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Abstract

Background: A new class of regulatory elements called super-enhancers, comprised of multiple neighboring
enhancers, have recently been reported to be the key transcriptional drivers of cellular, developmental, and disease
states.

Results: Here, we defined super-enhancer RNAs as highly expressed enhancer RNAs that are transcribed from a
cluster of localized genomic regions. Using the cap analysis of gene expression sequencing data from FANTOM5,
we systematically explored the enhancer and messenger RNA landscapes in hundreds of different cell types in
response to various environments. Applying non-negative matrix factorization (NMF) to super-enhancer RNA
profiles, we found that different cell types were well classified. In addition, through the NMF of individual time-
course profiles from a single cell-type, super-enhancer RNAs were clustered into several states with progressive
patterns. We further investigated the enriched biological functions of the proximal genes involved in each pattern,
and found that they were associated with the corresponding developmental process.

Conclusions: The proposed super-enhancer RNAs can act as a good alternative, without the complicated
measurement of histone modifications, for identifying important regulatory elements of cell type specification and
identifying dynamic cell states.
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Background
Protein-coding genes and other DNA regulatory ele-
ments control the amount and activity of proteins in or-
ganisms, and constitute the cellular regulatory network.
Over the past few decades, transcriptome data has aided
in the discovery of numerous facts about gene regulatory
networks. However, a systematic understanding of cell
differentiation, the development of cancer, and even the

dynamic responses of cells to environmental changes re-
main to be established. Both genetics and epigenetics
play important roles in gene regulation. The epigenome
may help us extract further knowledge about the inter-
actions with the environment and dynamics of the gene
regulatory network.
Enhancers are one of the key links between genetics

and epigenetics. Enhancers are activated when transcrip-
tion factors (TF) bind to them. Subsequently, chromatin
modifications direct enhancers to the promoters, and
eventually genes are expressed through the actions of
TFs. Previously, active enhancers were thought to be
tissue-specific and to regulate tissue-specific genes in a
spatiotemporal manner [1]. Active enhancer regions are
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typically decorated by characteristic histone modifica-
tions, such as high histone H3 lysine 4 monomethylation
(H3K4me1), low histone H3 lysine 4 trimethylation
(H3K4me3), and high histone H3 lysine 27 acetylation
(H3K27ac). We can identify enhancer loci by detecting
histone modifications using chromatin immunoprecipi-
tation sequencing (ChIP-seq); however, prior knowledge
is required to design adequate ChIP-seq experiments.
Super-enhancers are large clusters of active enhancers

that are densely occupied by TFs, especially master regu-
lators. Super-enhancers are found near key genes in em-
bryonic stem cells; they tend to be cell-specific and
regulate the genes essential for cell identity [2, 3]. Super-
enhancers differ from typical enhancers in size, TF bind-
ing density, and sensitivity to perturbation. Super-
enhancers play a role in identifying the key genes for dif-
ferent cell types and are typically identified by the sum
of the ChIP-seq signal level of mediators.
In recent years, active enhancers have been found to

generate transcripts, called enhancer RNAs (eRNA), which
not only promote elongation but also promote chromatin
accessibility [4, 5]. Enhancer RNA is a type of noncoding
RNA that is generated from the enhancer locus. In depo-
larized mouse neurons, unusually high amounts of TFs
and RNA polymerase II bind to the enhancer locus and
bi-directional enhancer RNAs are generated [6]. Although
the function of eRNA remains unknown, eRNA levels can
be detected by cap analysis gene expression sequencing
(CAGE-seq). Utilizing CAGE-seq, the FANTOM project
[7–9] analyzed samples from human and mouse and clas-
sified into promoter-level expression and enhancer-level
expression.
We proposed to define super-enhancer RNA (seRNA)

as stitched eRNAs with high expression levels, or the
eRNAs derived from a super-enhancer locus. The ex-
pression level of super-enhancer RNA is determined by
the sum of eRNA expression levels at a locus. We specu-
lated that super-enhancer RNAs may have the properties
of both eRNA and super-enhancers and that they may
be positively correlated with the proximal gene and be
cell-specific. Further, we explored the classification
power of super-enhancer RNAs and identified cell states
using super-enhancer RNA expression profiles. With
knowledge of cell states, we can identify cell behaviors
and systemically construct models of cell differentiation
or oncogenesis (Fig. 1).

