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Abstract

Background: Recently, erdafitinib (Balversa), the first targeted therapy drug for genetic alteration, was approved to
metastatic urothelial carcinoma. Cancer genomics research has been greatly encouraged. Currently, a large number of
gene regulatory networks between different states have been constructed, which can reveal the difference states of
genes. However, they have not been applied to the subtypes of Muscle-invasive bladder cancer (MIBC).

Results: In this paper, we propose a method that construct gene regulatory networks under different molecular
subtypes of MIBC, and analyse the regulatory differences between different molecular subtypes. Through differential
expression analysis and the differential network analysis of the top 100 differential genes in the network, we find that
SERPINI1, NOTUM, FGFR1 and other genes have significant differences in expression and regulatory relationship
between MIBC subtypes.

Conclusions: Furthermore, pathway enrichment analysis and differential network analysis demonstrate that
Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction are significantly enriched
pathways, and the genes contained in them are significant diversity in the subtypes of bladder cancer.
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Background
In recent years, five immunotherapy drugs have been
approved to bladder cancer, and erdafitinib which is the
first targeted drug for gene alternation was approved. Tar-
geted therapy of cancer is greatly encouraged, which con-
tributes to achieve precision medicine. Muscle-invasive
bladder cancer (MIBC) is a highly heterogeneous malig-
nant tumor, whose prognosis and survival rates among
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molecular subtypes are significantly different. Currently,
Gene regulatory networks(GRNs) under different patho-
logical conditions have been constructed to reveal the
regulatory differences, but they have not been applied
to different subtypes of bladder cancer. The motivation
of our study is to construct differential networks among
subtypes of MIBC, which reveals the gene regulatory
differences between the subtypes.
Gene regulatory network is a kind of biological network

that expresses complex regulatory relationships between
genes,and is meaningful in medical diagnosis, treatment,
and drug design [1]. Gaussian Graphical Models (GGMs)
are widely used in estimating GRNs [2]. It assumes that
the gene expression measurements follow a multivariate
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Gaussian distribution, so the precision matrix or inverse
covariance matrix can reflect the conditional dependence
between genes. This method belongs to the “reverse engi-
neering” problem of gene regulatory network. A gene
regulatory network model with the known real expres-
sion data is established to be well consistent with the real
data, so as to the potential regulatory relationship can
be inferred. Reverse engineering is one of the important
methods for constructing gene regulatory networks.
Gene regulatory networks are dynamic in time and

space [3–5]. In particular, more researchers focus on the
difference between conditions in GRNs, and pay atten-
tion to the variety of regulatory relationships and find key
genes with significant change. Therefore, methods of con-
structing differential network directly from the expression
data of two conditions are proposed. Zhang and Zou [6]
proposed D-trace method to estimate differential network
directly, which is more natural and convenient than clas-
sical log-likelihood function. Tian [7] and Yuan [8] add
L1 penalty on the D-trace loss function to estimate the
precision matrix of sparse differential networks.With the
development of high-throughput sequencing technology
and computational biology, plenty of static gene regu-
lation data have been collected and summarized, such
as Transcriptional Regulatory Relationships Unraveled
by Sentence-based Text-mining (TRRUST) database [9],
which provides useful information to construct GRNs.
Furthermore, the authors in [10] integrate static regula-
tory data and gene expression data to reconstruct GRNs,
called WD-trace. Expect the observed variable from sam-
ples, gene regulation may also be affected by other latent
or unobserved factors, such as miRNA. Taking the latent
variables into account, Ouyang [11] proposed a new
model JDNA jointly estimates multiple differential net-
works with latent variables from multiple data sets. The
model is also based on the D-trace loss function, the dif-
ference is that two new penalty functions, group lasso
penalty and fused lasso penalty, are applied to learn the
common support of difference edges on multiple data sets
or make full use of the similarities. To reveal how gene
regulatory networks change over cancer development, Xu
[12] proposed the tDNA model to jointly estimate mul-
tiple time-varying differential networks. They designed a
tree-structured group lasso penalty to identify the com-
mon and specific hub nodes on differential networks.
Inspired by the differential network and molecular sub-

