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Abstract

Background: With single-cell RNA sequencing (scRNA-seq) methods, gene expression patterns at the single-cell
resolution can be revealed. But as impacted by current technical defects, dropout events in scRNA-seq lead to
missing data and noise in the gene-cell expression matrix and adversely affect downstream analyses. Accordingly,
the true gene expression level should be recovered before the downstream analysis is carried out.

Results: In this paper, a novel low-rank tensor completion-based method, termed as scLRTC, is proposed to impute
the dropout entries of a given scRNA-seq expression. It initially exploits the similarity of single cells to build a third-
order low-rank tensor and employs the tensor decomposition to denoise the data. Subsequently, it reconstructs the
cell expression by adopting the low-rank tensor completion algorithm, which can restore the gene-to-gene and
cell-to-cell correlations. SCLRTC is compared with other state-of-the-art methods on simulated datasets and real
scRNA-seq datasets with different data sizes. Specific to simulated datasets, scLRTC outperforms other methods in
imputing the dropouts closest to the original expression values, which is assessed by both the sum of squared error
(SSE) and Pearson correlation coefficient (PCC). In terms of real datasets, scLRTC achieves the most accurate cell
classification results in spite of the choice of different clustering methods (e.g., SC3 or t-SNE followed by K-means),

which is evaluated by using adjusted rand index (ARI) and normalized mutual information (NMI). Lastly, scLRTC is
demonstrated to be also effective in cell visualization and in inferring cell lineage trajectories.

Conclusions: a novel low-rank tensor completion-based method scLRTC gave imputation results better than the
state-of-the-art tools. Source code of scLRTC can be accessed at https://github.com/jianghuaijie/scLRTC.
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Background

Over the past few years, with the explosive growth of
scRNA sequence data, important biological discoveries
have been progressively conducted. However, as im-
pacted by the picogram level of RNAs in a single cell,
RNA transcripts may be missed during the reverse tran-
scription and amplification step, so the transcripts are
not detected in the following sequencing, which is
termed as the dropout problem [1]. The resulting gene-
cell expression matrix will consist of numerous false
zeros attributed to dropout events, which will corrupt
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the biological signal and impede downstream analyses
(e.g., cell clustering, data visualization and cell trajectory
inference). To reduce the impact of this problem, be-
sides increasing the efficiency of transcription capture,
an effective imputation algorithm for scRNA-seq data
should be developed to predict missing values attributed
to dropout events [2].

Existing single-cell imputation methods have two main
types: one complies with the deep learning method. For
instance, DeepImpute [3] was designed to impute the
scRNA sequence by applying a deep neural network
(DNN) with a dropout layer and loss function to learn
patterns in the data. DCA [4] established an auto-
encoder to model the distribution of genes with a zero-
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inflated negative binomial prior, and then attempted to
predict the mean, standard deviation and dropout prob-
ability of genes. SCIGANSs [5] adopted the generative ad-
versarial networks (GANs) to learn the dependence of
nonlinear genes and genes from complex multi-cell type
samples, and then trained the neural network model to
generate real expression profiles of defined cell types.
However, due to the influence of the training set and the
existence of over-fitting problem, these methods may
generate the false-positive results in differential expres-
sion analyses [6]. Another type for single-cell imputation
methods complies with the statistical algorithm. For in-
stance, SAVER [7] exploited information across genes in
the identical cell type with a Bayesian approach to re-
cover true expression levels; it also measured the uncer-
tainty of recovered values. MAGIC [8] performed a soft
clustering after building a Markov transition matrix, and
then replaced a gene’s raw expression with its weighted
mean expression in a cluster. However, MAGIC also im-
putes the gene expression values that are not affected by
dropout. Therefore, it may introduce the new bias into
the data and possibly eliminate the meaningful biological
variations. ScImpute [9] initially estimated the probabil-
ity of an entry to be dropout with the use of a mixture
model, and then imputed the potential dropout entries
of a cell by employing the information from the gene ex-
pression of consistent cells. DrImpute [10] presented a
clustering-based method and implemented a consensus
strategy which estimated a value with several cluster
priors or distance matrices and then imputed the data
by aggregation. CMF-Impute [11] drew upon the simi-
larity of cells and genes to build a collaborative matrix
factorization-based model for imputing the dropout en-
tries of a given scRNA-seq expression. ALAR [12] pro-
vided a low-rank approximation of the expression
matrix using singular vector decomposition (SVD).
McImpute [13] used the nuclear norm minimization to
realize a matrix completion algorithm for the scRNA
data imputation. A study [14] suggested that taking ad-
vantage of the presence of low-rank submatrix can im-
prove the imputation performance compared to the
traditional low-rank matrix restore methods. For ex-
ample, PBLR [15] considered the cell grouping informa-
tion and performed a bounded low-rank completion
method for each group. ScLRTD [16] introduced the
tensor into the imputation of single-cell datasets, but it
is mainly aimed at the completion with single-cell multi-
omics sequencing data and the result in the scRNA data-
set is not better than MAGIC, because this tensor based
method did not fully take advantage of the correlation of
single-cell data. Liu et al. [17] proposed a definition for
the tensor trace norm that generalizes the established
definition of matrix trace norm. Similar to the matrix
based imputation, the tensor based imputation is
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formulated as a convex optimization problem and is
solved by three algorithms SiLRTC, FaLRTC and
HaLRTC. Experimental comparisons show that these
methods are more accurate and robust than other heur-
istic approaches (Tucker, Parafac and SVD), which can
propagate the data structure to fill large missing regions.

