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Abstract

Background: The carcass value of cattle is a function of carcass weight and quality. Given the economic
importance of carcass merit to producers, it is routinely included in beef breeding objectives. A detailed
understanding of the genetic variants that contribute to carcass merit is useful to maximize the efficiency of
breeding for improved carcass merit. The objectives of the present study were two-fold: firstly, to perform genome-
wide association analyses of carcass weight, carcass conformation, and carcass fat using copy number variant (CNV)
data in a population of 923 Holstein-Friesian, 945 Charolais, and 974 Limousin bulls; and secondly to perform
separate association analyses of carcass traits on the same population of cattle using the Log R ratio (LRR) values of
712,555 single nucleotide polymorphisms (SNPs). The LRR value of a SNP is a measure of the signal intensity of the
SNP generated during the genotyping process.

Results: A total of 13,969, 3,954, and 2,805 detected CNVs were tested for association with the three carcass traits
for the Holstein-Friesian, Charolais, and Limousin, respectively. The copy number of 16 CNVs and the LRR of 34 SNPs
were associated with at least one of the three carcass traits in at least one of the three cattle breeds. With the
exception of three SNPs, none of the quantitative trait loci detected in the CNV association analyses or the SNP LRR
association analyses were also detected using traditional association analyses based on SNP allele counts. Many of
the CNVs and SNPs associated with the carcass traits were located near genes related to the structure and function
of the spliceosome and the ribosome; in particular, U6 which encodes a spliceosomal subunit and 5S rRNA which
encodes a ribosomal subunit.

Conclusions: The present study demonstrates that CNV data and SNP LRR data can be used to detect genomic
regions associated with carcass traits in cattle providing information on quantitative trait loci over and above those
detected using just SNP allele counts, as is the approach typically employed in genome-wide association analyses.
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Background
The carcass value of cattle in most jurisdictions is a
function of the carcass weight, with additional premia
paid for animals that meet particular specifications on
age, breed-type, and certain carcass conformation and
carcass fat metrics [1, 2]. The heritability of carcass traits
is estimated to be in the range of 0.30 to 0.40 [3–5], sig-
nifying the presence of genetic variation. Many studies
in cattle have attempted to locate quantitative trait loci
(QTLs) associated with this genetic variation. These
studies have generally limited their investigation to bi-
allelic single nucleotide polymorphism (SNP) allele
count data [6–8]. Similarly, genomic association studies
of other traits in cattle, such as milk and fertility traits
[9, 10], as well as association analyses in other domestic
livestock species [11], tend to limit the independent vari-
able in their analyses to the allele count for a given SNP.
However, other types of genetic variants such as copy
number variants (CNVs) exist; these genetic variants are
formed by duplication or deletion of segments of DNA
[12]. Copy number variants are typically considered to
have a minimum length between 50 bp [13] and 1 kb
[12] depending on the method used to detect the CNVs.
Previous imputation studies indicate that CNVs may not
be in strong linkage disequilibrium with flanking SNP al-
leles [14, 15]. Xu et al. [16] performed association ana-
lyses between CNVs and milk traits in Holsteins;
approximately 25 % of the associated CNVs they identi-
fied were not in linkage disequilibrium with flanking
SNPs. Therefore, association studies that also include
CNV data as well as SNP allele data may reveal add-
itional QTLs associated with a trait of interest, which
otherwise might not be discoverable using SNP allele
count data alone. Genome-wide association analyses in
cattle using CNV data are limited in number, but those
that exist have identified CNVs associated with meat
tenderness in a population of 723 Nelore cattle [17],
carcass and growth traits in a population of 2,230 Nelore
cattle [18], milk performance in a population of 1,116
Brown Swiss cattle [19], and somatic cell count in 242
Holstein cows [20].
One of the key metrics used to detect CNVs from SNP

array data is the normalized fluorescence intensity of the
SNP. The fluorescence intensity reported on Illumina
genotype platforms is measured by the log R ratio (LRR)
value, where the LRR value of a SNP is the log2 of the
observed fluorescence intensity of the SNP divided by
the expected fluorescence intensity of the SNP [21]. The
expected fluorescence intensity of the SNP is calculated
using linear interpolation between the genotype clusters
of the SNP [22]. To the best of our knowledge no previ-
ous genome-wide association analyses in cattle have dir-
ectly used SNP LRR information, although Salomon-
Torres et al. [23] used the normalized fluorescence

intensity values of SNPs in a cluster analysis to identify
Holsteins that are at risk of ovarian pathologies. Jenkins
et al. [24] did, however, detect an association between
SNP LRR and carcass merit in Romney, Perendale,
Coopworth, and Texel New Zealand sheep.
The objectives of the present study were two-fold:

firstly, to perform association analyses of carcass traits in
cattle using CNV copy number, and secondly to perform
separate association analyses of carcass traits on the
same population of cattle but using SNP LRR values. Of
interest for both of these objectives was whether or not
any discovered associations could also be detected using
only the allele count data for individual SNPs, as this is
the approach most commonly undertaken in genome-
wide association analyses.

Results
Four different association analyses were carried out in
the present study, with the models applied differing only
by the independent variable in the model. The four
models evaluated included each carcass trait as the
dependent variable but the independent variable was ei-
ther the CNV copy number for a given detected CNV,
the SNP LRR per SNP or, at a chromosomal level, the
proportion of the chromosome with a called CNV or the
mean SNP LRR per chromosome. The single CNV and
SNP LRR association analyses were used to identify indi-
vidual CNVs and SNP LRRs associated with carcass
traits while both the CNV proportion and mean LRR
per chromosome analyses were used to determine if
overall CNV burden, or mean LRR as a metric possibly
reflective of CNV burden, associated with carcass merit.

Chromosome association analyses
The proportion of the chromosome with a called CNV
(either deletion or duplication) did not associate with
any of the carcass traits in any of the three breeds. The
proportion of chromosome 20 with a called duplication
CNV was negatively associated (P = 0.0002) with carcass
conformation in the Holstein-Friesians; with this excep-
tion, there was no other detected association with the
proportion of the chromosome with a called duplication
CNV or the proportion of the chromosome with a called
deletion CNV. The mean LRR of chromosome 13 was
positively associated with carcass conformation in
Holstein-Friesians (P = 0.0006); the regression coefficient
for the relationship between carcass conformation and
mean LRR of chromosome 13 was 1.059 (SE = 0.307).
The mean LRR of all other chromosomes was not asso-
ciated with any of the carcass traits in any breed.

Copy number variant association analysis
To be included in the final dataset of CNVs for each
breed, the CNV had to be present in at least 3 animals
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within the breed. After edits, 13,969, 3,954, and 2,805
CNVs were considered for the Holstein-Friesian, Charo-
lais, and Limousin populations, respectively. The popula-
tion structure of the Holstein-Friesians was less
homogeneous than the other two breeds; this was deter-
mined from eigen decomposition of the genomic rela-
tionship matrices for each of the three breeds. The top
eigenvalue for the Holstein-Friesians was approximately
3 times larger than the top eigenvalue for either the
Charolais or the Limousins, which indicates that the
Holstein-Friesians were less homogeneous than either
the Charolais or the Limousins. This may account for
the greater number of CNVs available for the Holstein-
Friesians than for the Charolais or the Limousins.
Out of the 13,969, 3,954, and 2,805 CNVs tested in the

Holstein-Friesian, Charolais, and Limousin cattle, re-
spectively, a total of 16 different CNVs were associated
with at least one of the carcass traits in at least one of
the three breeds. The number of CNVs tested and the
number of associated CNVs for each breed and trait are
given in Table 1. One of the CNVs located on chromo-
some 25 at 15.58 Mb was associated with all three
carcass traits in the Holstein-Friesians. All of the
remaining CNVs were associated with only one trait and
these associations were always only in one breed. Fur-
thermore, there was no overlap in the genomic position
of the 16 different associated CNVs. For each associated
CNV, the pedigree relationship between animals with
the CNV was investigated further to determine if there
was an obvious underlying population structure among
the animals with that CNV. The purpose of this was to
identify associations that may be an artefact of popula-
tion structure, rather than a true association between
the CNV and the carcass trait. For 5 of the 16 associated
CNVs, more than half of the animals with the CNV were
first or second degree relatives. For each of these 5
CNVs, a power analysis revealed that there was an insuf-
ficient number to animals to test if there was a differ-
ence in mean deregressed EBV between the half-siblings

with the CNV versus the half-siblings without the CNV.
These 5 CNVs are presented separately in Table 2; the
remaining 11 CNVs which did not have an obvious
underlying population structure among the animals with
the CNV are presented in Table 3. The marginal R2,
which is the proportion of the variance attributable to
the fixed effect, for each of the associated CNVs was be-
tween 0.0002 and 0.0337 (see Tables 2 and 3). Manhat-
tan plots for the CNVs tested against carcass weight,
carcass fat, and carcass conformation for the three
breeds are given in supplemental Figures S1, S2 and S3,
respectively.

Association analysis of the Log R-ratio value of single
nucleotide polymorphisms
The LRR values of just 34 SNPs were associated with at
least one carcass trait in at least one breed. None of the
SNPs were associated with more than one trait, or were
associated with the same trait in more than one breed.
None of the associated SNPs overlapped in genomic
position with any of the associated CNVs, or indeed
were located within 500 kb upstream or downstream of
the associated CNVs. The proportion of the variance at-
tributable to each SNP LRR was between 0.0123 and
0.0287. A complete list of these SNPs and the R2 for
each SNP is given in Table 4. Manhattan plots for the
association between SNP LRR value and carcass weight,
carcass fat, and carcass conformation in all three breeds
are given in Figs. 1, 2 and 3, respectively.

