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Abstract

Background: CRISPR-Cas9 genome-wide screens are being increasingly performed, allowing systematic
explorations of cancer dependencies at unprecedented accuracy and scale. One of the major computational
challenges when analysing data derived from such screens is to identify genes that are essential for cell survival
invariantly across tissues, conditions, and genomic-contexts (core-fitness genes), and to distinguish them from
context-specific essential genes. This is of paramount importance to assess the safety profile of candidate
therapeutic targets and for elucidating mechanisms involved in tissue-specific genetic diseases.

Results: We have developed CoRe: an R package implementing existing and novel methods for the identification
of core-fitness genes (at two different level of stringency) from joint analyses of multiple CRISPR-Cas9 screens. We
demonstrate, through a fully reproducible benchmarking pipeline, that CoRe outperforms state-of-the-art tools,
yielding more reliable and biologically relevant sets of core-fitness genes.

Conclusions: CoRe offers a flexible pipeline, compatible with many pre-processing methods for the analysis of
CRISPR data, which can be tailored onto different use-cases. The CoRe package can be used for the identification of
high-confidence novel core-fitness genes, as well as a means to filter out potentially cytotoxic hits while analysing
cancer dependency datasets for identifying and prioritising novel selective therapeutic targets.
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Background
The ability to perturb individual genes at scale in human
cells holds the key to elucidating their function and it is
a gateway to the identification of new therapeutic targets
across human diseases, including cancer. In this context
the CRISPR-Cas9 genome editing system is the state-of-
the-art tool [1–3].
Several genome-scale CRISPR-Cas9 single guide RNA

(sgRNA) libraries have been designed and are available

to date for genetic perturbation screens in human cells,
showing significantly improved precision and scale with
respect to previous technologies [4–8]. Some of these li-
braries have been employed in large-scale in-vitro
screens assessing each gene’s potential in reducing cellu-
lar viability/fitness upon inactivation, across hundreds of
immortalised human cancer cell lines [7, 9–12]. This has
led to comprehensive identifications of cellular fitness
genes, providing a detailed view of genetic dependencies
and vulnerabilities existing in cancer cells.
Several sources of bias must be considered when ana-

lysing dependency profiles derived from CRISPR-Cas9
screens. These include different guide efficiency and off-
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target effects [13, 14], genomic features like copy num-
ber amplifications [7, 15–17], variable phenotypic pene-
trance [18], and different experimental settings such as,
for example, screening time length and cells’ growth
medium [19, 20]. Taken together, these factors contrib-
ute to making the analysis of CRISPR-Cas9 screens not
trivial, and several tools have been proposed for this task
[12, 21–25].
When analysing data from CRISPR-Cas9 screens in

functional and translational studies another major com-
putational problem is to classify and distinguish genetic
dependencies involved in normal essential biological
processes from disease- and genomic-context-specific
vulnerabilities.
Identifying context-specific essential genes, and distin-

guishing them from constitutively essential genes shared
across all tissues and cells, i.e. core-fitness genes (CFGs),
is also crucial for elucidating the mechanisms involved
in tissue-specific diseases. Moving forward,focusing on
very well-defined genomic contexts in tumours allows
identifying cancer synthetic lethalities that could be
exploited therapeutically [26].
Gene dependency profiles, generated via pooled

CRISPR-Cas9 screening across large panels of human
cancer cell lines, are becoming increasingly available [27,
28]. However, identifying and discriminating CFGs and
context-specific essential genes from this type of func-
tional genetics screens remains not trivial.
The Daisy Model (DM) has been recently described

for identifying CFGs by jointly analysing data from gen-
etic screens of multiple cancer cell lines. In this ap-
proach, sets of fitness genes for each screened cancer
cell line are conceptually represented by the petals of a
daisy [10]. These have different extents of overlap, but
they generally tend to share a common set of CFGs (the
core of the daisy). Based on this idea, genes that are es-
sential in most of the screened cell lines are predicted to
be CFGs. This approach has been shown to be able to
identify CFGs that are enriched for fundamental cellular
processes such as transcription, translation, and replica-
tion [10]. Nevertheless, in [10] the minimal number of
cell lines (3 out of 5 screened) in which a gene should
be significantly essential in order to be predicted as
CFG, is arbitrarily defined with no indications on how to
determine this threshold on a numerically grounded
basis when applying the DM to larger collections of
screens.
In [11] we have introduced the Adaptive Daisy Model