In this paper, a novel low-rank tensor completion
based method (scLRTC) is proposed for the scRNA-seq
data imputation. Since scRNA-seq data commonly in-
volve single cells from different cell types and single cells
with the identical type normally exhibit the similar ex-
pression pattern, the underlying true expression matrix
is reasonably assumed to be able to be approximated by
a low-rank matrix [1]. Based on such an assumption, the
similar expression patterns of a single cell are adopted to
build a third-order tensor, and then the single-cell gene
expression is restored by approximating the tensor rank.
This method is applied to nine scRNA-seq datasets and
four simulation datasets, and it is compared with several
state-of-the-art methods (SAVER [7], MAGIC [8], scIm-
pute [9], DrImpute [10], CMF-Impute [11], PBLR [15],
WEDGE [18] and scGNN [19]). As revealed from con-
siderable data analyses, the proposed method is capable
of achieving more accurate imputation results and im-
proving the downstream analysis.

Results

The proposed imputation method is employed for nine
published scRNA-seq datasets (i.e., Pollen [20], Usoskin
[21], Yan [22], Zeisel [23], Mouse [24], PBMC [25], Chen
[26], Loh [27] and Petropoulos [28]) and four simulation
datasets generated from Splatter package [29], and it is
compared with some popular methods (e.g., SAVER [7],
MAGIC [8], scImpute [9], Drimpute [10], CMF-Impute
[11], PBLR [15], WEDGE [18] and scGNN [19]). The
method is largely evaluated from five aspects with cell
subpopulation  clustering, dimensionality reduction
visualization, data masking evaluation, correlation ana-
lysis and differential expression analysis, and cell trajec-
tory inference. The parameter setting of the respective
dataset is listed in Table 1, and the parameter setting of
the simulation dataset is presented in Table 2.

Evaluating imputation accuracy through cell clustering

In the relevant research on the scRNA-seq dataset, cell
clustering refers to one of the critical contents. There
are many clustering algorithms (e.g., K-means and SC3
[30]). Among the mentioned methods, SC3 is recognized
as an accurate unsupervised single-cell clustering tool
that does not explicitly address dropout events for the
scRNA-seq data. Thus, the proposed method together
with other popular scRNA-seq imputation methods was
added into the preprocessing step of SC3. Then we used
the cell clustering accuracy measured by adjusted rand
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Table 1 Parameter settings corresponding to respective
datasets in our experiment

Dataset K P a ] epsilon
Pollen 10 10 [1 1e-1 2e-3] le-5 Te-2
Usoskin 8 8 [11e-2 1e-3] le-5 Te-2
Yan 5 5 [1 1e-2 2e-3] Te-5 Te-2
Zeisel 20 20 [1 1e-2 1e-3] le-5 Te-2
Mouse 10 10 [1 1e-2 1e-3] le-5 le-2
PBMC 10 10 [1 1e-2 1e-3] Te-5 Te-3
Chen 10 10 [1 1e-2 1e-3] Te-5 Te-3
Loh 1" " [1 1e-2 2e-3] 2e-4 le-2
Petropoulos 10 10 [1 1e-2 1e-3] Te-5 le-2
Simulation dataset 15 8 [11e-1 1e-3] Te-5 Te-5

index (ARI) [31] and normalized mutual information
(NMI) [32] to evaluate their performance, namely, the
consistency between the inferred cell cluster and the real
cell cluster.

After the data imputation by the proposed scLRTC
and other methods (DrIlmpute, SAVER, scImpute,
MAGIC, CMF-Impute and PBLR), we used SC3 to clus-
ter 6 published scRNA-seq datasets, including Usoskin,
Pollen, Yan, Zeisel, Mouse and PBMC. The clustering
accuracy measured by ARI and NMI are plotted in
Fig. 1A and Fig. 1B, respectively. Obviously, the pro-
posed method has the best ARI performance in Usoskin,
Pollen, Yan, Zeiel, Mouse and PBMC, and the perform-
ance of NMI on the Usoskin dataset can be as competi-
tive as CMF-Impute. In summary, the proposed method
imputation can improve the clustering accuracy of SC3.