Association analysis of single nucleotide polymorphism
allele counts
To determine if a traditional association analysis using
SNP allele counts could identify the same QTLs identi-
fied by the CNV analysis, the allele count of SNPs within
500 kb upstream or downstream of each associated
CNV were tested for an association with the carcass trait
in question. For each of the associated CNVs, there was
between 121 and 356 SNPs located within the genomic

Table 1 Number of copy number variants (CNVs) available for each breed and trait, and the number of CNVs which were associated
(P < 0.05) with carcass traits within breed

Breed Trait Number of animals Total number of CNVs Associated CNVs

Charolais Weight 945 3,954 1

Conformation 945 3,954 0

Fat 945 3,954 0

Holstein-Friesian Weight 892 13,899 5

Conformation 915 13,953 8

Fat 923 13,969 1

Limousin Weight 974 2,805 0

Conformation 973 2,804 1

Fat 974 2,805 2
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region that spanned 500 kb upstream and downstream
of the CNV. None of the SNP alleles located within
500 kb upstream or downstream of an associated CNV
(including within the CNV itself) were associated with
the carcass trait in question (P > 0.05). The same ap-
proach was used to determine if the called allele counts
of any SNP located within 500 kb upstream or down-
stream of associated SNP LRRs (including the SNP itself)
were also associated with the trait in question. For each
of the associated SNP LRRs, there were between 164 and
486 SNPs located within the genomic region encompass-
ing 500 kb upstream and downstream of the associated
SNP LRR. The alleles of 30 SNPs located between
6.55 Mb and 8.43 Mb were associated with carcass fat in
the Charolais; these 30 SNPs were located within 500 kb
of two SNPs with LRRs also associated with carcass fat
in the Charolais. The allele count of a single SNP located
on chromosome 26 at 27.08 Mb was associated with

carcass weight in Holstein-Friesians; this SNP was lo-
cated 284.9 kb downstream of a SNP whose LRR
value also associated with carcass weight in the
Holstein-Friesians. There were 75 other SNPs located
within the 284.9 kb region between the SNP associated
by allele count and the SNP associated by LRR; none of
these 75 SNPs associated with carcass weight in the
Holstein-Friesians by either allele count or LRR. For all
other detected SNP LRR associations, there was no SNP
within 500 kb associated by allele count with the trait in
question.

Gene set enrichment analysis
A total of 72 genes overlapped in genomic position with
the QTL regions of the 16 associated CNVs. The DA-
VID algorithm reported that there was no gene-set en-
richment in this set of 72 genes. A total of 163 genes
overlapped in genomic position with the QTL regions of

Table 2 Copy number variants (CNVs) associated with each of the carcass traits in Charolais (CH), Holstein-Friesian (HF), and
Limousin (LM), but with a possible underlying population structure between the animals with the CNV. When a CNV was present as
both duplications and deletions in the population the CNV type was reported as mixed

Chromosome Start
position

End
position

Associated
trait

Breed Population
frequencya

CNV
type

Marginal R2
b

Flanking genes

8 15.37 Mb 15.38 Mb Weight HF 3 Deletion 0.0289 bta-mir-873, bta-mir-
876

25 15.58 Mb 15.59 Mb Weight HF 7 Deletion 0.0337 XYLT1

16 16.55 Mb 16.56 Mb Conformation HF 17 Mixed 0.0002 BRINP3

20 43.06 Mb 43.08 Mb Conformation HF 4 Deletion 0.0314 CDH6

25 15.58 Mb 15.59 Mb Conformation HF 7 Deletion 0.0315 XYLT1

25 15.58 Mb 15.59 Mb Fat HF 7 Deletion 0.0296 XYLT1

10 24.59 Mb 24.60 Mb Fat LM 4 Mixed 0.0045 TRAV16
aThe population frequency of the CNV is the number of animals in the population in which the CNV differed from the normal state
bThe marginal R2 is the R2 which is attributable to the fixed effect, i.e. the CNV, in the linear mixed model

Table 3 Copy number variants (CNVs) associated with each of the carcass traits in Charolais (CH), Holstein-Friesian (HF), and
Limousin (LM) with no obvious underlying pedigree relationship. When a CNV was present as both duplications and deletions in the
population the CNV type was reported as mixed

Chromosome Start position End position Associated trait Breed Population frequencya CNV type Marginal R2 b Flanking genes

9 7.28 Mb 7.29 Mb Weight CH 3 Deletion 0.0201 ADGRB3

1 9.91 Mb 9.92 Mb Weight HF 6 Deletion 0.0276 APP U6

7 10.49 Mb 11.09 Mb Weight HF 3 Duplication 0.0286 OR7A89, OR7A95

22 61.33 Mb 61.38 Mb Weight HF 3 Mixed 0.0146 CFAP100

2 136.75 Mb 136.91 Mb Conformation HF 6 Mixed 0.0047 U6, 5S rRNA

7 23.81 Mb 23.86 Mb Conformation HF 25 Mixed 0.0053 GRAMD2B

11 103.48 Mb 103.50 Mb Conformation HF 3 Mixed 0.0044 CAMSAP1

11 49.90 Mb 49.91 Mb Conformation HF 3 Mixed 0.0056 TMBSB10

21 58.26 Mb 58.28 Mb Conformation HF 3 Mixed 0.0049 ITPK1

7 45.49 Mb 45.52 Mb Conformation LM 4 Deletion 0.0109 APC2, PCSK4, REEP6

10 39.73 Mb 39.73 Mb Fat LM 6 Deletion 0.0045 RPL10L, U1
aThe population frequency is the number of animals in the population with a deletion or duplication variant of the CNV
bThe marginal R2 is the R2 which is attributable to the fixed effect in the linear mixed model, in this case the CNV is the fixed effect
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the associated SNP LRRs, and there was no gene set en-
richment in these 163 genes.

Discussion
Carcass weight, carcass conformation, and carcass fat
are key components of carcass value and have a direct
impact on the profitability of beef farming [2]. Consider-
able emphasis is placed on carcass traits in beef-on-beef
breeding goals [25, 26], beef-on-dairy breeding goals

[27], and even dairy-on-dairy breeding goals [28]. Given
the economic importance of carcass traits in cattle, an
understanding of the genetic variants that contribute to
the underlying inter-animal variability is of practical im-
portance for any breeding or management strategy in
cattle.
While several previous studies have attempted to re-

late SNP allele count data to carcass traits [7, 8, 29], the
present study is one of the few studies to perform

Table 4 Single nucleotide polymorphisms (SNPs) with log R ratio (LRR) values associated with carcass weight, carcass fat, and
carcass conformation in Charolais (CH), Holstein-Friesians (HF), and Limousins (LM)

Chromosome Position Breed Associated trait Marginal R2 a Flanking genes

2 6.92 Mb CH Fat 0.0175 MSTN

2 8.01 Mb CH Fat 0.0136 MSTN

6 55.11 Mb CH Fat 0.0131 ARAP2

8 4.31 Mb CH Fat 0.0142 GALNLT6

13 27.45 Mb CH Fat 0.0240 OPTN, MCM10

2 90.47 Mb HF Weight 0.0287 FZD7, CDK15

21 18.53 Mb HF Weight 0.0194 NTRK3

26 27.13 Mb HF Weight 0.0287 SORCS1

1 24.98 Mb HF Conformation 0.0169 ROBO2, 5S rRNA, U2

7 5.59 Mb HF Conformation 0.0179 PGLS, NIBAN3

11 24.55 Mb HF Conformation 0.0233 ELM4

11 74.95 Mb HF Conformation 0.0176 FAM228A, FAM228B

13 68.22 Mb HF Conformation 0.0176 FAM83D

13 77.51 Mb HF Conformation 0.0157 KCNB1

18 4.24 Mb HF Conformation 0.0169 MON1B

19 17.08 Mb HF Conformation 0.0185 ASIC2

25 21.09 Mb HF Conformation 0.0155 COG7

26 42.62 Mb HF Conformation 0.0158 SPADH1, U6

13 55.30 Mb HF Fat 0.0175 CDH4

19 52.38 Mb HF Fat 0.0168 SLC26A11

22 58.14 Mb HF Fat 0.0146 WNT7A, 5S rRNA

6 44.26 Mb LM Weight 0.0177 5S rRNA, U6, DHX15

6 47.74 Mb LM Weight 0.0174 5S rRNA

11 30.81 Mb LM Weight 0.0167 PPP1R21

2 33.44 Mb LM Fat 0.0242 7SK RNA

5 20.16 Mb LM Fat 0.0124 5S rRNA

5 84.42 Mb LM Fat 0.0142 LMNTD1

7 64.07 Mb LM Fat 0.0131 7SK RNA

10 90.67 Mb LM Fat 0.0172 NRXN3, 5S rRNA

20 30.72 Mb LM Fat 0.0127 U6

20 33.02 Mb LM Fat 0.0143 PLCXD3

20 40.93 Mb LM Fat 0.0221 NPR3

21 37.67 Mb LM Fat 0.0123 U6

27 3.61 Mb LM Fat 0.0226 CSMD1, U6
aThe marginal R2 is the proportion of the variance that was attributable to the fixed effect in a linear mixed model, which for this model is the SNP LRR
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genome-wide association analyses between CNVs and
carcass traits in cattle, and to the best of our knowledge
is the only study to use a multi-breed population of cat-
tle. Furthermore, to the best of our knowledge this is
also the first genome-wide association analyses of
carcass traits in cattle using SNP LRR data. While 2,842
animals were included in the analyses, these animals
were sires, and their phenotypes were breeding values
estimated from their descendants; in fact, the 2,842 ani-
mals were the equivalent of > 150,000 effective own
phenotypic records.