(ADaM): a generalisation of the DM that is able to de-
termine the minimal number of cell lines that should be
vulnerable to knocking-out the putative CFGs, i.e.
dependent on them, in a semi-supervised manner.
We have also recently proposed an alternative un-

supervised approach within the Broad and Sanger

Institutes’ Cancer Dependency Map collaboration [29],
where data from screening hundreds of cell lines are
analysed in a pooled fashion, independently of their tis-
sue of origin. This method builds on the intuition that if
a gene is universally essential then it should rank among
the top essential genes in most screened models, includ-
ing those that are the least dependent on it, or generally
showing a moderate to weak loss-of-fitness phenotype
upon CRISPR-Cas9 targeting.
Finally, a logistic regression based method for clas-

sifying genes into CFGs or context-specific essentials
has been recently introduced by Sharma and col-
leagues [30] as part of the CEN-tools suite, using ref-
erence sets of essential and non-essential genes for
the training phase [31].
Although the number of CRISPR-Cas9 and genome-

scale RNAi experiments is increasing rapidly, no ro-
bustly benchmarked method to identify sets of CFGs has
been devised yet in a unique and easy-to-use software
package.
We present CoRe: an R package implementing re-

cently proposed as well as novel versions of algorithms
for the identification of CFGs from a joint analysis of
multiple genome-wide pooled CRISPR-Cas9 knock-out
screens. Furthermore, we present results from a com-
parison of CoRe’s output (when applied to the largest in-
tegrative cancer dependency dataset generated to date
[19]) against widely used [10, 31], or more recent [30]
sets of CFGs obtained via an alternative approach (which
we have also tested on the same recent cancer depend-
ency dataset). We report an increased coverage of prior
known human essential genes, new potential core-fitness
genes, and lower false positive rates for CoRe’s methods
with respect to other state-of-the-art core-fitness sets
and available methods. Finally we show that CoRe is
computationally more efficient than other methods, and
that the CFGs obtained with CoRe could be used in the
future as a template classifier of a single screen’s specific
essential genes, via supervised classification methods,
such as the widely used BAGEL [24].

Implementation
Overview of the CoRe package
CoRe implements two methods at two different levels of
stringency yielding, respectively, (i) core-fitness essential
genes (CFGs) and (ii) common-essential genes (CEGs).
Both sets include genes that are essential for cell survival
invariantly across tissues and genomic backgrounds and
are involved in housekeeping cellular processes, thus are
conceptually the same. However, CFGs are identified in
CoRe more stringently and in a supervised manner,
whereas CEGs are outputted by a less stringent and un-
supervised method. These two-level of stringency make
CoRe suitable for a variety of use-case scenarios. These
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range from the robust identification of new human core
essential genes (where minimising false positive is essen-
tial, thus CFGs should be preferred to CEGs), to filtering
out potential cytotoxic candidates when focusing on
context-specific essential genes while identifying and
prioritising new therapeutic targets (where is more im-
portant to minimise the false negatives, thus CEGs
should be preferred to CFGs).
The first and more stringent method implemented in

CoRe is the Adaptive Daisy Model (ADaM) [11]: an
adaptive version of the Daisy Model (DM) [10] that
operates in a cascade of two steps, and it is usable on
data coming from large-scale CRISPR-cas9 knock-out
screens performed in heterogeneous in-vitro models, for
example immortalized human cancer cell lines from
multiple tissue lineages (Fig. 1A-D).
The second and less stringent CoRe method, imple-

mented in four different novel variants, is the Fitness
Percentile (FiPer) method, which identifies CEGs via a
pooled (pan-cancer) analysis of data from large-scale
CRISPR-Cas9 knock-out screens, performed in cell lines
from multiple tissues/cancer-types [20] (Fig. 1EF). For
each screened cell line, this approach considers the gene
rank positions resulting from sorting all screened genes
based on their effect on cell viability upon CRISPR-Cas9,
i.e. their essentiality, in decreasing order. FiPer then ex-
ploits the intuition that CEGs will always rank among
the top essential genes for most cell lines, including
those for which the fitness reduction is overall less
pronounced.
While ADaM takes as input strictly defined binary

scores of gene essentiality and it outputs discrete sets of
tissue-specific and pan-cancer CFGs, FiPer takes as input
quantitative descriptors of gene essentiality and it out-
puts a unique set of CEGs, also providing a visual means
for quickly assessing the tendency of individual genes to
be a CEG.