types of bladder cancer, we apply the WD-trace method
to construct differential networks in different subtypes of
bladder cancer. Then, we analyze the regulatory differ-
ences between two subtypes. According to the molecu-
lar typing results of [13], we download and preprocess
the subtypes data, and preform differential expression
analysis. After differential expression analysis, we firstly
construct differential networks from first 100 gene with

significant differences between two subtypes. In order
to identify biological pathways where differential genes
play a key role, we perform Kyoto Encyclopedia of Genes
and Genomes (KEGG) [14] pathway enrichment analysis
of differential genes.From the results of differential gene
enrichment, we can see that the significant enrichment
pathways between each couple of subtypes contain one or
two pathways of Neuroactive ligand-receptor interaction
and Cytokine-cytokine receptor interaction, thus we con-
struct differential network based on these two pathways.
The whole analysis flow ofMIBC gene regulatory network
is shown in Fig. 1.
Our contribution can be summarized as follows:
1)A complete process of muscle-invasive bladder cancer

gene regulatory network analysis was proposed, includ-
ing differential expression analysis, functional enrichment
analysis and differential network construction. This anal-
ysis process observes the differences between molecular
subtypes from multiple perspectives.
2)It was found that some genes not only have signif-

icant differences in gene expression between molecular
subtypes, but also have significant differences in regula-
tory relationships. For example, SERPINI1, NOTUM and
FGFR1 have some related to the cancer biomarker.
3)Gene regulation on two biological pathways have been

found to be significantly different between molecular sub-
types, where Cytokine-cytokine receptor interaction has
been shown to be related to bladder cancer. Studying on
these two pathways has important implications for the
pathogenesis of different subtypes.

Results
Results of the differential networks of top 100 differential
gene
Here, differential expression analysis was performed
between any two subtypes of five subtypes, and the thresh-
olds p_adjust < 0.01 and log2FoldChange > 2 were set
to obtain differentially expressed genes. Ten comparisons
with five subtypes were made, four comparison results are
shown in Fig. 3 which the green and red points in the plot
represent the differential genes, respectively. From Fig. 3,
it can be observed that the number of differential genes
in Luminal-papillary and Luminal subtypes, Luminal-
infiltrated and Luminal subtypes is less than that of any
other two subtypes, which indicates that these two sub-
types are more similar to Luminal subtype. Furthermore,
it also presents that the Luminal-infiltrated, Luminal-
papillary, and Luminal subtypes are isolated from the early
identified Luminal subtypes in [15].
To reveal the difference of gene regulation among sub-

types, we constructed differential regulatory networks on
the top 100 differential genes obtained from differential
expression analysis. Figure 4 presents the differential net-
works between Luminal and Neuronal subtype, which
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Fig. 1 The whole analysis flow of Muscle-invasive bladder cancer gene regulatory networks

contains a large number of differential regulatory edges.
Such a dense network indicates that the top 100 differen-
tial genes between the two subtypes have large differences
in expression levels, and great changes have also taken
place in regulatory relationship.
On the differential networks, some key genes were dis-

covered. NOTUMmay be a key gene of Neuronal subtype,
because there are highly differentially expressed genes
between NOTUM gene and other subtypes. NOTUM
gene encodes Palmitoleoyl-Protein Carboxylesterase,
which acts as a key negative regulator of theWnt signaling
pathway [16]. However, abnormal activation of the Wnt
signaling pathway can lead to cell growth and develop-
ment defects, and may lead to tumorigenesis. Numerous
studies have shown that the abnormal Wnt signaling
pathway is associated with many malignant tumors [17]
[18], such as liver cancer, colorectal cancer, bladder can-
cer, cervical cancer. In the same time, there is a research
showing that NOTUM is overexpressed in primary col-
orectal cancer, gastric cancer, liver cancer, breast cancer,
lung cancer, ovarian cancer and endometrial cancer [19].
In addition, SERPINI1 is one of top 10 genes differen-

tially expressed between Neuronal and all other subtypes.
For Luminal andNeuronal subtypes, it ranks the 5th in the
differential expression genes and the 1st in the differen-
tial network, which connected sides is 34. In other words,
it can be concluded that the SERPINI1 gene regulation
difference in these subtypes is significant. Besides, SER-
PINI1 gene has been reported to be involved in malignant
tumors. For instance, it has been reported to be a genetic
marker for the discovery of hepatocellular carcinoma [20]