To show that the proposed imputation method does
not depend on the clustering method, we further used
another popular single-cell clustering method (first using
the dimensionality reduction by t-distributed stochastic
neighbor embedding (t-SNE) [33], and then applying K-
means for clustering) [10] to test the performance of the
proposed scLRTC and other methods. Compared with
the SC3 algorithm, the K-means algorithm is more af-
fected by the initial values. To compare the clustering
results more reasonably, we performed t-SNE + K-means
20 times on the Pollen and Usoskin datasets (The
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perplexity of t-SNE is set to 10, and other parameters of
t-SNE are set as default parameters). In the Pollen data-
set, our median is the highest at 0.722, and the max-
imum value is 0.853, which is better than the maximum
value (0.847) by DrImpute (Fig. 2A). In the Usoskin
dataset, the median of the proposed method is 0.684 and
the maximum value is 0.742, which are both the highest
compared to other methods (Fig. 2B). Note that the re-
sult of scImpute is worse than that of SAVER. When
verifying the clustering performance by SC3 and t-
SNE + K-means clustering, similar result was also ap-
peared in CMF-Impute [11]. The main reason may be
that scImpute relies on the spectral clustering which
may influence the subsequent imputation process when
the data has unbalanced clusters. In brief, the proposed
imputation achieves a better overall effect than other im-
putation algorithms.

Furthermore, we compared scLRTC with the latest
matrix completion based method WEDGE [18] and deep
learning based method scGNN [19] on the Zeisel data-
set. We applied the Scanpy’s Louvain algorithm [34, 35]
for the scRNA-seq data clustering and found scLRTC
achieved an ARI of 0.692, which is higher than
WEDGE’s 0.560 and scGNN’s 0.678. Finally, we did the
test for a large Chen dataset [26] where the number of
cells is more than 10,000. We also used the Louvain al-
gorithm to cluster the scRNA-seq data and found the
clustering performance index ARI increased from 0.611
(raw data) to 0.673 by scLRTC. Considering the time
complexity of scLRTC, the addition of tensor computa-
tion makes it slower than other methods. But we can
control the size of tensor for various datasets to relief
the influence of tensor computation. Figure 2C illus-
trates the running time of scLRTC for the mentioned
experimental datasets with different sizes of tensor set-
ting. It shows that the time complexity of scLRTC is not
quadratic proportional to the number of cells, which
makes it applicable for scRNA-seq datasets with differ-
ent sizes.

Cell visualization
Visually representing scRNA-seq data involves shrinking
the gene expression matrix into a lower space, and then

Table 2 Parameter settings of simulation datasets generated from Splatter

Parameter Simulation dataset Parameter Simulation dataset
version 1.10.1 dropout.type “group”

nGenes 1000 method "groups”

nCells 500 de.prob c(0.05, 0.08, 0.01)
group.prob c(0.3,0.3,04) defacLoc 0.5

dropout.shape ¢ (ds, ds, ds), ds € {~0.3,0,0.05,0.25} defacScale 0.8

dropout.mid Default dropout. Null

present
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mapping each cell’s transcriptome in the reduced low
dimensional space. Several dimensionality reduction
methods are generally known (e.g.,, PCA [36], t-SNE
and UMAP [37]), where UMAP is suggested to be
particularly suitable for the visualization of any di-
mensional data. Accordingly, UMAP was employed to
discuss the dimensionality reduction effect before and
after imputation on four expression matrices of Yan,
Pollen, Usoskin and Zeisel datasets. To be specific,
cells were visualized in a two-dimensional space, and
different cells were stained using real labels before
and after imputation. To quantify the grouping of cell

transcriptomes, an unsupervised clustering quality
measurement was conducted with silhouette coeffi-
cient (SC) [38] to evaluate the effect of dimensionality
reduction. The higher the silhouette coefficient, the
more significant the dimensionality reduction effect
will be. The UMAP dimensionality reduction
visualization and the average SC of the raw and im-
puted data (4 published datasets) with different
methods are illustrated in Fig. 3 and Fig. 4. According
to these figures, the SC values of the proposed
scLRTC in these datasets are the highest with 0.884,
0.797, 0.861, 0.639, respectively.
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Assessing imputation accuracy through data masking

The data masking evaluation was conducted on the real
dataset and simulation datasets. First, 5% of non-zero
entries were randomly selected from the Loh dataset,
and these values were masked to zeros to generate a
new gene expression matrix. Subsequently, seven imput-
ation algorithms were applied for the new gene expres-
sion matrix and compared with unmasked data. The

sum of squared errors (SSE) and Pearson correlation co-
efficient (PCC) between the imputation values and the
true values were adopted to evaluate the effect of imput-
ation. Figure 5A presents all the results of the imput-
ation accuracy index of the masked data. The proposed
method can recover the missing values with the lowest
SSE of 268.8 and the highest PCC of 0.707 in all com-
pared imputation algorithms. Note that the SAVER
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method persistently underestimates the values, especially
among the highly expressed genes. Consistent experi-
mental results were also mentioned in references [3, 15].
To prevent the influence attributed to randomness, we
performed 5 masking repetitions for the above experi-
ment. The results of 7 methods in 5 repeated experi-
ments only slightly fluctuate (Fig. 5B and Fig. 5C),
demonstrating that the randomness slightly impacts the
mentioned results.