The Adaptive Daisy Model
The Adaptive Daisy Model (ADaM) [11] is implemented
in the function CoRe.ADaM of CoRe, which takes as in-
put (i) a binary dependency matrix, where rows corres-
pond to genes and columns to samples (screens or cell-
lines), with a 1 in position [i, j] indicating that the inacti-
vation of the i-th gene through CRISPR-Cas9 targeting
exerts a significant loss of fitness in the j-th sample, i.e.
that the j-th cell line is dependent on the i-th gene; (ii) a
reference set of prior known CFGs. Binary dependency
matrices encompassing data for hundreds of cancer cell
lines can be downloaded from Project Score [28] and
used with this function by calling CoRe.download_
BinaryDepMatrix.
In order to identify CFGs using data from screening N

cell lines, the Daisy Model introduced in [10] computes

a fuzzy intersection of genes that are essential, i.e. fitness
genes, in at least n* cell lines, where this number is de-
fined a priori. ADaM generalizes this approach by (i)
exploiting the bimodality of the distributions of the
number of genes essential in each number of cell lines
(Fig. 1A), and (ii) adaptively determining an optimal dis-
criminative threshold of minimal number of cell lines n*
that should be dependent on a given gene for calling
that gene a CFG.
Briefly, for a binary matrix encompassing gene de-

pendency profiles of n cell lines across thousands of
screened genes, ADaM computes fuzzy intersections of
genes In, for each n = 1, …, N. These fuzzy intersections
include genes with at least n dependent cell lines accord-
ing to the input matrix. For each tested n, ADaM com-
putes the true positive rate TPR(n) yielded by each In
using the reference CFGs provided in input as positive
controls. In parallel, ADaM also computes the number
of genes that are expected to be essential in at least n
cell lines by chance, via random permutations of the in-
put matrix (Fig. 1B). Finally, ADaM determines the opti-
mal n* as the largest value providing the trade-off
between TPR(n) (inversely proportional to n) and the de-
viance of the number of genes with n dependent cell
lines (directly proportional to n) from its expectation
(Fig. 1C). The genes in the corresponding fuzzy intersec-
tion In* are predicted to be CFGs for the cell lines in the
input dependency matrix.
As the distribution of genes that are CFGs in a spe-

cific number of tissue-lineage/cancer-types is also bi-
modal [11], this procedure can be executed in a two-
step approach on large datasets of cancer dependency
profiles, accounting for hundreds of cancer cell lines
from multiple tissues, to predict pan-cancer CFGs
(Fig. 1D). In the first step ADaM predicts tissue-
lineage/cancer-type specific CFGs, then it iterates by
adaptively determining the minimum number t* of
tissue-lineages/cancer-types for which a gene should
have been predicted as a specific CFG to be now pre-
dicted as a pan-cancer CFG. t* is determined by ap-
plying the same algorithm and criteria used to
determine the n* across the tissue-lineages/cancer-
types specific executions of ADaM (Fig. 1D). Particu-
larly, this last operation is performed on a binary
membership matrix with genes on the rows, tissue-
lineages/cancer-types on the column and a 1 in pos-
ition [i, j] indicating that the i-th gene is a CFG for
j-th tissue-lineage/cancer-type.
All the functions called by CoRe.ADaM are exported

and fully documented in the CoRe package. In addition,
CoRe is equipped with the CoRe.PanCancer_ADaM
wrapper function, implementing the two-step procedure
to identify pan-cancer CFGs, and the CoRe.CS_ADaM
function executing ADaM on a user-defined tissue-
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