and may be one of the candidate biomarkers for the diag-
nosis of colorectal cancer [21].What’s more, some studies
on gastric cancer have shown that SERPINI1 has a poten-
tial tumor suppressor function in the stomach [22]. In
summary, SERPINI1 may be a marker to distinguish the
Neuronal subtype.
Similarity, FGFR1 gene not only has significant differ-

ences in single gene expression, but also is a critical node
in the differential network for the Luminal-papillary and
Neuronal subtypes. Since erdatinib is a targeted drug for
genetic alteration (FGFR). The regulatory relationship of
FGFR in subtype level is helpful to predict the side effects
of erdatinib. The statistical results of these key genes are
summarized in Table 1. The log2FoldChange and p-adjust
are the result of differential expression analysis, and the
degree is the result of differential network. The higher the
absolute value of log2FoldChange and the lower the p-
adjust, the greater the expression difference between the
two subtypes. Moreover, the degree of a gene in differ-
ential network indicates the number of differences in the
regulatory relationship with other genes.
Besides, we also performed Gene Ontology (GO)

analysis on the top 100 differentially expressed genes to
understand the function of these genes and their products
in the biological processes. The top 100 differential genes
between Luminal-papillary and Luminal-infiltrated and
between Luminal-papillary and Luminal are both mainly
enriched in the extracellular matrix organization, and a
biological process in the assembly, arrangement of con-
stituent parts, or disassembly of an extracellular matrix
is discussed. The process affects cell behaviours, such
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Fig. 2 Several volcano plot of differential expression analysis among subtypes. The green and red points in a plot represent the differential genes
between two subtypes screened by the threshold p_adjust < 0.01 and log2FoldChange > 2

as proliferation and migration, cell differentiation and
death. Abnormal extracellular matrix dynamics can lead
to deregulated cell proliferation and invasion, cell death,
and cell differentiation. Furthermore, it can bring about
pathological processes such as tissue fibrosis and cancer
[23]. The differential genes enrichment results between
the Neuronal subtype and other subtypes have the charac-
teristics of the Neuronal subtype. In addition, the biologi-
cal processes or molecular functions are mainly related to
the development of neurons and signal transmission, such
as neuron projection development and axon development.

Results of the differential networks on pathways
A biological pathway is a series of actions among
molecules in a cell which leads to a certain product or
a change in the cell. Compared with the differential net-
works on the first 100 differential genes, the differential
networks on a pathway can accurately locate differences

and understand the changes of different subtypes in spe-
cific action. In order to obtain pathways related to the sub-
type differences, we performed KEGG enrichment analy-
sis on differentially expressed genes. Figure 5 presents the
results of top 10 significant enrichment pathways between
Neuronal and Basal-Squamous subtype. The abnormal-
ity of these pathways may be related to the formation of
Neuronal and Basal-Squamous subtype. By counting the
significant enrichment pathways between all subtypes, we
found that the significant enrichment pathways between
each two subtypes in Neuroactive ligand-receptor inter-
action or Cytokine-cytokine receptor interaction, which
are given in Table 2. In other words, these two path-
ways appear in the top 10 significant pathways ranked by
p-adjust between all subtypes.
Cytokine-cytokine receptor interaction is an impor-

tant pathway which contains a variety of cytokines and
their receptors. The combination of cytokines and their
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Fig. 3 Differential networks with top 100 differential genes between Luminal and Neuronal subtype. The nodes belong to the top 100 differential
genes obtained form differential expression analysis, and the edges are the regulatory differences between the two subtypes

Table 1 The measurement of important genes in differential
expression analysis and differential network

Genes Subtypes log2FoldChange p-adjust Degree

NOTUM PN -7.50 2.01E-69 3

IN -6.15 6.28E-42 7

LN -6.54 2.35E-33 13

NB 7.00 2.22E-60 1

SERPINI1 PN -3.79 7.82E-45 3

IN -3.70 1.61E-38 5

LN -3.57 1.50E-25 34

NB 3.76 1.45E-44 1

FGFR1 PN -4.26 2.48E-43 8

Note: P, I, L, B and N denote Luminal-papillary, Luminal-infiltrated, Luminal,
Basal-Squamous, and Neuronal subtype separately, and PI denotes the data
between Luminal-papillary and Luminal-infiltrated. log2FoldChange and p-adjust
are the result of differential expression analysis, and degree is the result of
differential network