Moreover, the performance of the proposed model
was tested on single-cell simulation data that involves
three cell populations. These data were generated using
the Splatter package [29]. Splatter is an R bioconductor
package for the reproducible and accurate simulation of
scRNA-seq data. We referred to the parameters of simu-
lation dataset provided by CMF-Impute [11] and in-
creased the dropout rate in our experiment. Namely, 40,
50, 60, and 70% of the entries were randomly masked in
the expression matrix, corresponding to a shape param-
eter of dropout logistic function (ds) equaling - 0.3, 0,
0.05, and 0.25 respectively. The masked entries were im-
puted with 7 methods and the imputed results are com-
pared with the real values. Figure 6 shows the
visualization results of t-SNE with dropout, unmasked
raw data (Full), and 7 imputation methods (including
DrImpute, scImpute, MAGIC, SAVER, CMF-Impute,
PBLR and scLRTC) under different dropout rates. It can
be seen that the proposed scLRTC is most consistent
with the original data (Full under the t-SNE
visualization, demonstrating that the proposed imput-
ation has a strong ability to restore real cell clusters.
Furthermore, we performed the quantitative analysis on
the simulation dataset. Figure 7 shows the SSE and PCC
values under different dropout rates. With the increase
in the dropout rate, the accuracy of all imputation
methods is affected. However, the proposed scLRTC is
suggested to exhibit the optimal performance among 7
methods.

Evaluating imputation accuracy through correlation
analysis and differential expression analysis

The ability of the imputation method was evaluated to
restore gene-gene and cell-cell relationships in complex
tissues. The simulated data were employed with a drop-
out rate of 40% (ds=-0.3) to calculate the gene-gene
and cell-cell correlation matrix, and log;o(X + 1) was set
as the result after imputation. In the cell-to-cell correl-
ation heat map (Fig. 8A), the color of MAGIC and the
proposed scLRTC is the closest to the heat map of Full.
For the heat map of gene-gene correlation (Fig. 8B),
scImpute and the proposed scLRTC are the closest ones
to the expression heat map of Full in color, while
MAGIC deviates the most. And then the violin chart
was used to display its expression distribution. We find
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the violin chart of scLRTC is the closest to the
unmasked raw data (Full) in the appearance comparison
(Fig. 9A), indicating that the position and the upper
quartile comply with Full. It is suggested that the data
by the scLRTC complement here achieves the most con-
sistent distribution with that of Full. In summary, the
proposed method can effectively restore the true gene-
gene and cell-cell relationship.

In addition, it is considered that the imputation
method should be capable of recovering true differential
expressed (DE) genes and reducing the production of
false positive genes. Since gold standard of DE genes has
been rarely formulated in real datasets, 6 imputation
methods (DrImpute, SAVER, scImpute, MAGIC, CMEF-
Impute and scLRTC) were compared for their capabil-
ities to recover DE genes in the simulation data. The dif-
ferential expression analysis was performed by using the
MAST [39], and the true DE genes identified from the
complete data were considered the reference. In terms
of the respective method, the DE genes were extracted,
which are considered significant by controlling P-value
<0.01 and comparing them with the true DE genes. Fig-
ure 9B presents the average ROC (Receiver Operating
Characteristic) curves of different imputation methods
by considering the indices of recall and precision.
ScLRTC is found to achieve the highest score (AUC
(Area Under the Curve) = 0.971) for detecting DE genes,
demonstrating that scLRTC is valid to recover more DE
genes and detect less false-positives genes.

Evaluating imputation accuracy through cell trajectory
inference

A common task of single cell RNA sequence analysis is
to rebuild the lineage trajectory and infer the differenti-
ation and progenitor status of single cells, which is a re-
search hotspot over the past few years. Besides, a wide
range of algorithms have been developed in this field.
For instance, TSCAN [40] performed the differential ex-
pression and time series analysis on single-cell expres-
sion data, which classified individual cells according to
the progress of biological processes. However, TSCAN
did not perform dropout imputation for the data repro-
cessing. Thus, in this study, the scLRTC imputation was
integrated into TSCAN, and its performance was com-
pared in the pseudotime inference of the Petropoulos
dataset. The Petropoulos data consists of the single cells
from five stages of human preimplantation embryonic
development from developmental day (E) 3 to day 7.
Notably, though the cells at each time point may not be
homogeneous, the time label can be exploited to repre-
sent an overall developmental trajectory. Accordingly,
the known time label acts as the ground truth, and the
performance of pseudotime inference is evaluated with
TSCAN, as input by the raw data and the imputed data
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with 6 different methods (scLRTC, SAVER, sclmpute,
DrIimpute, CMF-Impute and MAGIC). Furthermore,
Pseudotime ordering score (POS) [40] and Kendall’s
rank correlation score (KRCS) were used to measure the
consistency of time label and pseudotime order derived
from the data. The results are presented in Fig. 10.