In the chromosome-based association analyses, four
different analyses were conducted. Within each of these
analyses, the 29 autosomal chromosomes were separately
tested for an association with each of the three carcass
traits in the three different breeds; this amounts to 1,044
individual tests. Given that an association was detected
for only two of these tests (i.e., the proportion of
chromosome 20 with a called duplication CNV and
carcass conformation in the Holstein-Friesians; the mean
LRR of chromosome 13 and carcass conformation in
Holstein-Friesians), it suggests that these results may not

Fig. 1 Manhattan plots for single nucleotide polymorphism (SNP) log R ratio (LRR) values associated with carcass weight in A Charolais
B Holstein-Friesians, and C Limousins. The red line represents the significance threshold for each of the three breeds
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reflect true associations but rather were spurious associ-
ations due to noise in the data.

Shared quantitative trait loci
A single CNV located on chromosome 25 at 15.58 Mb
was associated with all three carcass traits but just in
Holstein-Friesians (Table 2). This CNV was one of the 5
CNVs (Table 2) for which the majority of the animals
with the CNVs were half-siblings, but per a power ana-
lysis there was an insufficient number of animals to test
for a difference in the mean deregressed EBVs between
half-siblings with the CNV versus those without the

CNV. The association of this CNV with each of the
carcass traits may have been due to underlying popula-
tion stratification rather than a true association between
the CNV and each of the carcass traits in Holstein-
Friesians.
Although no SNP LRRs were associated with more

than one trait, the SNP LRR with the strongest associ-
ation with carcass fat in Charolais, located on chromo-
some 2 at 6.85 Mb, was also the SNP LRR with the
strongest association with carcass conformation in the
Charolais. However, this association with carcass con-
formation (P = 3.715 × 10− 6 prior to multiple testing

Fig. 2 Manhattan plots for single nucleotide polymorphism (SNP) log R ratio (LRR) values associated with carcass fat in A Charolais B Holstein-
Friesians, and C Limousins. The red line represents the significance threshold for each of the three breeds
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adjustment) was not above the threshold for significance
after adjusting for multiple testing albeit there was a
strong association. The lack of QTLs shared across the
different breeds or traits for either the associated CNVs
or the associated SNP LRRs is broadly consistent with
the literature using SNP allele count in the association
analysis of carcass traits in cattle, where the majority of
associated SNPs are only associated with one particular
carcass trait within a single breed [7, 30]. The CNVs
available for testing were not all unique to one breed;
many of the CNVs were shared between the Holstein-

Friesian, Charolais, and Limousin populations in the
present study. Therefore, it was possible for a CNV to
be associated with a given trait in more than one breed.
For each of the 16 CNVs associated with at least one
trait in at least one breed, the P-value for association
with each of the other two traits in the other breeds is
given in supplemental Table S1. Small sample bias may
be contributing to the absence of shared QTLs between
the different breeds and traits. Large populations are re-
quired to detect associations of small effect [31], so it is
possible that QTLs associated with one trait in one

Fig. 3 Manhattan plots of single nucleotide polymorphism (SNP) log R ratio (LRR) values associated with carcass conformation in A Charolais
B Holstein-Friesians, and C Limousins. The red line represents the significance threshold for each of the three breeds
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breed are also associated with that trait in another breed
or trait but the effect was too small to be detected in the
present study.
None of the associated SNP LRRs overlapped in

genomic position with any of the tested CNVs in the
present study. The fact that there were no CNVs de-
tected in the genomic regions of the associated SNP
LRRs may be due to the reported high false negative
rate of CNV detection [32, 33]. Copy number variants
in the present study with fewer than 3 SNPs cannot
be detected using the CNV-calling algorithm
PennCNV, but it is likely, based on the population
frequency of CNVs by genomic length, that many
CNVs, or indeed InDels, do exist below this mini-
mum length threshold for detection [34].

Comparison with other genome-wide association studies
Zhou et al. [18] performed a genome-wide CNV associ-
ation analysis of carcass traits in a population of 2,230
Nelore cattle and discovered 17 CNVs that associated
with carcass traits or growth traits. There was, however,
no overlap in the genomic position of the associated
CNVs identified in the present study with those docu-
mented by Zhou et al. [18]. This is not surprising given
that both studies used different breeds and associated
genetic variants mostly tend to be breed specific in
genome-wide association analyses [7, 29, 30].
No SNP genotypes located within 500 kb of an as-

sociated CNV in the present study associated with
the trait of interest in the given breed; this, there-
fore, suggests that the CNVs and SNP genotypes in
the present study had independent contributions to
the carcass traits analysed. Nonetheless, the QTL re-
gions of associated CNVs and associated SNP LRRs
were compared to QTL regions reported in other
genome-wide SNP genotype association analyses of
carcass traits [7], muscularity traits [29], and skeletal
traits [35]; each of these studies used imputed se-
quence data and similar cattle populations to the
population used in the present study. The studies on
muscularity and skeletal traits were also included in
this comparison because muscularity and skeletal
traits are strongly correlated with carcass traits in
cattle [36, 37]. A CNV associated with carcass con-
formation in the Holstein-Friesians, located on
chromosome 7 between 28.81 Mb and 28.86 Mb,
overlapped in genomic position with a QTL associ-
ated with stature in Holstein-Friesians [35]. None of
the other associated CNVs overlapped in genomic
position with QTLs reported by either Doyle et al.
[29], Doyle et al. [35], or Purfield et al. [7]. Two
SNP LRRs associated with carcass fat in the Charo-
lais, which were located on chromosome 2 at
6.85 Mb and 8.01 Mb, overlapped in genomic

position with QTLs documented by Purfield et al.
[7], which were associated with carcass weight,
carcass fat, and carcass conformation in Charolais.
The same two SNPs overlapped with QTLs associ-
ated with wither width, thigh width, inner thigh,
hind quarter [29], as well as back length [35] in
Charolais. This genomic region was also identified in
the present study using the SNP allele count associ-
ation analysis. It is likely that the association of
these two SNP LRRs with carcass fat is due to their
close proximity to the MSTN gene. The MSTN gene
encodes the protein Myostatin whose function is to
regulate muscle cell proliferation [38]. Mutations in
MSTN are known to have large effect on carcass
traits in cattle [38–40].
In addition to comparisons with other genome-wide

association studies, the QTL regions of the associated
CNVs were compared to the Ensembl genome browser
to determine if these genomic regions had previously
been annotated with CNVs. For 14 of the 16 associated
CNV QTLs, the genomic region of the detected CNV
QTL in the present study had previously been annotated
with CNVs as per the Ensembl genome browser. The
QTL of the CNV located on chromosome 2 between
136.6 Mb and 137.0 Mb did not overlap with a CNV re-
gion. Similarly, the QTL of the CNV located on chromo-
some 22 between 61.2 Mb and 61.5 Mb did not overlap
with a reported CNV region as per the Ensembl genome
browser.

Candidate genes
In the present study two SNP LRRs upstream of the
MSTN gene were associated with carcass fat in the Cha-
rolais; furthermore SNP allele counts in this region were
also associated with carcass fat in the Charolais. Given
that the genomic region flanking the MSTN gene was
detected in this study using both SNP LRR and SNP al-
lele counts, it validates that SNP LRR data can be used
to detect associations between carcass traits and the
genes that influence carcass traits in cattle. Other genes
known to have a large effect on carcass traits in cattle
such as LCORL [41–43], NCAPG [44, 45], and PLAG1
[42, 46] were not identified in the present study. For all
three breeds, there were CNVs and SNPs at or near the
genomic locations of LCORL, NCAPG, and PLAG1;
therefore, it was possible for the association analyses to
detect these genomic regions. It could be the case that
the SNP LRRs and CNVs flanking these large effect
genes are not in linkage disequilibrium with the causa-
tive mutations in these genes, nor are these genes dir-
ectly influenced by copy number variation in the present
study.
In addition to MSTN, there are several other plausible

candidate genes which may be associated with carcass
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traits in cattle. The APP gene, which encodes the amyl-
oid precursor protein, flanks a CNV located on chromo-
some 1 at 9.91 Mb which was associated with carcass
weight in the Holstein-Friesians. The APP gene is associ-
ated with meat tenderness in Hanwoo cattle [47] and
APP has also been identified as a candidate gene associ-
ated with hip width in Holstein-Friesians [35]. A CNV
located on chromosome 10 at 39.73 Mb associated with
carcass fat in the Limousins is located close to RPL10L,
a gene which encodes ribosomal protein L10. The ex-
pression of RPL10L is associated with residual feed in-
take in Hereford Angus crossbreed steers [48]. In the
present study, one CNV was associated with all three
carcass traits in the Holstein-Friesians; this CNV located
on chromosome 25 at 15.58 Mb overlaps in genomic
position with the XYLT1 gene. The XYTL1 gene is asso-
ciated with growth traits in Canchim cattle [49], and was
also reported as a candidate gene associated with hip
width in Angus cattle [35].
The genes near or nearest to an associated CNV or