receptors have an effect on cells, such as cell growth, pro-
liferation and differentiation, and regulates the collective
immune response. Besides, it not only provides data for
the study of the pathogenesis of autoimmune diseases,
tumors and immunodeficiency diseases at the cellular
and molecular level, but also provides guidance for clini-
cal treatment and diagnosis. Neuroactive ligand-receptor
interaction consists of a group of neuroreceptor genes,
such as dopamine receptor and proto oncogene, which
are involved in environmental information processing and
signal molecule interaction.
In order to further determine whether a group of genes

jointly affect the risk of disease characteristics in bio-
logical pathways, we construct differential networks of
these two pathways. In the differential network, hub genes
and other genes have regulatory relationship and can be
directly displayed, and the regulatory differences among
genes can also be captured. Figure 6 presents the dif-
ferential network between Luminal and Neuronal based
on Cytokine-cytokine receptor interaction. The pathway
genes between the two subtypes changed in the regulatory
relationship in Fig. 6. Additionally, Fig. 7 presents the
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Fig. 4 The top 10 significant enrichment pathways between Neuronal and Basal-Squamous subtype.The vertical axis indicates the pathways, the
horizontal axis indicates the number of genes enriched in a pathway, and the color indicates the value of p.adjust

differential network onNeuroactive ligand-receptor inter-
action between Luminal-infiltrated and Basal-Squamous.
For the differential networks on Cytokine-cytokine

receptor interaction, the IL29RA gene between Luminal-
papillary and Basal-Squamous is a hub gene, which encode
protein interleukin 20 receptor subunit alpha protein and
is a member of the type II interleukin receptor fam-
ily. Recent studies have identified IL20RA is a novel
risk gene for a variety of autoimmune diseases [24].
IL24 and its receptors regulate the growth and migra-
tion of pancreatic cancer cells, which is the potential
biomarkers for IL24 molecular therapy [25]. In addi-
tion, IL24 receptor rarely intact expression in hepatoma
cell lines [26]. The hub gene of Luminal-infiltrated and
Basal-Squamous subtypes, IL36G, belongs to the IL-1
cytokine family. And IL36G has been identified to have
anti-tumor effects in breast cancer and melanoma.What’s
more, IL36G has been shown to enhance the effector
function of immune cells such as NK cells, so that the
environment is transformed into the tumor destruction.

Finally, IL36Gmay contribute to the growth of anti-tumor
and metastasis of tumor [27]. Furthermore, the hub gene
FASLG of Luminal-papillary and Neuronal encodes the
FasL protein, on the other hand, the prognostic value
of soluble FasL (sFasL) in the serum of bladder cancer
patients has been investigated. The data suggest that mon-
itoring the level of sFasL and its cytotoxic activity may
be the prognostic indicators for bladder cancer patients
[28]. For OSMR gene, the hub gene of Luminal-papillary
and Luminal-infiltrated may affect tumor classification,
recurrence and overall survival rate [29]. A recently
study has shown that its polymorphism is significantly
associated to bladder cancer fromWest China Hospital of
Sichuan University.
And for differential network on Neuroactive ligand-

receptor interaction, related study has shown that Neu-
roactive ligand-receptor interaction may be involved in
the development of lung cancer as a major pathway. It
has been reported that the imbalance of the Neuroac-
tive ligand-receptor interaction in lung cancer, and the

Table 2 KEGG pathway enrichment results of Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction

Cytokine-cytokine receptor interaction Neuroactive ligand-receptor interaction

p_value p_adjust count p_value p_adjust count

PI 1.73E-10 1.49E-08 47 1.42E-05 3.31E-04 40

PL - - - 3.12E-05 3.37E-03 22

PN - - - 4.98E-19 1.45E-16 86

PB 4.33E-31 1.26E-28 103 2.76E-04 2.77E-03 56

IL 2.69E-04 2.20E-03 17 4.83E-04 3.67E-03 18

IN 3.96E-06 1.02E-04 46 6.73E-18 1.91E-15 76

IB 2.36E-04 6.14E-03 24 - - -

LN 4.14E-04 8.96E-03 39 2.74E-15 7.96E-13 70

LB 1.57E-26 4.61E-24 89 7.01E-05 6.65E-04 52

NB 1.44E-14 1.05E-12 76 1.25E-19 3.65E-17 93

Note: The count means that the number of differential genes between two subtypes annotated in the pathway
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Fig. 5 Differential networks on Cytokine-cytokine receptor interaction between Luminal and Neuronal. The node represents the gene on the
pathway, and the edge is the regulatory differences between the two subtypes