Results
Super-enhancer RNA
We obtained enhancer RNA levels from the FANTOM5
project and grouped the enhancer RNAs transcribed
from genomic locations within 12.5 kb. We defined the
clusters of enhancer RNA transcripts as super-enhancer
RNAs (seRNA) and the summed RNA levels as the

expression level of the super-enhancer RNA (Add-
itional file 1 Fig. S1). Super-enhancer RNA levels and
their proximal genes (located within ±5 kb) tended to be
positively correlated.
We compared the super-enhancer loci recorded in

dbSUPER database [10] with the ones we identified.
There were 35,816 possible unique super-enhancer loci
in our data, while dbSUPER presented 65,933 possible
unique super-enhancer loci. Among them, 50,615
(76.8%) unique super-enhancer loci from dbSUPER
overlapped with ours, while 14,351 (40.1%) unique loci
from our analyses overlapped with those in dbSUPER.
The mismatched loci may arise from the different
methods used to measure super-enhancers. Chromatin
immunoprecipitation sequencing was performed to iden-
tify super-enhancers in dbSUPER, while CAGE-seq was
performed in the FANTOM5 project.

Super-enhancer RNAs have higher classification power for
cell types than enhancer RNAs
A previous study [11] has revealed that super-enhancers
are cell-specific and we aimed to confirm this using the
proposed super-enhancer RNAs. If our super-enhancer
profiles agree with this cell-specificity, similar samples
should be clustered together. First, to establish whether
super-enhancer RNAs do have the ability to cluster cells,
hierarchical clustering was applied to the time course
data (Additional file 1 Fig. S2) containing several differ-
ent cell types under stimulation. Most of the cell types
clustered together but there were still some samples
mixed in other clusters. Taking a closer look at these
specific samples, there were two mixing clusters. One
consisted of iPS cells, HES3-GFP embryonic stem cell
lines, and H9 human embryonic stem cell lines; the
other consisted of mesenchymal stem cells, myoblast to
myocyte, aortic smooth muscle cells, and ARPE-19
EMT. All the cell types of the former cluster were stem

Fig. 1 Cell states in the differentiation hierarchy. There should be several
cell states during cell differentiation. Different colors represent different cell
types. Stimulation of a same cell type (red) can also be considered another
cell state (stimulated state)
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cell series, while those of the later one were either
muscle cell series or the cells belonging to connective
tissue.
To further delve into whether super-enhancer RNAs

have classification power for cell types, we performed
linear-kernel support vector classification without
regularization. We used the same super-enhancer RNA
profiles as the features, and the cell types as the predic-
tion target. To compare classification power, we boot-
strapped different feature sizes 100 times (Fig. 2).
Notably, we found that super-enhancer RNAs had sig-
nificantly greater classification power for cell types com-
pared with typical enhancer RNAs. The lower the
features that were used, the higher the significant differ-
ence that was obtained.

Identifying cell types using super-enhancer RNA profiles
To identify cell states in the process of differentiation or
during dynamic cell responses, we applied non-negative
matrix factorization (NMF) on super-enhancer RNA
profiles for 12 cell types. If we conceptualize a cell type
as a state, NMF may be able to optimally identify differ-
ent cell types. We found that NMF performs well when
k was adjusted to close-to but lower than the number of
cell types. However, there were still some cell types mix-
ing together, such as iPS cells, HES3-GFP embryonic
stem cell lines, and H9 human embryonic stem cell lines,
consistent with our earlier results.

Identifying the cell states of iPS cells differentiating to
neural progenitor cells
To identify cell states in the process of cell differenti-
ation, NMF was applied to a FANTOM5 time-course ex-
perimental dataset of human induced-pluripotent stem
(iPS) cells differentiated into neuroectodermal cells (day
6), neural stem cells (day 12) and early neuronal progen-
itors (day 18). Since there are four time points in this
dataset, we evaluated the possible number of NMF states
(k) from 2 to 4 and determined k = 3. The super-
enhancer profiles were factorized into three states,
named initial state, secondary state, and final state, ac-
cording to their activity in time order (Fig. 3). We found
that days 0, 6, and 18 were fully composed of the initial

Fig. 2 Comparison of classification power between super-enhancer
RNA and typical enhancer RNA. All available time course profiles
were classified using a linear support vector machine. Different
sample sizes were subsampled for each strain and bootstrapped 100
times. Mann–Whitney U tests were performed and p-values
are presented