It is therefore suggested that the proposed method has
improved on both POS and KRCS indicators compared
with the original data. For the SAVER method, it has an
improvement on KRCS, whereas the POS score de-
creases. In terms of other methods, the pseudotime tra-
jectory by Drlmpute and scImpute starts at E3 and ends
at E6, the pseudotime trajectory of CMF-Impute starts
at E3 and ends at E5, and the trajectory reconstruction
error is relatively large. The accuracy of MAGIC from
E3 to E5 is relatively high, whereas at E6 and E7 stages,
a big discrepancy is identified with the real label, which
introduces errors.

Discussion

Since single-cell RNA has a limited extraction efficiency,
the occurrence of dropout events adversely affects the
downstream analysis. However, the single-cell data im-
putation is not explicitly involved in the most used
scRNA-seq tools for cell clustering, dimensionality re-
duction visualization, cell type recognition and lineage
reconstruction, so it is of high research significance. In
this paper, a novel low-rank tensor completion method
(scLRTC) is proposed to impute the scRNA sequence
data where dropout is present. SCLRTC, a data-driven
method, fully considers the similarity and heterogeneity
between cells. It builds a third-order tensor representa-
tion and employs a low-rank tensor completion model
by adopting the ADMM algorithm to achieve the data
imputation. This study also inputs the data with scLRTC
imputation into SC3 clustering and carries out the clus-
tering by first conducting t-SNE dimensionality
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reduction and then implementing K-means. Accordingly,
it is reported that scLRTC is capable of increasing the
clustering accuracy of real data at different dropout
rates, as well as improving the quality of cell
visualization. Moreover, by integrating the proposed
scLRTC into TSCAN, we find it improves the accuracy
of pedigree reconstruction and pseudotime inference.
Although we have verified that our scLRTC is superior to
other popular methods on some real and simulation data-
sets, we cannot guarantee it is superior to all other methods
on all datasets. We found our method is effective in imput-
ing the scRNA-seq dataset with a high missing rate, mainly
based on the following aspects. (1). Compared to ScImpute,
PBLR and other clustering based methods, when the data
missing rate is high, incorrect clustering result will affect
the subsequent imputation process. Our scLRTC makes full
use of the cell similarity to construct a low-rank tensor,
which can reduce the impact of highly missing data on the
imputation process. (2). For SAVER and other methods
based on the statistical model, they normally impute the en-
tire data under a given data distribution assumption. When
the data distribution does not meet this assumption, the
completion effect will be affected. But imputation by the
low rank tensor of scRNA-seq data can avoid the influence

of data distribution assumption. (3). For the scRNA-seq
data, although the data itself has redundancy, the rank esti-
mation of the original gene expression matrix is easy to be
affected when the data has a high missing rate. Whereas,
the rank estimation of the tensor constructed in our
scLRTC can be tracked by the tensor trace norm, which
can guarantee the final completion result.

In general, the proposed imputation method can be
regarded as one powerful complement to current scRNA
sequence data analysis. Our tensor based imputation al-
gorithm can be further improved in the future work. For
instance, because of the tensor model in scLRTC is rela-
tively independent, we will develop the single-cell com-
pletion based on the parallel computing to improve the
time complexity of scLRTC. Besides, we currently only
use the similarity between cells to build a low-rank ten-
sor. We can also consider the similarity between genes,
and combine the similarity between cells and genes to
build a higher-order tensor, and then complete the im-
putation under the tolerable computational complexity.
In addition, we currently developed the scLRTC based
on MATLAB mainly because there are the tensor related
packages so that we can quickly develop our algorithm
and verify it in the experiment analysis. In our future
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work, we will use R or Python to realize the scLRTC al-
gorithm for providing the widespread use in the bio-
informatics community.

Conclusions

Imputation is an essential step in the use of scRNA-seq.
In this work we introduced a novel low-rank tensor
completion-based method, termed as scLRTC. Experi-
ments on simulation data and real data sets showed
scLRTC to be highly accurate in imputation.