Neuroactive ligand-receptor interaction is also related to
nicotine dependence, and increases the risk of lung cancer
[30]. Smoking is also an important risk factor for bladder
cancer. Although it has been shown that the Neuroac-
tive ligand-receptor interaction plays an important role in
various stages of bladder cancer [31], the mechanism of
its action on bladder cancer has not been revealed, and
it is only widely recognized in neuro related diseases. In
this work, according to the KEGG enrichment results,
it may play a critical role in occurrence and molecular
specificity of bladder cancer. Attention should be paid in
the hub genes of differential networks based on Neuroac-
tive ligand-receptor interaction.

Discussion
Firstly, Gene regulatory networks have individual speci-
ficity. In order to further develop personalized treatment,
building a differences network to determined subtype
from normal to tumor may be to explain the change of
individual regulatory relationship. However, it is difficult
to get the data from normal state to disease state of a
person, because it often does not have a patient’s normal

state in advance. Besides, the sample size of personal data
is small.
Secondly, Biological pathway information is incom-

plete. Biological pathways show the functional similarity
of a group genes. From the perspective of regulatory
relationships, it is naturally more meaningful to con-
sider the group relationships than a single gene. How-
ever, biological pathways need further explanation and
complement according to the published references. So
more comprehensive, systematic, and specific biological
processes in the human is also needed.
Finally, traditional bulk RNA-Seq reveals the average

gene expression of an ensemble of cells, which can-
not analyse the detailed states of individual cells. The
development of single-cell RNA-Seq (scRNA-Seq) makes
it possible to quantify the expression of single cells and
analyze the detailed differences between single-cells. At
present, there are some methods constructing gene reg-
ulatory network from single-cell data, such as SCODE
[32], SCENIC [33], PIDC [34] and so on. Because scRNA-
Seq can distinguish the detailed states of individual
single-cell, it can accurately calculate the correlations of
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Fig. 6 Differential networks on Neuroactive ligand-receptor interaction between Luminal-infiltrated and Basal-Squamous.The nodes represents the
gene on the pathway, and the edge is the regulatory differences between the two subtypes

expression between genes. So it is an important research
direction to construct gene regulatory network from
single-cell data.

Conclusions
In this paper, to reveal the differences between molec-
ular subtypes of MIBC, we propose a complete anal-
ysis process, including differential expression analy-
sis, pathway enrichment analysis and differential net-
work construction. Through these analyses, some key
genes were discovered. Furthermore, we observe that
Cytokine-cytokine receptor interaction and Neuroactive
ligand-receptor interaction almost appear in significantly
different pathways between any two subtypes. Therefore,
the relationship between these two pathways and bladder
cancer should be explored. In the future, we will explore
the subtype specificity with single-cell expression data.

Methods
Data
In this paper, the data are based on the transcriptome
mRNA-seq files of The Cancer Genome Atlas (TCGA)

program molecular typing results [13]. In [13], a compre-
hensive analysis of 412 cases of MIBC was reported, and
five subtypes (Luminal-papillary: 142, Luminal-infiltrated:
78, Luminal: 26, Basal-Squamous: 142 and Neuronal:
20) were identified. We download subtypes data from
Genomic data Commons (GDC) data portal, and prepro-
cess the data into gene expression matrix. The workflow
of data preprocessing is given in Fig. 2, and the specific
steps are as follows:
Step 1: Extract the number of TCGA samples. The

file name and corresponding TCGA sample number are
stored in the metadata files from GDC. The sample num-
ber are extracted for subsequent replacement.
Step 2: Integrate data of the same subtype into

an expression matrix and replace file names.There are
multiple compressed files for each subtype of data, so
we integrate the data of each subtype into a matrix and
replace the file name with the sample number.
Step 3: Delete non-gene count data in the expression

matrix. The first 5 rows of data in the integrated matrix
are not count information of gene expression and should
be deleted.
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Fig. 7 The workflow of data preprocessing in this work

Step 4: Remove ENSEMBL version number of gene
name. Delete the ENSEMBL version number of gene
name, because it is not required in gene annotation.
Step 5: Screening paracancerous and poor quality sam-

ples. A patient may have multiple RNA-seq files where
contain paracancerous samples and poor quality samples.
Delete these samples because they will affect the accuracy
of results.
Step 6: Filter non-expressed and low-expressed genes.