Fig. 3 NMF decomposition of time-coursed iPS cell differentiation to
neurons. (A) State × sample matrix of the decomposition from the
super-enhancer RNA profiles. The x-axis and y-axis reflect the time
points and corresponding cell states, respectively, while the darker
band represents the greater preference of the cell state. (B) The time
series plot was made by collapsing the biological replicates.
Progressing patterns, which can be observed in both figures, are
interpreted as the transition of cells from one state to another. State
0, 1, and 2 are named initial, secondary, and final state in the text,
which correspond to iPS (day 0), neuroectodermal (day 6), and
neuronal progenitor (day 18) cell types, respectively. Day 12 is neural
stem cell, a mixed transition state composed mainly of the final
state and partially of the secondary state
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state, secondary state, and final state, respectively, while
day 12 was mixed with the secondary and final states,
suggesting a transition from the secondary state to final
state. These three inferred cell states reflected the corre-
sponding cell types — iPS (initial), neuroectodermal
(secondary), and early neuronal progenitor (final), and
the mixed cell states for day 12 suggested the neural
stem cell as a transition state progressed from neuroec-
todermal (secondary) to neuronal progenitor (final).
To support the identification of cell states, we tested

the marker gene expression of stem cells or neurons.
We plotted dynamic gene expression over time and
found that the expression of neuron progenitor cell
markers increased gradually, concurrent with a decrease
in the expression of stem cell markers (Fig. 4). The
SOX2 gene is the cell marker gene of both cell types,
and we observed that its expression level remained high
at each time point.

Functional enrichment analysis of cell states
To further understand the active molecular functions or
biological processes in each cell state, a functional en-
richment analysis was applied to seRNA proximal genes
in each state (Table 1). We chose super enhancers which
were enriched in the W matrix (super-enhancer vs. state,
m × k) for each state. Super-enhancer RNA proximal
genes were mapped and entered into the gene ontology
enrichment analysis tool. In the initial state, the RNA
biosynthetic process and the metabolic process related
GO terms were significantly enriched. The development-
related terms were raised to be significantly enriched in
the states described below, while the RNA biosynthetic
process and metabolic process related terms sank grad-
ually. Terms related to cellular processes were randomly
distributed in three states, and cellular response-related
terms appeared in the secondary and final states. These
findings indicate that cells may actively generate RNAs
and maintain their pluripotency initially. Next, cells were
treated and induced to differentiate into neurons, while
concurrent cellular response processes were activated.
The developmental processes elevated gradually and by
the end of the experiment the cells remained as neuron
progenitors.

Cell states in macrophages
We further performed NMF on the macrophage re-
sponse to the LPS experiment from the FANTOM5 pro-
ject (Additional file 1 Fig. S3). In the original
experiment, macrophages were treated with LPS, which
is the material on the surface of gram-negative bacteria,
and expression profiles were measured from 0 to 48 h.
LSP should stimulate the innate immune pathways in
macrophages and we observed this pattern of activation
in the H matrix from the NMF analysis. The cell state
(k = 1) is the active state and the alternative (k = 0) is the
inactive state; we could observe a peak at the early stage.

Discussion
CAGE-seq, which was used in the FANTOM5 project,
targets the 5′ cap of transcripts, which is beneficial for
the detection of eRNA. Bi-directional enhancer RNAs do
not process the post-transcription modification of RNA
splicing and polyadenylation as messenger RNA, but do
possess 5′ caps. On the other hand, one limitation of
RNA-seq is that it is not able to detect eRNAs. Instead,
CAGE-seq is necessary to quantize the activity of en-
hancers and super-enhancers, which enables comparison
with gene expression.
We have proposed using super-enhancer RNA to iden-

tify cell states. Initially, we found a positive correlation
between super-enhancer RNA and its proximal gene.
Additionally, cell types were well-classified by super-
enhancer RNAs. Super-enhancer RNA may inherit its