SNP LRRs were often components of the spliceosome or
the ribosome (Tables 2, 3 and 4). In metazoan animals,
cattle included, multiple copies of the genes encoding
the subunits of the spliceosome and ribosome are main-
tained in the genome [50, 51]. Several distinct copies of
U6 were located near CNVs associated with carcass con-
formation and carcass weight in the Holstein-Friesians
(Table 3). Likewise, several distinct copies of U6 were lo-
cated in close proximity to SNPs with LRRs associated
with carcass conformation and carcass fat in Holstein-
Friesians, carcass fat in Charolais, and carcass weight
and carcass fat in Limousins (Table 4). Multiple distinct
copies of the 5S rRNA gene, which encodes an RNA
(rRNA) subunit of the ribosome [52], were located in
close genomic proximity to associated CNVs and associ-
ated SNP LRRs (Tables 3 and 4).
The close genomic proximity of several distinct copies

of U6 and 5S rRNA genes with associated CNVs and
SNP LRRs indicates that these genes may be associated
with carcass traits in cattle. However, it could be the
case that these genes were often located near associated
CNVs and SNP LRRs because they are enriched in gen-
omic regions frequently subject to copy number vari-
ation, due to the fact that there are multiple copies of
these genes in the cattle genome. Other cattle studies
have also reported that U6 and 5S rRNA are under posi-
tive selection, and are also associated with carcass traits.
Both U6 and 5S rRNA genes have been demonstrated to
be under positive selection in North African cattle [53],
as well as in Holstein, Hanwoo, and N’Dama cattle [54].
Zhang et al. [55] reported that 5S rRNA and U6 may be
candidate genes for dry matter intake in a multi-breed
population of cattle. Additionally, Wang et al. [8] re-
ported that U6 may be a candidate gene for average back

fat thickness and carcass marbling, and 5S rRNA may be
a candidate gene for carcass marbling in a multi-breed
population of cattle. In addition to 5S rRNA, other genes
related to the structure and function of the ribosome
have also been associated with carcass traits in cattle.
The RPS20 gene, which encodes a protein that is part of
the structure of the ribosome [56], is associated with
animal stature in Hanwoo cattle [57]. Mutations in
L27a, a ribosomal subunit, are associated with marbling
in Japanese cattle [58]. Similar to the ribosome, the spli-
ceosome may have an impact on carcass traits in cattle.
A transcriptomics study in cattle reported that alterna-
tively spliced mRNA transcripts are associated with
intramuscular fat content and cross-sectional area of
muscle in Nelore cattle [59].

Conclusions
Genomic regions associated with carcass traits in cattle
were identified using both CNV and SNP LRR data,
which, for the vast majority, would not have been de-
tected using traditional genome wide association ap-
proaches based on SNP allele counts. Hence SNP allele
counts, SNP LRR data, and CNV data could be comple-
mentary in detecting genomic regions associated with
performance. Although only a small proportion of the
genetic variability in the carcass traits was captured with
these two new variant types, the same may not be true
for other populations or traits; moreover, improvements
in the calling of CNVs in particular could possibly im-
prove the strength of the association analyses.

Materials and methods
Genotype data
All animals were genotyped using the Illumina Bovi-
neHD SNP array (777,962 SNPs) (Illumina Inc., San
Diego, CA); the positions of all SNPs were taken from
the UMD 3.1 build of the bovine genome [60]. Only ani-
mals with at least 95 % of their SNPs called were consid-
ered. Individual SNPs with a call rate of less than 95 %
were excluded, as were SNPs on the X or Y chromo-
somes, and SNPs without a reported chromosome or
position. In addition, 1,611 SNPs inconsistent with Men-
delian inheritance in more than 2 % of parent-progeny
pairs [61] were also excluded from the analyses. After
edits 712,555 SNPs were available for 1,324 Holstein-
Friesian, 981 Charolais, and 1,129 Limousin bulls.

Phenotypic data
Estimated breeding values (EBVs) and associated reliabil-
ity estimates for carcass weight, carcass fat, and carcass
conformation were obtained for each animal from the
January 2019 national genetic evaluation of the Irish
Cattle Breeding Federation (ICBF) (Bandon, Co. Cork,
Ireland). In Ireland, carcass weight is the weight of the
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carcass after the head, limbs, hide, internal organs, and
visceral fat are removed from the carcass [4]. Carcass
conformation and carcass fat are both scored on a 15-
point scale according to the EU beef carcass classifica-
tion system (EUROP) using video image analysis [62].
The Secant method described by Stranden and Manty-
saari [63] was used to deregress the EBVs of each trait
using the Mix99 software [64]. The effective record con-
tribution (ERC) was calculated for each animal using the
method described by Harris and Johnson [65]. Animals
with an ERC < 1 were excluded from further analysis.
The number of animals available after edits and the sum
of the ERCs for each breed and trait is presented in sup-
plemental Table S2. Summary statistics on the dereg-
ressed EBVs for each breed are given in supplemental
Table S3.

Detection of copy number variants
During the genotyping process, when a DNA molecule
complementary to a particular SNP binds to the SNP
array it precipitates a fluorescence reaction; the intensity
of this reaction is recorded in the log R-ratio (LRR) stat-
istic [21]. The LRR value is the observed fluorescence in-
tensity for the SNP divided by the expected fluorescence
of the SNP, where the expected fluorescence intensity of
the SNP is derived by linear interpolation between the
called genotype clusters [22]. A related statistic to the
LRR value is the B allele frequency (BAF), the BAF of a
SNP is the fluorescence intensity of the B allele at the
SNP divided by the total fluorescence intensity of the
SNP. PennCNV [66] and QuantiSNP [67] are two freely
available CNV-calling algorithms that use the LRR and
BAF values of SNPs to detect CNVs using a hidden Mar-
kov model approach. In the present study, both algo-
rithms were used to call CNVs separately from each
animal in the population; two algorithms were used to
call CNVs separately from each animal in the popula-
tion, as has been previously suggested by Winchester
et al. [68], because both algorithms are reported to have
low false positive rates of CNV discovery [32, 66, 67],
but have higher false negative rates of CNV discovery.
The guanine-cytosine (GC) content of DNA is known to
bias CNV detection using SNP array data [69]. To ac-
count for the GC content of DNA, an adjustment was
made to account for the correlation between the LRR
values of SNPs and the GC content of DNA flanking
500 kb upstream and downstream of the SNP. PennCNV
specifies that each CNV must contain at least 3 SNPs so
for consistency between both algorithms, the same cri-
terion was applied to the CNVs called by QuantiSNP; no
maximum length for a CNV was specified in the present
study.
A CNV was considered to have been called by both

PennCNV and QuantiSNP when the endpoints of the

CNV called by one algorithm, were no more than 1 SNP
from the endpoints of the CNV called by the other algo-
rithm. This difference of 1 SNP was allowed for because
if there is an error in endpoint demarcation, the true
endpoint of the CNV is typically only one SNP away [32,
67]. Copy number variants called by either PennCNV or
QuantiSNP were included in the CNV dataset, but
CNVs called by both PennCNV and QuantiSNP were
not double counted. The final CNV data-set consisted of
CNVs called by either PennCNV or QuantiSNP whose
copy number deviated from the normal state (i.e. two
copies) in more than 3 animals within a given breed.
Summary statistics on the CNVs available after edits in
the present study are given in supplementary Table S4.

Population structure
The population structure for each breed was inferred
using the method described by Patterson et al. [70] using
the imputed SNP genotype data (712,555 SNPs) for each
animal within breed. In this method, eigen decompos-
ition is performed on a covariance matrix that is equiva-
lent to the genomic relationship matrix calculated using
method 1 of VanRaden [71]. Eigen decomposition was
carried out separately on the genomic relationship
matrices for the Charolais, Holstein-Friesians, and Lim-
ousins. Large eigenvalues, relative to a population with-
out population structure, is indicative of population
structure [70].

Association analyses
The present study consisted of four separate sets of asso-
ciation analyses of carcass weight, carcass fat, and
carcass conformation; two were based on aggregate met-
rics per chromosome with the remaining two being
undertaken for individual CNV or SNP. The four separ-
ate analyses differed by the independent variable in the
model which were: (1) the mean LRR per autosomal
chromosome, (2) the proportion of each chromosome
that had a called CNV, (3) the CNV copy number, and
(4) the SNP LRR value. The proportion of the chromo-
some that had a called CNV was calculated per animal
as the combined genomic length of all CNVs on the
chromosome divided by the genomic length of the
chromosome. This calculation was also repeated separ-
ately using only called deletion CNVs to obtain the pro-
portion of the chromosome with a called deletion CNV;
similarly, the proportion of the chromosome with a
called duplication CNV was calculated separately using
only called duplication CNVs. The genomic length of
the chromosome was calculated as the genomic distance
between the first and last genotyped SNP on the
chromosome.
The motivation for the CNV copy number association

analysis was to determine if individual CNVs were
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associated with any of the three carcass traits considered.
Similarly, the purpose of the SNP LRR association ana-
lysis was to determine if individual SNP LRR data can be
used to identify genomic regions associated with carcass
traits in cattle. Furthermore, it was of interest to deter-
mine if common genomic regions existed between those
identified by the CNV copy number and those with SNP
LRR, since SNP LRR is an important statistic for detect-
ing CNVs from SNP array data. There may be an associ-
ation between CNV burden and traits of interest; for
example, previous studies in humans have reported asso-
ciations between CNV burden and both autism
spectrum disorders and schizophrenia [72, 73]. The as-
sociation analysis of the proportion of each chromosome
that has a called CNV was to determine if CNV burden
per chromosome was associated with any of the carcass
traits in cattle. Similarly the association analysis of mean
LRR per chromosome was carried out since mean LRR
per chromosome may also be reflective of CNV burden.
Each association analysis was undertaken separately

for each of the three breeds and each of the three
carcass traits using the R package lme4qtl [74]. A linear
mixed model approach was used to model the associ-
ation between the independent variable and the dereg-
ressed EBV values:

dEBV ¼ μ þ Xgi þ Zu þ e

where dEBV was the vector of deregressed EBVs, µ
was a vector representing the intercept term, and gi was
a vector of the ith independent variable in the model. In
the mean LRR value per chromosome analyses, gi was a
vector of mean LRR value per animal for the ith chromo-
some treated as a continuous fixed effect while in the
analyses of the proportion of the chromosomes with a
called CNV, gi was a vector of the proportion of the
chromosome with a called CNV for the ith chromosome
treated as a continuous fixed effect. In the CNV associ-
ation analyses, gi was a vector of the copy number for
the ith CNV treated as a categorical fixed effect, while in
the SNP LRR association analyses, gi represented a vec-
tor of LRR values for the ith SNP treated as a continuous
fixed effect. In all models, u represented the polygenic
effect of each animal in the population treated as a ran-
dom effect and e represents a vector of random residual
effects. In all models, X and Z were design matrices that
related the fixed and random effects to each animal rec-
ord. In all models, population stratification was
accounted for by fitting a direct additive genetic effect
via a genomic relationship matrix. Method 1 of VanRa-
den [71] was used to generate the genomic relationship
matrix separately for each breed from the edited set of
autosomal SNPs (n = 712,555); missing genotypes in the

edited set of SNPs were imputed using the imputation
software suite FImpute [75]. The random effect, u, was
assumed to have the distribution N(0, Gσ2

a) where G
represents the genomic relationship matrix and σ2

a rep-
resents the additive genetic variance. The random re-
sidual error term, e, was assumed to have the
distribution N(0, Iσ2

e ), where I is the identity matrix and
σ2
e is the residual variance. The deregressed EBVs were

weighted to account for differences in the reliabilities of
the deregressed EBVs within the population. The
weighting on each record was calculated as detailed in
Garrick et al. [76],

w ¼ ð1� h2Þ= cþ 1� r2i
r2i

� �
h2

where h² is the heritability of the trait, ri
2 is the reli-

ability of the EBV for ith animal, and c is the proportion
of genetic variation not accounted for by the genetic
variant in the model. The value of c was set to 0.9 for
each trait [77].
PennCNV and QuantiSNP both report four different

copy number states; these are double copy deletion, sin-
gle copy deletion, single copy duplication, and double
copy duplication. In the CNV association analysis, the
CNV copy number classes double-deletion, single-
deletion, no CNV, single-duplication, and double-
duplication, were recoded as 0, 1, 2, 3, and 4, respect-
ively. For any given CNV, if there was less than 5 ani-
mals in the population with the double-deletion variant
of the CNV, or less than 5 animals with the single-
deletion variant, both deletion classes were collapsed to-
gether. Similarly, if there was less than 5 animals in the
population with the double-duplication variant, or less
than 5 animals with the single-duplication variant, both
duplication classes were collapsed together. All of the
CNVs available in the present study had at most 3 clas-
ses because there was no CNV that had both 5 single-
deletion and 5 double-duplication variants of the CNV,
or 5 single-duplication and 5 double-duplication variants
of the CNV. The number of CNVs available for each
breed and trait, after edits, is given in Table 1.

Model testing
For the analyses at the chromosomal level, the P-values
related to the estimate of the regression coefficient in
each model was adjusted by multiplying the P-value by
the number of chromosomes tested to account for mul-
tiple testing. When CNV copy number and SNP LRR
were the genomic features of interest, the number of in-
dependent tests was calculated separately for each data-
set as the number of principal components required to
account for 99.5 % of the variation in the data [78, 79].
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The P-value relating to the estimate of the regression co-
efficient in each model was adjusted by multiplying the
P-value by the number of independent genomic regions.
Genomic variants with an adjusted P-value ≥ 0.05 were
not considered further.
The proportion of the variance attributable to associ-

ated CNVs and SNP LRRs was calculated separately for
each variant using the marginal R2 statistic as described
by Nakagawa and Schielzeth [80]. The marginal R2 stat-
istic calculates the proportion of the variance attribut-
able to the fixed effect in a linear mixed model.

Gene set enrichment analysis
For gene-set enrichment analysis, a QTL region flanking
each of the associated CNVs and SNP LRRs was speci-
fied as the genomic region spanning 500 kb upstream
and 500 kb downstream of the associated CNV or SNP.
The genomic position of each associated SNP LRR was
updated per the ARS_UCD1.2 assembly of the bovine
genome [81]. For each breed and trait analysed, the sets
of genes which overlapped with the associated QTL re-
gions were obtained using Ensembl Biomart (http://
ensembl.org) based on the ARS_UCD1.2 build of the bo-
vine genome [81]. The list of genes that overlapped with
the QTL regions of the associated genetic variants were
evaluated for gene set enrichment using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) version 6.8 [82]. The DAVID algorithm clus-
ters the genes by function and gives an enrichment score
and P-value to each cluster under the null hypothesis
that there was no gene-set enrichment.

Abbreviations
BAF: B allele frequency; CH: Charolais; CNV: Copy number variant;
DAVID: Database for annotation, visualisation, and integrated discovery;
EBV: Estimated breeding value; ERC: Effective record contribution;
GC: Guanine cytosine; HF: Holstein-Friesian; ICBF: Irish Cattle Breeding
Federation; InDel: Insertion deletion; Kb: Kilobase pair; LM: Limousin; LRR: Log
R-ratio; Mb: Megabase pair; SNP: Single nucleotide polymorphism

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-08075-2.

Additional file 1:Table S1. The P-value for the association between
each of the associated CNVs with each of the three traits across all three
breeds. The genomic location column is formatted chromosome, start
position bp, end position bp. Where a value of NA is given, the CNV was
not tested for the given breed and trait due to insufficient population
frequency of the CNV in that population.

Additional file 2: Table S2. The number of animals available for each
breed and trait, the mean effective record contribution (ERC) per animal,
and the sum of the ERCs for all animals available for each breed and trait.

Additional file 3: Figure S1. Manhattan plots for copy number variants
(CNVs) associated with carcass weight in A) Charolais B) Holstein-Friesians
C) Limousins. The red line represents the significance threshold for each
of the three breeds.

Additional file 4: Figure S2. Manhattan plots for copy number variants
(CNVs) associated with carcass fat in A) Charolais B) Holstein-Friesians C)
Limousins. The red line represents the significance threshold for each of
the three breeds.

Additional file 5: Figure S3. Manhattan plots for copy number variants
(CNVs) associated with carcass conformation in A) Charolais B) Holstein-
Friesians C) Limousins. The red line represents the significance threshold
for each of the three breeds.

Additional file 6: Table S3. The mean, standard deviation, minimum,
and maximum of the deregressed estimated breeding values (EBVs) for
each trait for each of the three breeds.

Additional file 7: Table S4. Median, mean, and standard deviation of
the number of CNVs per animal, referred to as count, and the length of
CNVs within breed.

Acknowledgements
This work was funded by a research grant from Science Foundation Ireland,
grant number 14/IA/2576, and a joint research grant from Science
Foundation Ireland and the Department of Agriculture, Food, and Marine for
the government of Ireland, grand number 16/RC/3835 (VistaMilk; Dublin,
Ireland). Andrew Parnell’s work was supported by a Science Foundation
Ireland Career Development Award grant 17/CDA/4695 and a Science
Foundation Ireland research centre grant 12/RC/2289_P2.

Author’s contributions
Study design: DPB, PR, ICG, ACP. Manuscript preparation PR, DPB, ICG, DCP,
ACP, SND. All authors read and approved the final manuscript.

Funding
This work was funded by a research grant from Science Foundation Ireland,
grant number 14/IA/2576. The funders of this study did not contribute to
study design, data collection, or data analysis undertaken in the present
study.

Availability of data and materials
The genotype and phenotype datasets analysed in the present study are
available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
Approval was not required for this study because the genotype and
phenotype data used in this study had previously been gathered for
commercial use by the Irish Cattle Breeding Federation. Permission was
obtained from the Irish Cattle Breeding Federation for the use of genomic
and phenotypic data.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark,
Cork, Fermoy, Ireland. 2School of Mathematics and Statistics, University
College Dublin, Belfield, Dublin 4, Ireland. 3Department of Biological Sciences,
Munster Technological University Institute, Cork, Bishopstown, Ireland.
4Hamilton Institute, Insight Centre for Data Analytics, Maynooth University,
Kildare, Ireland. 5Irish Cattle Breeding Federation, Cork, Bandon, Ireland.

Received: 23 April 2021 Accepted: 7 October 2021

References
1. Kenny D, Judge MM, Sleator RD, Murphy CP, Evans RD, Evans, Berry DP. The

achievement of a given carcass specification is under moderate genetics
control in cattle. J Anim Sci. 2020. https://doi.org/10.1093/jas/skaa158.

Rafter et al. BMC Genomics          (2021) 22:757 Page 13 of 16

http://ensembl.org
http://ensembl.org
https://doi.org/10.1186/s12864-021-08075-2
https://doi.org/10.1186/s12864-021-08075-2
https://doi.org/10.1093/jas/skaa158


2. Powers J. An independent assessment of the Irish beef industry. 2020.
https://www.ifa.ie/wp-content/uploads/2020/03/Jim-Power-Beef-Report-202
0.pdf. Accessed 22 Oct 2020.

3. Kause A, Mikkola L, Stranden I, Sirkko K. Genetic parameters for carcass
weight, conformation and fat in five cattle breeds. Animal. 2015. https://doi.
org/10.1017/S1751731114001992.

4. Englishby TM, Banos G, Moore KL, Coffey MP, Evans RD, Berry DP. Genetic
analysis of carcass traits in beef cattle using random regression models. J
Anim Sci. 2016. https://doi.org/10.2527/jas.2015-0246.

5. Kenny D, Murphy CP, Sleator RD, Judge MM, Evans RD, Berry DP. Animal-
level factors associated with the achievement of desirable specifications in
Irish beef carcasses graded using the EUROP classification system. J Anim
Sci. 2020. https://doi.org/10.1093/jas/skaa191.