Methods

Datasets

Nine scRNA-seq datasets (i.e., Pollen, Usoskin, Yan, Zei-
sel, Mouse, PBMC, Chen, Loh and Petropoulos) with
different data sizes are used to test the validity of the
proposed scLRTC in imputing dropout events. Besides,
these datasets fall to three levels (i.e., gold, silver and
copper) based on the supporting evidence of cell
markers. To be specific, Pollen, Loh, Yan, Zeisel and
Mouse datasets are defined as gold standard datasets, in



Pan et al. BMC Genomics (2021) 22:860

Page 14 of 19

PC2

PC2

E3
E4
ES
E6

scLRTC

(POS:0.765, KRCS:0.918)  (POS:0.773, KRCS:0.927)

PC2
PC 2

PC 2

E7

SAVER
(POS:0.746, KRCS:0.924)

PC1 PC1
scImpute DrImpute
(POS:0.564, KRCS:0.774) (POS:0.500, KRCS:0.679)

Fig. 10 Cell trajectory inference analysis of scLRTC and other methods. Visualization of lineage reconstruction is implemented by TSCAN on the
Petropoulos dataset. Lines represent the developmental trajectory of cells, and each type of cells (E3 to E7) represents a stage of cell development. Cells
should distribute along the cell trajectory. The POS and Kendall's rank correlation scores as the indicators to quantify this process are also provided

PC1

MAGIC
(POS:0.673, KRCS:0.863)

CMF-Impute
(POS:0.542, KRCS:0.719)

which all cell markers are defined by complying with ex-
perimental conditions or cell lines. Usoskin, PBMC and
Chen datasets are defined as the silver standard, with
cell markers are calculated and assigned by drawing
upon the authors’ knowledge of the underlying biology.
Petropoulos is considered the copper standard since
the cells involved are in the developmental stage
(time labeled). Though single cell populations from
different time points usually exhibit different expres-
sion patterns and biological characteristics, it remains

infeasible to separate different populations at each
time point based on time tags alone. Table 3 briefs
these scRNA sequence datasets with sizes ranging
from 90 (Yan) to 12,089 (Chen), and the number of
cell clusters ranges from 4 (Usoskin) to 46 (Chen).
Note that the first seven datasets are normally used
for the cluster analysis. Furthermore, the first three
datasets are from the low-throughput data sequencing
platform, and the last four datasets originate from the
high-throughput data sequencing platform. Loh is

Table 3 A summary of nine real scRNA-seq datasets used in our experiment

Dataset Number of clusters Number of cells Number of genes Standard
Pollen 1" 301 23,730 Gold
Usoskin 4 622 25,334 Silver

Yan 7 90 20214 Gold
Zeisel 9 3005 19,972 Gold
Mouse 16 2100 20,670 Gold
PBMC 8 4340 33,694 Silver
Chen 46 12,089 23,284 Silver

Loh 8 429 23,794 Gold
Petropoulos 5 1529 21,749 Copper
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employed for the data masking evaluation, and Petro-
poulos is used for the trajectory reconstruction
analysis.

Data preprocessing and normalization

In terms of a given scRNA-seq dataset, its gene expres-
sion matrix is recorded as X°. To reduce the effect of
underexpressed genes, the gene expressed in less than or
equal to 3 cells is removed [41]. To express the filtered
matrix by XV, a matrix X is then made by taking the log,
transformation with a pseudo count 1

Xij — log2 (Xf;[ =+ 1),l = 1,27 ...,M,j
1,2,..,.N (1)

where M denotes the overall number of genes; N is the
total number of cells. The pseudo-count is added to
avoid infinite values in the parameter estimation in the
subsequent data analysis. The logarithmic transform-
ation has an advantage that it can prevent a small num-
ber of large observation values from being significantly
affected in the data imputation.

Tensor based model for scRNA-seq data imputation
Single-cell dropout events can be formulated as a miss-
ing value estimation problem. The core problem of miss-
ing value estimation refers to how to develop the
relationship between known elements and unknown ele-
ments. The scRNA-seq data usually consist of single
cells from different cell types, and single cells exhibiting
the identical type have similar expression patterns. For
this reason, it is assumed that the basic true expression
of scRNA-seq data can be approximatively considered as
a low-rank matrix. The low-rank matrix restoration es-
sentially complies with the correlation between the rows
and columns of a matrix, therefore creates a direct and
effective imputation strategy.

A recent study suggested that taking full advantage of
the presence of low-rank submatrix can improve the im-
putation performance compared to traditional low-rank
matrix recovery methods [14, 15]. However, the low-
rank submatrix constructed by clustering is easily influ-
enced by the clustering effect, and the low-rank tensor
can be constructed to capture more correlations of simi-
lar single cell compared to the low-rank submatrix form.
Based on this motivation, the two-dimensional low-rank
matrix is extended to the three-order low-rank tensor
with the high correlation of scRNA-seq data. Besides, a
novel low-rank tensor model is built for single-cell gene
expression data, and the tensor trace norm [17] is
employed to approximate the rank of the tensor, finally
the missing data are rebuilt and the cell’s gene expres-
sion is restored.
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Tensor construction

