. Besides, oCEM also reported the top 10
hub-genes in each of these modules, including KMT2C,
BAPI, PTEN, NF1, RUNXI, ZFP36L1, CDKNI1B, BRCA2,
MAP3K1, and PIK3CA in oM1; CDH1, PIK3RI, GATA3,
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CDKN2A, TBX3, SMAD4, KRAS, RBI, MENI, and
RUNXI in oM2; and KRAS, GPS2, SF3B1, AGTR2, RBI,
NCOR1, SMAD4, ERBB3, FOX03, and NF1 in oM3.

We further investigated the power of the three
methods by estimating the pairwise Pearson’s correlation
coefficients between the one and two modules given by
WGCNA and iWGCNA, respectively, versus the three
modules given by oCEM as described in the Methods
section below. As expected, one wME (100.0%) and one
iME (50.0%) respectively showed r > 0.4 with at least one
oCEM pattern (i.e., patient components), whereas only
33.3% of oCEM patterns correlated to at least 1 ME ob-
tained by both WGCNA and iWGCNA with the same
intensity (Fig. 3a,b and Additional file 2:TableS1). Col-
lectively, both WGCNA and iWGCNA potentially
missed two modules oM2 and oM3 (r<0.4). We func-
tionally enriched the two and realized that they pos-
sessed an overlapping set of genes significantly
associated with regulation of gene expression and devel-
opment processes and biological pathways related to
cancer in general and breast cancer in particular (Add-
itional file 2:TableS2), suggesting that oCEM was most
likely to identify biologically relevant modules that were
not represented by WGCNA or iWGCNA modules.

Mouse metabolic syndrome

Similarly, we applied the three tools to 2281 gene ex-
pressions in the liver of the 134 female mice. As a result,
WGCNA, iWGCNA, and oCEM detected 17, 12, and 18
modules, respectively. In this turn, four out of 17 wMEs
(23.5%) and four out of 12 iMEs (33.3%) yielded r> 0.8

with at least one oCEM pattern (i.e., mouse compo-
nents). In contrast, those numbers for o-CEM were three
out of 18 oCEM patterns (16.7%) and four out of 18
oCEM patterns (22.2%) related to at least one wME and
one iME with the same intensity, in which WGCNA and
iWGCNA could ignore 15 and 14 important oCEM
modules (r < 0.8), respectively (Additional file 2:TableS3).
We analyzed enrichment on those missed modules, ren-
dering all of them associated significantly with relevant
metabolic processes and pathways. More details of the
pre-processing procedures, analysis processes, and com-
parisons were shown in Additional file 1.

E.coli gene expression compendium

Here we did the same as the two studies above once
again for 572 gene expressions in a total of 801 samples.
To this end, WGCNA, iWGCNA, and oCEM detected
14, nine, and 24 modules, respectively. In this turn, six
out of 14 wMEs (42.9%) and five out of nine iMEs
(55.6%) issued r > 0.8 with at least one oCEM pattern. In
contrast, those numbers for oCEM were six out of 24
oCEM patterns (25.0%) and four out of 24 oCEM pat-
terns (16.7%) related to at least one wME and one iME
with the same intensity, in which WGCNA and
iWGCNA could ignore 18 and 20 important oCEM
modules (r < 0.8), respectively (Additional file 2:TableS4).
We analyzed the biological meaning of the those missed
modules, rendering all of them associated significantly
with GO terms, which included biological process terms,
cellular component terms, and molecular function
terms.
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Discussions

Co-expressed gene module identification and sample
clustering rely mostly on unsupervised clustering
methods, resulting in the development of new tools or
new analysis frameworks [16, 37, 40, 41]. However, mod-
ule detection is unique due to the necessity of ensuring
biological reality in the context of gene expressions, such
as overlap and local co-expression. In this study, we,
therefore, have presented a new tool, oCEM, for module
discovery; especially, it differentiates from other ad-
vanced methods on the ability to identify different mod-
ules which allow having the overlap between them,
better reflecting biological reality than methods that
stratify genes into separate subgroups. The fact that
oCEM outperforms some state-of-the-art tools, such as
WGCNA or iWGCNA, in identifying functional mod-
ules of genes. Moreover, oCEM is sufficiently flexible to
be applied to any organisms, like human, mouse, yeast,
and so on. In addition, oCEM is well able to automatic-
ally and easily do the two tasks as identification and ana-
lysis of modules. These clearly help to support a
community of the users with diverse backgrounds, such

as biologists, bioinformaticians, and bioinformaticists,
who are interested in this field.

When using the decomposition methods, the selection
of the optimal number of principal components is vital.
Here we also introduce optimizeCOM which performs a
permutation procedure hoping that the extracted com-
ponents are generated not-at-random. Based on the
three benchmark datasets, including human breast can-
cer, mouse metabolic syndrome, and E.coli, we can
realize that most modules indicated by optimizeCOM
are highly similar to those displayed by WGCNA and
iWGCNA, whereas the rest of the modules are new ones
significantly associated with clinical features as well as
biological processes and pathways. Although further
studies are required, these results imply that optimize-
COM could provide a suggestion having a high value of
reference before using the decomposition methods.

However, we acknowledge that there have still several
restrictions of oCEM. Firstly, the input of oCEM is only
gene expression matrix. Many prior studies have claimed
that integration of multi-omics will enable us to discover
molecular mechanisms missed by using each omics
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technology [40, 42, 43]. For example, as the interpret-
ation of the target expression change is based partly on
the change in transcription factor expression [34], this
information included may help to improve the ability of
module identification. In the future, we will find the way
to combine -omics data, possibly including transcription
factors, prior to being the input of oCEM. Secondly,
each oCEM module consists of many genes, so biologists
have difficulty experimentally validating such modules
by follow-up wet-lab experiments. This is a common
problem of existing coexpression identification methods,
including oCEM. We suggest that biologists can select
some co-expressed modules of interest possessing well-
established co-regulation of genes. Another way is
choosing some co-expressed modules associated signifi-
cantly with clinical features of their interest.

Conclusion

In conclusion, we believe that the oCEM tool may be
useful to improve module detection and discover novel
biological insights into complex diseases.
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