6. Fang ZH, Pausch H. Multi-trait meta-analyses reveal 25 quantitative trait loci
for economically important traits in Brown Swiss cattle. BMC Genomics.
2019. https://doi.org/10.1186/s12864-019-6066-6.

7. Purfield DC, Evans RD, Berry DP. Reaffirmation of known major genes and
the identification of novel candidate genes associated with carcass-related
metrics based on whole genome sequence within a large multi-breed
cattle population. BMC Genomics. 2019. https://doi.org/10.1186/s12864-019-
6071-9.

8. Wang Y, Zhang F, Mukiibi R, Chen L, Vinsky M, Plastow G, Basarab J, Sothard
P, Li C. Genetic architecture of quantitative traits in beef cattle revealed by
genome wide associated studies of imputed whole genome sequence
variants: II: carcass merit traits. BMC Genomics. 2020. https://doi.org/10.1186/
s12864-019-6273-1.

9. Jiang J, Ma L, Prakapenka D, VanRaden PM, Cole JB, Da Y. A large-scale
genome-wide association study in U.S. Holstein cattle. Front Genet. 2019.
https://doi.org/10.3389/fgene.00412.

10. Ma L, Sonstegard TS, Cole JB, VanTassell CP, Wiggans GR, Crooker BA, Tan C,
Prakapenka D, Liu GE, Da Y. Genome changes due to artificial selection in U.
S. Holstein cattle. BMC Genomics. 2019. https://doi.org/10.1186/s12864-019-
5459-x.

11. Sharma A, Lee JS, Dang CG, Sudrajad P, Kim HC, Yeon SH, Kang HS, Lee SH.
Stories and challenges of genome wide association studies in livestock – a
review. Asian Australas J Anim Sci. 2015. https://doi.org/10.5713/ajas.14.0715.

12. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome.
Nat Rev Genet. 2006. https://doi.org/10.1038/nrg1767.

13. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A,
Yoon SC, Ye K, Cheetjam RK, Chinwalla A, Conrad DF, Fu Y, Grubert F,
Hajirasouliho I, Hormozdiari F, Iokoucheva LM, Iqbal Z, Kang S, Kidd JM,
Konkel MK, Korn J, Khurana E, Kura D, Lam HYK, Leng J, Li R, Li Y, Lin CY,
Luo R, Mu XJ, Nemesh J, Peckham HE, Rausch T, Scally A, Shi X, Stromberg
MP, Stutz AM, Urban AE, Walker JA, Wu J, Zhang Y, Zhang ZD, Batzer MA,
Ding L, Marth GT, McVean G, Sebat J, Synder M, Wang J, Ye K, Eichler EE,
Gerstein MB, Hurles ME, Lee C, McCarroll SA, Korbel JO, 1000 Genomes
Project. Mapping copy number variation by population scale genome
sequencing. Nature. 2011. https://doi.org/10.1038/nature09708.

14. Handsaker RE, Van Doren V, Berman JR, Genovese G, Kashin S, Boettger LM,
McCarroll SA. Large multi-allelic copy number variations in humans. Nat
Genet. 2015. https://doi.org/10.1038/ng.3200.

15. Rafter P, Gormley IC, Parnell AC, Kearney JF, Berry DP. Concordance rate
between copy number variants detected using either high or medium-
density single nucleotide polymorphism genotype panels and the potential
of imputing copy number variants from flanking high-density single
nucleotide polymorphism haplotypes in cattle. BMC Genomics. 2020.
https://doi.org/10.1186/s12864-020-6627-8.

16. Xu L, Cole JB, Bickhart DM, ou Y, Song J, VanRaden PM, Sonstegard TS, Van
Tassell CP, Liu GE. Genome wide CNV analysis reveals additional variants
associated with milk production traits in Holsteins. BMC Genomics. 2014.
https://doi.org/10.1186/1471-2164-15-683.

17. da Silva VH, de Almeida Regitano LC, Geistlinger L, Giachetto PF, Brassaloti
RA, Morosini NS, Zimmer R, Coutinho LL. Genome-wide detection of CBNVs
and their association with meat tenderness in Nelore cattle. PLoS One.
2016. https://doi.org/10.1371/journal.pone.0157711.

18. Zhou Y, Utsunomiya YT, Xu L, Hay EH, Bickhart DM, Alexandre PA, Rosen BD,
Schroeder SG, Carvalherio R, de Rezende Neves HH, Sonstegard TS, Van
Tassell CP, Ferraz JBS, Fukumasu H, Garcia JF, Liu GE. Genome-wide CNV
analysis reveals variants associated with growth traits in Bos indicus. BMC
Genomic. 2016. https://doi.org/10.1186/s12864-016-2461-4.

19. Prinsen RTMM, Rossoni A, Gredler B, Bieber A, Bagnato A, Strillacci MG. A
genome wide association study between CNVs and quantitative traits in
Brown Swiss cattle. Livest Sci. 2017. https://doi.org/10.1016/j.livsci.2017.05.
011.

20. Duran Aguilar M, Ponce SIR, Lopez FJR, Padilla EG, Pelaez CGV, Bagnato A,
Strillacci MG. Genome-wide association study for milk somatic cell score in
holstein cattle using copy number variation as markers. J Anim Breed
Genet. 2017. https://doi.org/10.1111/jbg.12238.

21. Illumina. DNA copy number and loss of heterozygosity analysis algorithms.
2007. http://www.illumina.com/documents/products/technotes/technote_
cnv_algorithms.pdf. Accessed 25 Sept 2020.

22. Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J,
Shaw CA, Belmont J, Cheung SW, Shen RM, Barker DL, Gunderson KL. High-
resolution genomic profiling of chromosomal aberrations using Infinium
whole-genome genotyping. Genome Res. 2006. https://doi.org/10.1101/gr54
02306.

23. Salomon-Torres R, Montano-Gomez MF, Villa-Angulo R, Gonzalez-Vizcarra
VM, Villa-Angulo C, Medina-Basulto GE, Ortiz-Uribe N, Mahadevan P,
Yaurima-Basaldua VH. Genome-wide SNP signal intensity revealed genes
differentiating cows with ovarian pathologies from healthy cows. Sensors.
2017. https://doi.org/10.3390/s17081920.

24. Jenkins G, McEwan JC, Black MA. Association between raw SNP data ad
growth and meat yield traits in sheep. Proc 10th World Congress Genet
Appl Livest Prod. 2014. https://doi.org/10.13140/2.1.2129.8564.

25. Amer PR, Simm G, Keane MG, Diskin MG, Wickham BW. Breeding objectives
for beef cattle in Ireland. Livest Prod Sci. 2001. https://doi.org/10.1016/S03
01-6226(00)00201-2.

26. Connolly SM, Cromie AR, Berry DP. Genetic differences based on a beef
terminal index are reflected in future phenotypic performance differences in
commercial beef cattle. Animal. 2016. https://doi.org/10.1017/S17517311
5002827.

27. Berry DP, Amer PR, Evans RD, Byrne T, Cromie AR, Hely F. A breeding index
to rank beef bulls for use on dairy females to maximize profit. J Dairy Sci.
2019. https://doi.org/10.3168/jds.2019-16912.

28. Berry DP, Shalloo L, Cromie AR, Veerkamp RF, Dillion P, Amer PR, Kearney JF,
Evans RD, Wickham B. The economic breeding index: a generation on
technical report to the Irish Cattle Breeding Federation. 2007. https://www.
icbf.com/wp/wp-content/uploads/2013/06/economic_breeding_index.pdf.
Accessed 28 Nov 2020.

29. Doyle JL, Berry DP, Veerkamp RF, Carthy TR, Evans RD, Walsh SW, Purfield
DC. Genome regions associated with muscularity in beef cattle differ in five
contrasting cattle breeds. Genet Sel Evol. 2020. https://doi.org/10.1186/s12
711-020-0523-1.

30. Ramayo-Caldes Y, Renand G, Ballester M, Saintilan R, Rocha D. Multi-breed
and multi-trait co-association analysis of meat tenderness and other quality
traits in three French beef cattle breeds. Genet Sel Evol. 2016. https://doi.
org/10.1186/212711-016-0216-y.

31. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLOS
Comput Biol. 2012. https://doi.org/10.1371/journal.pcbi.1002822.

32. Dellinger AE, Saw SM, Goh LK, Seielstad M, Young TL, Li YJ. Comparative
analyses of seven algorithms for copy number variant identification from
single nucleotide polymorphism arrays. Nucleic Acids Res. 2010. https://doi.
org/10.1093/nar/gkq040.

33. Zhang L, Bai W, Yuan N, Du Z. Comprehensively benchmarking applications
for detecting copy number variation. PLOS Comput Biol. 2019. https://doi.
org/10.1371/journal.pcbi.1007069.

34. Rafter P, Purfield DC, Berry D, Parnell AC, Gormley IC, Kearney JF, Coffey MP,
Carthy TR. Characterisation of copy number variants in a large multi-breed
population of beef and dairy cattle using high-density single nucleotide
polymorphism genotype data. J Anim Sci. 2018. https://doi.org/10.1093/jas/
sky302.

35. Doyle JL, Berry DP, Veerkamp RF, Carthy TR, Walsh SW, Evans RD,
Purfield DC. Genomic regions associated with skeletal type traits in beef
and dairy cattle are common to regions associated with carcass traits,
feed intake and calving difficulty. Front Genet. 2020. https://doi.org/1
0.3389/fgene.2020.00020.

36. Pabiou T, Fikse WF, Amer PR, Cromie AR, Nasholm A, Berry DP. Genetic
relationships between carcass cut weights predicted from video image
analysis and other performance traits in cattle. Animal. 2012. https://doi.
org/10.1017/S1751731112000705.