Filtering non-expressed and low-expressed genes can
improve the efficiency of subsequent differential expres-
sion analysis.
Step 7: Gene annotation and the coding gene extrac-

tion. Convert the gene name into gene symbol named
by the HUGO Gene Nomenclature Committee(HGNC).
Download the gene-annotated GTF file from ENSEMBL
database for gene name conversion and extraction of
encoded genes.
Finally, the expression matrix of each subtype and the

combined expression matrix of five subtypes for differen-
tial expression analysis were obtained.

Differential expression analysis
The goal of differential expression analysis is to find
differentially expressed genes (DEGs) from two sample
groups by analyzing gene expression data. The principle
is to judge the existence of treatment effect by comparing
intra-group difference and inter-group difference, and to
prove that there are differentially expressed genes between

groups. The intra-group difference is the error effect, and
the inter-group difference is the sum of treatment effect
and error effect. The essence of the test is that the treat-
ment effect is equal to the difference between the aver-
age difference of inter-group and the average difference
of intra-group which is greater than zero. Significance
depends on the results of statistical tests, such as p_value
or p_adjust. The smaller the value, the more significant
the difference in gene expression among groups. In this
case, samples of the same subtype belong to a group, and
the aim is to find genes that are differentially expressed in
different subtypes.
In this study, R package DESeq2 [35] is used for differ-

ential expression analysis. The starting point of DESeq2
analysis is the count matrix K, the rows correspond to
genes and columns correspond to samples. The element
Kij represents the quantitative value of gene i expres-
sion in the sample j, and it is subject to negative bino-
mial distribution. DESeq2 differential expression analy-
sis uses the following generalized linear model: Kij ∼
NB(μij,αi) , where μij represents the mean, αi repre-
sents the discrete factor which describes the degree of
deviation of variance from the mean and defines the rela-
tionship between variance and mean, and the variance
v = μij + αiμ

2
ij.

In addition to count matrix, the input data DESeq2
also includes group matrix and difference comparison
matrix. Group matrix stores the group information. Dif-
ference comparison matrix corresponds group informa-
tion and their sample. The whole process of DESeq2
differential expression analysis involves three steps: con-
structing dds object for storing data, invoking DESeq
function for differential expression analysis, and using
result function to extract difference analysis results, which
returns a result table of data such as log2FoldChange
(differential multiple of log2), p_value, p_adjust and so
on. log2FoldChange indicates the difference multiple of
the average expression amount corresponding to the two
groups, and the p_adjust indicates the result of the multi-
ple check correction p_value.

KEGG pathway enrichment analysis
The goal of the KEGG enrichment analysis is to annotate
the list of differentially expressed genes into the pathways
of the KEGG PATHWAY database and screen out signif-
icant pathways based on statistical tests. In this context,
the enrichment analysis used the R package clusterPro-
filer [36] to obtain the pathway annotation information
by invoking KEGG API. The principle is to intersect
the DEGs with the gene sets of a pathway in KEGG
PATHWAY database, find common genes and count
them, and finally use statistical tests to evaluate whether
the observed counts are significantly. The statistical
test method used by clusterProfiler is Fisher’s exact
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test, which calculates p_value based on hypergeometric
distribution:

p_value =
∑M

i=m

Ci
MCn−i

N−M
Cn
N

(1)

where N is the total number of human genes in KEGG
PATHWAY database,M is the number of genes belonging
to a pathway in KEGG PATHWAY database, n is a list of
differentially expressed genes, i is the number of M in n,
and p_value indicates the probability of randomly extract-
ing n genes from N genes. The clusterProfiler uses the BH
[37] method to adjust the p_value to get p_adjust.

Differential network
The WD-trace model assumes that the gene expres-
sion data of p genes in two groups are subject to two
multivariate Gaussian distributions, the formulas can be
expressed as:

X = (X1, ...,Xp)
T ∼ N(0,�X) (2)

Y = (Y1, ...,Yp)T ∼ N(0,�Y ) (3)

Define the precision matrix � = �−1, and the differen-
tial network is defined by � = �Y − �X = �−1

Y − �−1
X .