We construct the tensor form of single-cell which fully
considers the high correlation of scRNA-seq data. Spe-
cific to a given cell X}, the Pearson correlation coefficient
between cells is first calculated and sorted in a descend-
ing order. Subsequently, the gene expression of cell X;
and its K-1 cells with the highest correlation are adopted
to build a matrix Mat;e RX*™, where M denotes the
number of genes. Subsequently, the difference between
cell X; and other cells are measured in the matrix Mat,.
To be specific, the Euclidean distance is calculated from
all cells in Mat; to X; and sorted in an ascending order
as D;=(dy;, dy, ..., dr). Next, the direction (angle) simi-
larity of cell gene expression is measured by calculating
the cosine similarity from all cells in Mat; to X;, and
then it is recorded in an ascending order as C; = (cy; oy
.. Crg). Lastly, the similarity between cells is measured
according to the absolute value of the difference of cell
gene expressions, i.e., the Chebyshev distance from all
cells in Mat; to X; is calculated and restored in an as-
cending order as Q; = (15 92 ---» 4Ki)-

Three distance vectors obtained from X; are combined
into a feature vector Vec;={D,, C;, Q;} with a size of
3K x 1. Likewise, the feature vector Vec; can be obtained
from the other cell X;. By calculating the distance be-
tween two feature vectors, the P-1 Vec; closest to Vec; is
searched, and these matrices are merged to build a
third-order tensor YeRK*M*P for the cell X; (as shown
in Fig. 11).

Our method fully exploits the similarity between cells
to construct a low-rank tensor, which can avoid the im-
putation influence by the high missing rate of scRNA-
seq data in the completion process. On the other hand,
the tensor trace norm is used to track the rank of tensor
and solved by the ADMM algorithm, which can guaran-
tee the imputation results more accurate and robust
compared with other heuristic tensor completion
methods (Tucker, Parafac and SVD).

Tensor fold and unfold

During the tensor analysis, it is convenient to unfold a
tensor into a matrix. The “unfold” operation along the k
th mode on a tensor Y is defined as

meoldk(y) _ y(k)eleX(Il-~~1k—11k+)~~~1n) (2)
The opposite operation “fold” is defined as

fold (V) =Y (3)

Tucker decomposition and denoising
Tensor Tucker decomposition is recognized as a form of
high-order principal component analysis. The HOSVD
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Fig. 11 The whole framework of scLRTC. For the scRNA-seq dataset A, it uses the PCC and selects the closest K cells to construct N Kx M low-
rank matrices B. Then it applies the Euclidean, Cosine, and Chebyshev distances to select the closest P low-rank matrices to construct N Kx M x P
low-rank tensors C. Followingly, it uses the ADMM algorithm to impute the low-rank tensors C to obtain the updated tensors D. Finally, it extracts

the cell vector from each low-rank tensor in D and integrates it to obtain the imputed scRNA-seq expression matrix E

method [42] is available for decomposing a third-order
tensor YeR*/*K by

yzgxleszgc (4-)

where A€ R™*F, Be F/*? and Ce RX*® denote factor
matrices, which can be considered the main components
of the corresponding mode. The tensor Ge RP* R refers
to the core tensor, representing the level of interaction
between different components.

Next, a hard threshold function is set for factor matri-
ces A, B, C to eliminate the effect of some low value
components after the Tucker decomposition. Subse-

quently, the third-order tensor ) is restored by updating

G, ie, the convergence of the current tensor data is en-
sured by the iterative computation, and the denoising ef-
fect of some mutation elements is achieved in the tensor
form of scRNA-seq data.

Tensor trace norm
The trace norm of a tensor is defined as [17].

||y||* = Zz 1a1||y(1 H (5)

where a;20,% " ja; =1, Y (i) expresses the matrix along
the i th mode. In fact, the trace norm of a tensor refers
to a convex combination of the trace norms of all matri-
ces expanded along the respective mode. Notably, when
n is equal to 2 (the matrix case), the definition of the
tensor’s trace norm complies with the matrix case.

Tensor completion model
By using M; to replace Y, the tensor completion model
is expressed as

minvalv“'anijlaiHMi(i)H*
S.t.Y_Q = TQ (6)
Y=M;i=1,..n

where a; denotes the coefficient; M;(;) represents the un-
fold matrix of the tensor along the ith mode; 7 is the
known tensor; Y expresses the reconstructed tensor; Q
in T g is the index of non-zero observation value.

Tensor model solution

The mentioned model can be solved by adopting the al-
ternating direction method of multipliers (ADMM) algo-
rithm. The augmented Lagrangian function is defined as

Lp(yaMla '“7Mn7y17 "'7.)/;1)
fsz + (V-Mi,y,)+
LMY (7)

where < -, > denotes the inner product; ||-|% represents
the F-norm, i.e., the root of the square sum of all ele-
ments; y; is the Lagrange multiplier; p expresses the pen-
alty parameter.