Rafter et al. BMC Genomics          (2021) 22:757 Page 14 of 16

https://www.ifa.ie/wp-content/uploads/2020/03/Jim-Power-Beef-Report-2020.pdf
https://www.ifa.ie/wp-content/uploads/2020/03/Jim-Power-Beef-Report-2020.pdf
https://doi.org/10.1017/S1751731114001992
https://doi.org/10.1017/S1751731114001992
https://doi.org/10.2527/jas.2015-0246
https://doi.org/10.1093/jas/skaa191
https://doi.org/10.1186/s12864-019-6066-6
https://doi.org/10.1186/s12864-019-6071-9
https://doi.org/10.1186/s12864-019-6071-9
https://doi.org/10.1186/s12864-019-6273-1
https://doi.org/10.1186/s12864-019-6273-1
https://doi.org/10.3389/fgene.00412
https://doi.org/10.1186/s12864-019-5459-x
https://doi.org/10.1186/s12864-019-5459-x
https://doi.org/10.5713/ajas.14.0715
https://doi.org/10.1038/nrg1767
https://doi.org/10.1038/nature09708
https://doi.org/10.1038/ng.3200
https://doi.org/10.1186/s12864-020-6627-8
https://doi.org/10.1186/1471-2164-15-683
https://doi.org/10.1371/journal.pone.0157711
https://doi.org/10.1186/s12864-016-2461-4
https://doi.org/10.1016/j.livsci.2017.05.011
https://doi.org/10.1016/j.livsci.2017.05.011
https://doi.org/10.1111/jbg.12238
http://www.illumina.com/documents/products/technotes/technote_cnv_algorithms.pdf
http://www.illumina.com/documents/products/technotes/technote_cnv_algorithms.pdf
https://doi.org/10.1101/gr5402306
https://doi.org/10.1101/gr5402306
https://doi.org/10.3390/s17081920
https://doi.org/10.13140/2.1.2129.8564
https://doi.org/10.1016/S0301-6226(00)00201-2
https://doi.org/10.1016/S0301-6226(00)00201-2
https://doi.org/10.1017/S175173115002827
https://doi.org/10.1017/S175173115002827
https://doi.org/10.3168/jds.2019-16912
https://www.icbf.com/wp/wp-content/uploads/2013/06/economic_breeding_index.pdf
https://www.icbf.com/wp/wp-content/uploads/2013/06/economic_breeding_index.pdf
https://doi.org/10.1186/s12711-020-0523-1
https://doi.org/10.1186/s12711-020-0523-1
https://doi.org/10.1186/212711-016-0216-y
https://doi.org/10.1186/212711-016-0216-y
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1093/nar/gkq040
https://doi.org/10.1093/nar/gkq040
https://doi.org/10.1371/journal.pcbi.1007069
https://doi.org/10.1371/journal.pcbi.1007069
https://doi.org/10.1093/jas/sky302
https://doi.org/10.1093/jas/sky302
https://doi.org/10.3389/fgene.2020.00020
https://doi.org/10.3389/fgene.2020.00020
https://doi.org/10.1017/S1751731112000705
https://doi.org/10.1017/S1751731112000705


37. Berry DP, Pabiou T, Fanning R, Evans RD, Judge MM. Linear classification
scores in beef cattle as predictors of genetic merit for individual carcass
primal cut yields. J Anim Sci. 2019. https://doi.org/10.1093/jas/skz138.

38. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J,
Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R,
Georges M. A deletion in the bovine myostatin gene causes the double-
muscle phenotype in cattle. Nat Genet. 1997. https://doi.org/10.1038/
ng0997-71.

39. Kambadur R, Sharma M, Smith TPL, Bass JJ. Mutations in myostatin (GDF8)
in double muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997.
https://doi.org/10.1101/gr.7.9.910.

40. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the
myostatin gene. PNAS. 1997. https://doi.org/10.1073/pnas.94.23.12457.

41. Lindholm-Perry A, Sexten AK, Kuehn LA, Smith TPL, Kind DA, Shackelford
SD, Wheeler TL, Ferrell CL, Jenkins TG, Snelling WM, Freetly HC. Association,
effects and validation of polymorphisms within the NACPG-LCORL locus
located on BTA6 with intake, gain, meat and carcass traits in beef cattle.
BMC Genet. 2011. https://doi.org/10.1186/1471-2156-12-103.

42. Takasuga A. PLAG1 and NCAPG-LCORL in livestock. Anim Sci J. 2016. https://
doi.org/10.1111/asj.12417.

43. Han YJ, Chen Y, Liu Y, Liu XL. Sequence variants of the LCORL gene and its
association with growth and carcass traits in Qinchuan cattle in China. J
Genet. 2017. https://doi.org/10.1007/s12041-016-0732-0.

44. Setoguchi K, Watanabe T, Weikard R, Albrecht E, Kuhn C, Kinoshita A,
Sugimoto Y, Takasuga A. The SNP c.1326T > G in the non-SMC condensing
I complex, subunit G (NCAPG) gene encoding a p.Ile442Met variant is
associated with an increase in body frame size at puberty in cattle. Anim
Genet. 2011. https://doi.org/10.1111/j.1365-2052.2011.02196.x.

45. Liu Y, Duan X, Chen S, He H, Liu X. NCAPG is differentially expressed during
longissimus muscle development and is associated with growth traits in
Chinese Qinchuan beef cattle. Genet Mol Biol. 2015. https://doi.org/10.1590/
S1415-475738420140287.

46. Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Wantanabe N,
Sugimoto Y, Takasuga A. Genome-wide association study identified three
major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature
in Japanese Black cattle. BMC Genet. 2012. https://doi.org/10.1186/1471-21
56-13-40.

47. Lim D, Strucken EM, Choi BH, Chai HH, Cho YM, Jang GM, Kim TH, Gondro
C, Lee SH. Genomic footprints in selected and unselected beef cattle breeds
in Korea. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0151324.

48. Kong RSG, Liang G, Chen Y, Stothard P, Guan LL. Transcriptome profiling of
the rumen epithelium of beef cattle differing in residual feed intake. BMC
Genomics. 2016. https://doi.org/10.1186/s12864-016-2935-4.

49. Buzanskas ME, Grossi DA, Ventura RV, Schenkel FS, Sargolzaei M, Meirelles
SLC, Mokry FB, Higa RH, Mudadu MA, da Silva MVGB, Niciura SCM, Junior
RAAT, Alencar MM, Regitano LCA, Munari DP. Genome-wide association for
growth traits in Canchim cattle. PLoS ONE. 2014. https://doi.org/10.1371/
journal.pone.0094802.

50. Marz M, Kirsten T, Stadler PF. Evolution of spliceosomal snRNA genes in
metazoan animals. J Mol Evol. 2008. https://doi.org/10.1007/s00239-008-914
9-6.

51. Vierna J, Wehner S, zu Siederdissen CH, Martinez-Lage A, Marz M. Systematic
analysis and evolution of 5S ribosomal DNA in metazoans. Heredity. 2013.
https://doi.org/10.1038/hdy.2013.63.

52. Wilson DN, Doudna Cate JH. The structure and function of the eukaryotic
ribosome. Cold Spring Harbour Perspect Biol. 2012. https://doi.org/10.1101/
cshperspect.a011536.

53. Ben-Jenmaa S, Mastrangelo S, Lee SH, Lee JH, Boussaha M. Genome-wide
scan for selection signatures reveals novel insights into the adaptive
capacity in local North African cattle. Sci Rep. 2020. https://doi.org/10.1038/
s41598-020-76576-3.

54. Taye M, Lee W, Jeon S, Yoon J, Dessie T, Hanotte O, Mwai OA, Kemp S, Cho
S, Oh SJ, Lee HK, Kim H. Exploring evidence of positive selection signatures
in cattle breeds selected for different traits. Mamm Genome. 2017. https://
doi.org/10.1007/s00335-017-9715-6.

55. Zhang F, Wang Y, Mukiibi R, Chen L, Vinsky M, Plastow G, Basarab J, Sothard
P, Li C. Genetic architecture of quantitative traits in beef cattle revealed by
genome wide associated studies of imputed whole genome sequence
variants: I: feed efficiency and component traits. BMC Genomics. 2020.
https://doi.org/10.1186/s12864-019-6273-1.

56. Nieminen TT, O’Donohue MF, Wu Y, Lohi H, Scherer SW, Paterson AD,
Ellonen P, Abdel-Rahman WM, Valo S, Mecklin JP, Jarvinen HJ, Gleizes PE,
Peltomaki P. Germline mutation of RPS20, encoding a ribosomal protein,
causes predisposition to hereditary nonpolyposis colorectal carcinoma
without DNA mismatch repair deficiency. Gastroenterology. 2014. https://
doi.org/10.1053/j.gastro.2014.06.009.

57. Hwan Lee S, Choi BH, Lim D, Gondro C, Cho YM, Dang CG, Sharma A, Jang
GW, Lee KT, Yoon D, Lee HK, Yeon SH, Yang BS, Kang HS, Hong SK.
Genome-wide association study identifies major loci for carcass weight on
BTA14 in Hanwoo (Korean Cattle). PLOS One. 2013. https://doi.org/10.1371/
journal.pone.0074677.

58. Yamada T, Sasaki S, Sukegawa S, Miyake T, Fujita T, Kose H, Morita M,
Takahagi Y, Murakami H, Morimatsu F, Sasaki Y. Association of single
nucleotide polymorphism in ribosomal protein L27a gene with marbling in
Japanese Black beef cattle. Anim Sci J. 2009. https://doi.org/10.1111/j.1740-
0929.2009.00688.x.