Suppose that A = (Aij) ∈ Rp×p is a p × p matrix,
A = ∑p

i,j=1 |Aij|1 will denote the elementwise L1 norm.
Let< A,B >= tr(AB)T be the inner production. The
D-trace loss function is defined as follows:

LD(�; �̂X , �̂Y ) = 1
4
(< �̂X�,��̂Y > +

< �̂Y�,��̂X >)− < �, �̂X − �̂Y >

(4)

where the sample covariance matrix �̂X = 1
nX X

TX is the
estimator of covariance matrix�X , and the sample covari-
ance matrix �̂Y = 1

nY Y
TY is the estimator of covariance

matrix �Y . This loss function is designed for the solving
goal �̂. If � = �−1

Y − �−1
X , �X��Y − (�X − �Y ) =

0 and �Y��X − (�X − �Y ) = 0 are satisfied, then
1
2 (�X��Y +�Y��X)− (�X −�Y ) = 0 can be obtained.
The gradient parameter of D-trace loss can be defined as:

∇LD = 1
2
(�X��Y + �Y��X) − (�X − �Y ) (5)

where the minimum of LD is taken at �̂ = �̂−1
Y − �̂−1

X .
The static regulatory network is constructed by TRRUST
public dataset and defined as S = (Sij) ∈ {0, 1}p×p,where
Sij = 1 indicates that there is a relationship between gene i
and j. Meanwhile, the weight matrixW is defined to make
the penalty weight be w ∈ (0, 1) if Sij = 1, and the weight
is 1 if Sij = 0,Wij is defined as.

Wij =
{
w, Sij = 1
1, Sij = 0

(6)

In this way, the static network and gene expression data
can be combined. In fact, there are only a few edges in
differential network, because � is sparse. In this view,
WD-trace could add the weighted lasso penalty to the
D-trace loss function, so a new model as follow:

� = argmin
�

{LD(�; �̂X , �̂Y ) + λ
∑

1≤i,j≤p
Wij|�ij|} (7)

where λ is a nonnegative tuning parameter. In reality, two
genes are more likely to connect in differential network
if they are linked in static regulatory network. For the
penalty weight w of two genes, the smaller the w, the
more likely they are connected in static estimated GRN.
Since there are a few edges in TRRUST database for gene
in Neuroactive ligand-receptor interaction and Cytokine-
cytokine receptor interaction, we set w equal to 0.1. In
addition, λ is selected using stability selection method,
StARS [38]. The threshold parameter of StARS is set as
β = 0.005 and the number of sample subsets is set as
S = 20. Finally, the model (7) is solved by accelerated
proximal gradient descent method[10, 39]. The proximal
gradient method can be written as follows:

proxp(A) = argmin
�

λ
∑

1≤i,j≤p
Wij|�ij| + 1

2
||� − A||22

= sign(A)max(|A| − λ, 0)
= S(A, λ)

(8)

Algorithm 1 The procedure of WD-trace.
Input: The sample covariance matrices �̂X and

�̂Y , static network S,weight parameter w, tuning
parameterλ.

Output: The estimated differential network �̂.
1: Initialize k = 1, α = 1, and � equals to a zero matrix.
2: CalculateW according to Equation 6.
3: while not converged do
4: Y (K+1) = �k + k

k+3 (�
k − �(k−1));

5: while 1 do
6: Z = S(Y (K+1) − α∇LD(Y (K+1)),αλ);
7: if LD(Z) ≤ L̃D(Y (k+1),Z,α) break;
8: α = 1

2α;
9: end while

10: �(k+1) = Z;
11: k = k + 1;
12: end while
13: return �k ;
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The function L̃D is given by

L̃D(Y ,Z,α) = LD(Y ) + tr(∇LD(Y )(Z − Y ))

+ 1
2α

||Z − Y ||22
(9)

The procedure of WD-trace is shown in Algorithm 1.
In this study, WD-trace method is used to construct the

differential network to infer the regulatory relationships
between genes and obtain the hub gene. In this study, the
hub genes are the top 10 genes with the highest degree
in GRNs.
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