According to the framework of ADMM, M;,Y,y; can
be iteratively updated as

{Mt L MEY = argming, oy Ly (VX My, o, M, 9K, 0)
(I

Y = argming, L (Y, M METL 9k, o)
(IT)

W = g -p(MEF =Y (II)

From the augmented Lagrangian function in 1), y@),

y{f is fixed and minimized to yield
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it = e gna

P k Ly
) (Mo, Miy)=p <Mi<i)7 Vi + ;%(f)>

2

, p 1
— arg ines||Mio .+ o0y 2o |

1 1
(I o Iy o) ®

Thus, the optimal solution of Mf‘(f)l is

M%l = arg Ar?(z)n aiHMi(i)H*
2

©)

1

+ ’5’ HMi(i>‘ (yf» + ;,yf(i)) i

The above Eq. (9) is proven to generate a closed-form
in recent references [43, 44], so it can be solved by cal-
culating the singular value thresholding operator D,(-).
In terms of any matrix X, the singular value decompos-
ition (SVD) is performed to obtain X = UXV?, where U,
V are orthogonal singular vectors, and XeR"*" com-
prises singular values o3, ..., 0,, r= min {m, n}. The sin-
gular value thresholding operator can be defined as
D(X) = Uz, V", where X.= diag(max(o; - 7,0)). Thus, it
yields

1
M) = Dy (3’@') + ;yi(i)> (10)
By folding M;; to get
Ml' Zfoldi(Mi(i)) (11)

From the augmented Lagrangian function in 2), it can
C e . . k .
be minimized by fixing M¥ and 5%, and the optimal solu-
tion is obtained as

k+1 _ N P /vy agktl vy agktl
YV = arg W)t]m;<y,yf>+2<y M Y-ME

= arg n})in Zg()ﬁ V) + (V. pM{ T —yF) (12)
P

Take the derivative of (12) with respect to Y and set it
equal to 0 to yield

n
- (szf“—yf) ~o (13
i1
So
g1 _ L " k1 L
Yy = Zilei _;yi (14)
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For Y =Y¥5 + Vo, Yo = T o is known, so only Vg
is updated

1 n 1
k+1 _ — k+1_ =k
yﬁ T <Zi—1M‘ ny)_

Q

(15)

After the tensor completion reconstruction, the corre-
sponding cell expression Xi(i=1,2,...,N) is selected
from the respective tensor model, and the gene informa-
tion of each cell is restored, and a matrix X representing
the complete scRNA-seq data is lastly formed. Since the
gene expression of the cell is non-negative, the matrix
X” is defined after the imputation

P . *
P _ {XU = Olf(Xi]« < o)

XP = X others (16)
ij if

In brief, the entire scLRTC algorithm process is
expressed as.

Input: X, p, a and K
Output : X (X after imputing)
T.form=1toN

2. Construction of low rank tensor T of X,
31 SetYo=Tpand Yy =0,Y =M

4:  for k=0 to Kdo

5: fori=1tondo

6: Mgy = D%()J(,) + 23%(;))

7 M, = fO/d,[M,‘(,)]

8: end for

9: Vg =1 (ZLM-3y)g

10 i =yp(M=Y)

11:  end for

12:extract X, from Y

13:end for .

14: X* = (X1,X2,...,Xm) and use Eq. (16) to remove negative values

Evaluation measures
To objectively evaluate the effectiveness of the proposed
low-rank tensor completion method for single-cell RNA-
seq data, the reconstructed data are used for the cell
clustering, and two clustering indicators with the nor-
malized mutual information (NMI) and the adjusted
rand index (ARI) are adopted to quantify the consistency
between inferred and predefined cell clusters in the re-
spective scRNA-seq data. Subsequently, the silhouette
coefficient (SC) is adopted to assess the visual effect of
cell dimensionality reduction. Lastly, Pseudotemporal or-
dering score (POS) Tand KRCS are used to evaluate the
accuracy of cell trajectory analysis and imputation.
Denote that U = {1, po, ..., pip} is adopted to represent
the true partition of P classes, V= {vy, vy, ..., vz} is used
to denote the partition given by clustering results, n; and
n; are represented as the number of the class y; and
cluster v; respectively, and #; is expressed as the
number of observations in both class y; and cluster v;.
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ARI is then formulated as:

25 (5)- 50 ()= (G G)
s L GELGIZLGG)

(17)
P K
wheren =73 n. =) n;.
NMI is eXxpressed/ad
20U, V)
NMI= H(U)+H(V) (18)

where I(U,V) expresses the amount of mutual
information between U and V/

NP K |mooy| Nluino|
MW= 2 N Bl o]

H(U) and H(V) are the entropies of partitions I/ and V'

Y I/ll
Zl IN N H(V)
_ _ZK & log&
siN %N

where N is the total number of cells.
SSE is written as

sqrt (Z:‘:I Z:l:l (X

where X;; denotes the true gene expression; P;;
represents the predicted gene expression.
SC is expressed as

(19)

H(U)
(20)

-2,)’") (21)

SC = average <Z, 1 max{a(i), b(i)}

where i denotes the i th cell, a(i) = average (i to all
other cells in the cluster to which it belongs), b(i) = min
(the average distance from i to all cells in the other
cluster).
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