Fig. 4 Gene expression of cellular markers. (A) Expression of embryonic
stem cell markers declined, while (B) expression of neuron progenitor cell
markers rose. The SOX2 gene acted as the cell marker for both cell types
and remained high
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positive correlation with the expression of the nearest
gene and its cell-specificity from eRNA and super-
enhancers, respectively. We have further shown the clas-
sification power of super-enhancer RNA profiles by
training a linear support vector machine. Instead of a so-
phisticated and powerful classification model, the simple
linear classification model demonstrated the linear-
separability of super-enhancer RNA profiles. With
regards to directions for future investigation, we now
aim to evaluate whether super-enhancer RNA profiles
could provide further information beyond cell identity.
In a follow-up study, we have applied the proposed
method to demonstrate the possible roles of super-
enhancer RNAs during embryonic stem cell differenti-
ation to cardiomyocytes [12].
Previously, researchers have identified cell types from

cell morphology and molecular markers. Here, we dem-
onstrated an approach that distinguishes cell types based
on molecular configurations using NMF to identify cell
types and states. NMF can be conceptualized as the lin-
ear combination of nonnegative column vectors. Inter-
pretation of the matrix decomposition depends on
determination of the input matrix. For different cell-type
profiles, cell types are clustered together into k clusters;
for cell differentiation profiles, similar molecular states
in progress are clustered together, which demonstrate
the pattern of progression from one cell type to another.
NMF is an excellent tool for excavating the latent vari-
ables in cell profiles. Yet one limitation of the method is
that the determination of k must be manually instituted.
Optimal results are attained if hypotheses are strong and
data quality is high.
Super-enhancers appear proximal to key identity genes

in different cell types [3]. In many cancer cells, super-
enhancers emerge near the oncogenic drivers [13], thus,
the regulatory patterns may be similar in normal cell types
and cancer cells. Both oncogenic driver genes and master
regulators are the regulators that govern and maintain cell
identities. If regulators are down-regulated, cells lose their
properties and behaviors. The core regulatory circuitry
consists of master regulators which are auto-regulated
and, in turn, regulate each other forming a regulatory
clique [14]. Super-enhancers act as guides for cell-specific
genes and master regulators. Further, genome-wide asso-
ciation studies show that most disease-associated single
nucleotide polymorphisms are located in the noncoding
region, especially within enhancers [8]. One recent study
supports the hypothesis that the formation of super-
enhancers is not only related to cell identity, but is also re-
lated to changes in cell state [11]. Super-enhancers are the
key switches in the gene regulatory network and the link
to disease.
Another recent study [15] has revealed the relation-

ship between super-enhancers and pioneer factors.

Pioneer factors are informally defined as the first
transcription factor which promotes untying the
wrapped histone that releases the bare DNA. After pi-
oneer factors reach the target histone, super-
enhancers are established gradually by a selection of
key transcription factors. During this process, both
super-enhancers and the gene regulatory relationship
are remodeled. The removal of old super-enhancers
and establishment of new super-enhancers changes the
cell identity and the transcription of master regulators
[15]; chromatin modification is updated later [16]. Identifi-
cation of cell states may be the key step to identifying the
progression of cell and pioneer factors.

Conclusions
The super-enhancer RNAs we proposed here could be a
new means of measuring the activity of super-enhancers;
they act as a good alternative for the classification of cell
type specification, and do not require the complicated
measurement of histone modifications by ChIP-seq. Re-
cent studies suggested the unique relationship between
eRNA and super enhancers in phase separation wherein
eRNA may contribute significantly to cell fate decisions
[17]. Super-enhancer RNA profiles provide the oppor-
tunity to identify cell types or states. NMF is a good
method for decomposing large biological data to reveal
interpretable latent variables. We further plan to investi-
gate the dynamics of cell development, cell response,
and cancer development based on these findings.

Methods
FANTOM data
We obtained gene expression data and enhancer RNA
level data from FANTOM5 and downloaded it using the
FANTOM5 Table Extraction Tool (http://fantom.gsc.
riken.jp/5/tet/#!/search/hg19.cage_peak_ann.txt.gz). We
selected the “Human Phase 1 and 2” option in the data-
set and downloaded whole read counts and RLE normal-
ized expression data. We downloaded enhancer RNA
levels from (http://fantom.gsc.riken.jp/5/datafiles/latest/
extra/Enhancers/) and selected the normalized enhancer
RNA expression table (human_permissive_enhancers_
phase_1_and_2_expression_tpm_matrix.txt.gz).