59. Silva DBS, Fonseca LFS, Pinheiro DG, Magalhaes AFB, Muniz MMM, Ferro JA,
Baldi F, Chardulo LAL, Schnabel RD, Taylor JF, Albuquerque LG. Spliced
genes in muscle from Nelore Cattle and their association with carcass and
meat quality. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-71783-4.

60. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F,
Pertea G, Van Tassell CP, Sonstegard TS, Marcais G, Roberts M, Subramanian
P, Yorke JA, Salzberg SL. A whole-genome assembly of the domestic
cow, Bos Taurus. Genome Biol. 2009. https://doi.org/10.1186/gb-2009-10-4-
r42.

61. Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and
population history in cattle. BMC Genet. 2012. https://doi.org/10.1186/14
71-2156-13-70.

62. Pabiou T, Fikse WF, Amer PR, Cromie AR, Nasholm A, Berry DP. Genetic
variation in wholesale carcass cuts predicted from digital images in cattle.
Animal. 2011. https://doi.org/10.1017/S1751731111000917.

63. Stranden I, Mantysaari EA. A recipe for multiple trait deregression. Proc 2010
Interbull Meet. 2010;42:21–24.

64. Stranden I, Lidauer M. Solving large mixed linear models using
preconditioned conjugate gradient iteration. J Dairy Sci. 1999. https://doi.
org/10.3168/jds.S0022-0302(99)75535-9.

65. Harris B, Johnson D. Approximate reliability of genetic evaluations under an
animal model. J Diary Sci. 1998. https://doi.org/10.3168/jds.S0022-0302
(98)75829-1.

66. Wang K, Li M, Liu R, Glessner J, Grant SFA, Hakonarson H, Bucan M.
PennCNV: an integrated Markov model designed for high-resolution copy
number variation detection in whole-genome SNP genotyping data.
Genome Res. 2007. https://doi.org/10.1101/gr.6861907.

67. Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, Bassett AS, Seller A,
Holmes CC, Ragoussis J. QuantiSNP: an Objective Bayes Hidden-Markov
Model to detect and accurately map copy number variation using SNP
genotyping data. Nucleic Acids Res. 2007. https://doi.org/10.1093/nar/
gkm076.

68. Winchester L, Yau C, Ragoussis J. Comparing CNV detection methods
for SNP arrays. Brief Funct Genomic. 2009. https://doi.org/10.1093/bfgp/
elp017.

69. Diskin SJ, Li M, Hou C, Yang S, Glessner J, Hakonarson H, Bucan M, Maris JM,
Wang K. Adjustment of genomic waves in signal intensities from whole-
genome SNP genotyping platforms. Nucleic Acids Res. 2008. https://doi.
org/10.1093/nar/gkn556.

70. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS
Genet. 2006. https://doi.org/10.1371/journal.pgen.0020190.

71. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy
Sci. 2008. https://doi.org/10.3168/jds.2007-0980.

72. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, et al.
Functional impact of global copy number variation in autism spectrum
disorder. Nature. 2010. https://doi.org/10.1038/nature09146.

73. Kushima I, Aleksic B, Nakatochi M, Shimamura T, Okada T, Uno Y, et al.
Comparative analyses of copy-number variation in autism spectrum
disorder and schizophrenia reveal etiological overlap and biological insights.
Cell Rep. 2018. https://doi.org/10.1016/j.celrep.2018.08.022.

74. Ziyatdinov A, Vazquez-Santiago M, Brunel H, Martinez-Perez A, Aschard H,
Soria JM. lme4qtl: linear mixed models with flexible covariance structure for
genetic studies of related individuals. BMC Bioinformatics. 2018. https://doi.
org/10.1186/s12859-018-2057-x.

Rafter et al. BMC Genomics          (2021) 22:757 Page 15 of 16

https://doi.org/10.1093/jas/skz138
https://doi.org/10.1038/ng0997-71
https://doi.org/10.1038/ng0997-71
https://doi.org/10.1101/gr.7.9.910
https://doi.org/10.1073/pnas.94.23.12457
https://doi.org/10.1186/1471-2156-12-103
https://doi.org/10.1111/asj.12417
https://doi.org/10.1111/asj.12417
https://doi.org/10.1007/s12041-016-0732-0
https://doi.org/10.1111/j.1365-2052.2011.02196.x
https://doi.org/10.1590/S1415-475738420140287
https://doi.org/10.1590/S1415-475738420140287
https://doi.org/10.1186/1471-2156-13-40
https://doi.org/10.1186/1471-2156-13-40
https://doi.org/10.1371/journal.pone.0151324
https://doi.org/10.1186/s12864-016-2935-4
https://doi.org/10.1371/journal.pone.0094802
https://doi.org/10.1371/journal.pone.0094802
https://doi.org/10.1007/s00239-008-9149-6
https://doi.org/10.1007/s00239-008-9149-6
https://doi.org/10.1038/hdy.2013.63
https://doi.org/10.1101/cshperspect.a011536
https://doi.org/10.1101/cshperspect.a011536
https://doi.org/10.1038/s41598-020-76576-3
https://doi.org/10.1038/s41598-020-76576-3
https://doi.org/10.1007/s00335-017-9715-6
https://doi.org/10.1007/s00335-017-9715-6
https://doi.org/10.1186/s12864-019-6273-1
https://doi.org/10.1053/j.gastro.2014.06.009
https://doi.org/10.1053/j.gastro.2014.06.009
https://doi.org/10.1371/journal.pone.0074677
https://doi.org/10.1371/journal.pone.0074677
https://doi.org/10.1111/j.1740-0929.2009.00688.x
https://doi.org/10.1111/j.1740-0929.2009.00688.x
https://doi.org/10.1038/s41598-020-71783-4
https://doi.org/10.1186/gb-2009-10-4-r42
https://doi.org/10.1186/gb-2009-10-4-r42
https://doi.org/10.1186/1471-2156-13-70
https://doi.org/10.1186/1471-2156-13-70
https://doi.org/10.1017/S1751731111000917
https://doi.org/10.3168/jds.S0022-0302(99)75535-9
https://doi.org/10.3168/jds.S0022-0302(99)75535-9
https://doi.org/10.3168/jds.S0022-0302(98)75829-1
https://doi.org/10.3168/jds.S0022-0302(98)75829-1
https://doi.org/10.1101/gr.6861907
https://doi.org/10.1093/nar/gkm076
https://doi.org/10.1093/nar/gkm076
https://doi.org/10.1093/bfgp/elp017
https://doi.org/10.1093/bfgp/elp017
https://doi.org/10.1093/nar/gkn556
https://doi.org/10.1093/nar/gkn556
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1038/nature09146
https://doi.org/10.1016/j.celrep.2018.08.022
https://doi.org/10.1186/s12859-018-2057-x
https://doi.org/10.1186/s12859-018-2057-x


75. Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient
genotype imputation using information from relatives. BMC Genomics.
2014. https://doi.org/10.1186/1471-2164-15-478.

76. Garrick DJ, Taylor JF, Fernando RL. Deregression estimated breeding values
and weighting information for genomic regression analyses. Genet Sel Evol.
2009. https://doi.org/10.1186/1297-9686-41-55.

77. Purfield DC, Bradley DG, Evans RS, Kearney FJ, Berry DP. Genome-wide
association study for calving performance using high-density genotypes in
dairy and beef cattle. Genet Sel Evol. 2015. https://doi.org/10.1186/s12711-
015-0126-4.

78. Nyholt DR. A simple correction for multiple testing for single-nucleotide
polymorphisms in linkage disequilibrium with each other. Am J Hum Genet.
2004. https://doi.org/10.1086/383251.

79. Gao X, Starmer J, Martin ER. A multiple testing correction method for
genetic association studies using correlated single nucleotide
polymorphisms. Genet Epidemiol. 2008. https://doi.org/10.1002/gepi.20310.

80. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2

from generalised linear mixed-effects models. Methods Ecol Evol. 2013.
https://doi.org/10.1111/j.2041-210x.2012.00261.x.

81. Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Tseng, Rowan TN,
Low WY, Zimin A, Couldrey C, Hall R, Li W, Rhie A, Ghurye J, McKay SD,
Thibaud-Nissen F, Hoffman J, Murdoch BM, Snelling WM, McDaneld TG,
Hammond JA, Schwartz JC, Nandolo W, Hagen DE, Dreischer C, Schultheiss
SJ, Schroeder SG, Phillippy AM, Cole JB, Van Tassell CP, Liu G, Smith TPL,
Medrano JF. Gigascience. 2020. https://doi.org/10.1093/gigascience/giaa021.

82. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: path
toward the comprehensive functional analysis of large gene lists. Nucleic
Acids Res. 2009. https://doi.org/10.1093/nar/gkn923.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Rafter et al. BMC Genomics          (2021) 22:757 Page 16 of 16

https://doi.org/10.1186/1471-2164-15-478
https://doi.org/10.1186/1297-9686-41-55
https://doi.org/10.1186/s12711-015-0126-4
https://doi.org/10.1186/s12711-015-0126-4
https://doi.org/10.1086/383251
https://doi.org/10.1002/gepi.20310
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1093/gigascience/giaa021
https://doi.org/10.1093/nar/gkn923

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Chromosome association analyses
	Copy number variant association analysis
	Association analysis of the Log R-ratio value of single nucleotide polymorphisms
	Association analysis of single nucleotide polymorphism allele counts
	Gene set enrichment analysis

	Discussion
	Shared quantitative trait loci
	Comparison with other genome-wide association studies
	Candidate genes

	Conclusions
	Materials and methods
	Genotype data
	Phenotypic data
	Detection of copy number variants
	Population structure
	Association analyses
	Model testing
	Gene set enrichment analysis
	Abbreviations

	Supplementary Information
	Acknowledgements
	Author’s contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