Data preprocessing
Mapping enhancers to proximal genes
We parsed all enhancer and gene locus information and
established putative regulatory relationship between en-
hancers and their proximal genes located within ±5 kb
from their midpoint. If there was no gene located within
±5 kb of an enhancer, we assigned the nearest gene to it.
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Identifying super-enhancer RNAs
We stretched enhancer to make stitched enhancers
using the midpoint of each enhancer locus as a refer-
ence. Enhancers located within 12.5 kb were combined
into stitched enhancers. To avoid the overlapping of
gene loci, if there were gene loci located between two
combining enhancers, we retained the two enhancer loci
as separate. Expression levels of eRNA were calculated
to identify super-enhancer RNAs. All stitched enhancer
loci were ranked by the sum of their eRNA levels, and
super-enhancer RNAs were defined as those which had
summed expression levels higher than the reflection
point of the eRNA distribution curve (Additional file 1
Fig. S1).

Mapping super-enhancer RNAs to their proximal genes
We parsed the super-enhancer RNA loci and gene loci
for location information, and assigned each super-
enhancer RNA to its nearest gene according to the end-
point of the stitched enhancer locus.

Comparison to known super-enhancers
dbSUPER is an integrated and interactive database of
super-enhancers, which contains 82,234 super-enhancers
from 102 human and 25 mouse tissue/cell types. All
dbSUPER human super-enhancer loci were obtained
from the website (http://bioinfo.au.tsinghua.edu.cn/
dbsuper/). Then, all dbSUPER super-enhancer loci and
our super-enhancer RNA loci were parsed and duplicate
loci were removed. Overlapping analyses were applied to
both sets of super-enhancer loci. In each comparison,
the length of the overlapping region was calculated then
divided by the length of each locus. If the overlapping
rate was larger than 50%, the two loci were considered
to be overlapped.

Heat map of cell types
All super-enhancer loci were used to perform hierarch-
ical clustering. Time course expression data were used
and were transformed to a log scale. To avoid imbal-
anced training, we ruled out cell types which had a sam-
ple size of less than 20. We replaced the negative infinity
value in the log-scale with the minimum of the whole
expression matrix. We performed a Pearson correlation
matrix on the log-expression profile, then performed
hierarchical clustering on the correlation matrix using
Euclidean distance metric and single linkage method
algorithm.

Cell type classification
All super-enhancer and enhancer expression profiles
were used. After ruling out small sample size (< 20) cell
types, logarithmic scale transformation, and replacing
the negative infinity value with the minimum of the

matrix, we performed a classification analysis on cell
types. Support vector classification was applied to the
log-expression profile with a linear kernel and five-fold
cross-validation. Cross-validation scores were collected
as accuracies, and randomly sampled 100 times for a dif-
ferent number of loci in each analysis. Mann-Whitney U
tests were performed on each analysis.

Non-negative matrix factorization
We transformed the super-enhancer RNA data matrix
into a logarithmic scale and replaced the negative infin-
ity value with the minimum value of the matrix. Shifting
minimum to zero to keep values non-negative, we ap-
plied NMF without regularization using the scikit-learn
Python package. The matrix was factorized into W
(super-enhancer RNA vs. state, m × k) and H matrices
(state vs. sample, k × n). With regards to cell types, all
available time course super-enhancer RNA profiles were
used and cell types were later labeled, but sample sizes
smaller than 20 omitted to avoid imbalanced model
training. To avoid the local optimal solutions, we re-
peated the same process with 200 random initial condi-
tions and selected the best one evaluated using their
silhouette scores. We evaluated the H matrix of each
NMF model by assigning the highest preference state to
each sample. With regards to cell states, the time course
of single experiment super-enhancer profiles, e.g., iPS
cell that differentiated to neurons, were used and time
points were later labeled.

Functional enrichment analysis
Highly enriched super-enhancer RNAs in each state were
selected from the factorized H matrix (state vs. sample).
Super-enhancer RNA proximal genes for each state were
obtained using the method described above and the hu-
man gene function annotation, ConsensusPathDB-human
(http://cpdb.molgen.mpg.de/), was used for the functional
enrichment analysis. List files of the HGNC gene symbols
of each state were uploaded to the website and the top 20
significant gene ontology (GO) terms from levels 3 ~ 5 for
each state were obtained.

Cell marker genes
We obtained seven neuron progenitor cell marker genes
(SOX2, PAX6, MSI1, PROM1, NCAN, SOX1, GPM6A)
[18] and four stem cell marker genes (POU5F1, SOX2,
NANOG, KLF4) and plotted the time series of gene
expression on a log scale.
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