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Abstract 

Background: The black rockfish (Sebastes schlegelii) has an ovoviviparous reproductive pattern and long-term sperm 
storage, resulting in asynchronous gonadal development between the sexes. However, the comprehensive under-
standing of gonadal development in black rockfish has not yet been achieved. Here, we studied gonadal develop-
ment and germ cell renewal using histology and RNA-seq.

Results: In this study, RNA-seq was performed on testes and ovaries to characterize key pathways and genes that are 
active during development and gamete maturation in black rockfish. Differentially expressed genes (DEGs) were iden-
tified and annotated in 4 comparisons (F_III vs. F_IV, F_IV vs. F_V, M_III vs. M_IV and M_IV vs. M_V). Based on analysis of 
DEGs enriched in the testis, 11 and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mapped to 
the M_III vs. M_IV group and the M_IV vs. M_V group, respectively. DEGs in ovarian development were also classified 
into 10 groups according to their biological functions. The expression patterns of the selected genes determined by 
qPCR were significantly correlated with the RNA-Seq results, supporting the reliability and accuracy of the RNA-Seq 
analysis.  E2 levels showed down regulation from previtellogenesis to mature stage in female and T level showed down 
regulation from spermatogenesis to regressed stage in the male.

Conclusions: The categories “intercellular interaction and cytoskeleton”, “molecule amplification” and “repair in the 
cell cycle” were revealed to be crucial in testis development and spermatogenesis, as was the biosynthesis of a series 
of metabolites. Our results provide comprehensive insight into black rockfish gonadal development and provide a 
basis for further study of reproductive physiology and molecular biology in ovoviviparity teleosts.
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Background
Spermatozoa and oocytes in fish species are highly spe-
cialized cells that fuse into an embryo that will develop 
into a mature organism that produces gametes [1]. 
Germ cell development and renewal are required for 
gonadal development during the entire reproductive 
lifespan of most teleosts. Spermatogenesis and oogen-
esis are both highly organized processes and are crucial 
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for transmitting genetic information to the next genera-
tion [2, 3]. Although the development of spermatozoa 
and oocytes follows common principles, there are still 
many differences between females and males in terms of 
gametogenesis [2]. Teleosts represent the most diverse 
and numerous groups of vertebrates. Research on sper-
matogenesis in teleosts has mainly focused on a few spe-
cies, such as Atlantic cod (Gadus morhua) [4], tilapia 
(Oreochromis niloticus) [5], rainbow trout (Oncorhyn-
chus mykiss) [6, 7], zebrafish (Danio rerio) [8], European 
eel (Anguilla anguilla) [9], and Atlantic salmon (Salmo 
salar) [10]. The molecular mechanism of spermatogen-
esis in fishes has also been reviewed [11]. In addition, 
studies of oogenesis in teleost fishes have been reported 
in recent decades, including the related genes in tilapia 
[5], rainbow trout [12], least killifish (Heterandria for-
mosa) [13], pejerrey (Odontesthes bonariensis) [14] and 
Atlantic molly (Poecilia mexicana) [15].

In recent years, molecular techniques have increased in 
importance as tools for the identification of key pathways 
and genes involved in biological processes. RNA-seq 
platforms based on next-generation sequencing tech-
nology (NGS) provide a revolutionary and efficient tool 
for investigating the key pathways and genes in gonadal 
development. Such platforms have already been applied 
to the study of the reproductive system in many species, 
including pig (Sus scrofa domesticus) [16], American alli-
gator (Alligator mississippiensis) [17], and swimming crab 
(Portunus trituberculatus) [18]. In teleosts, an increasing 
number of studies have focused on gonadal development 
and germ cell renewal. In a study of tilapia (Oreochromis 
niloticus), RNA-seq was used to reveal the genetic frame-
work underlying sex determination and sexual differ-
entiation [19]. The Y chromosome sequence identified 
BCAR1 as a potential sex determination gene in channel 
catfish (Ictalurus punctatus) [20]. In addition, many stud-
ies have focused on gonadal development and germ cell 
renewal in teleosts, revealing the potential mechanism of 
germ cell and gonadal development [21, 22] and identify-
ing sex-related genes in both sexes [23, 24].

Reproductive strategy represents one of the most criti-
cal traits in life due to its effects on fitness and survival 
[25]. Fishes adopt various reproductive strategies, includ-
ing oviparity, in which eggs are laid before fertilization 
(a common reproductive strategy in teleosts), viviparity, 
in which embryos develop inside ovaries while receiving 
nutrition directly from the mother (employed in some 
Chondrichthyes species) [26], and the recently well-
studied ovoviviparity, in which eggs are fertilized in ova-
ries with the development of lecithotrophic larvae (this 
strategy is used by some teleosts, including black rock-
fish (Sebastes schlegelii) [27–29]). Black rockfish undergo 
nonsynchronous gonadal development. Spermatogenesis 

begins in July and is completed in November and Decem-
ber, and then, mating occurs through a modified uro-
genital papilla, which emits spermatozoa into the female 
ovary. The sperm are stored in the ovary during vitel-
logenesis and under the ovigerous lamellae epithelium 
during the late period [27]. In females, oocytes begin 
vitellogenesis in November and mature in late March. 
After the activation of sperm and fertilization in April, 
the females become pregnant, and the fertilized eggs 
develop into larvae in the ovary until parturition occurs 
in May [30, 31]. The asynchrony of gonadal development 
in black rockfish could be responsible for the ovovivipa-
rous reproductive strategies.

Previous studies of black rockfish have mainly focused 
on environmental toxicology and immunity [32–34], 
response to stress [28, 35], whole genomic data analy-
sis [36, 37] and reproductive physiology [38–41]. Most 
studies of reproduction in black rockfish have focused 
on single gene identification [38–40, 42, 43] and analy-
sis of gene function [44, 45]. However, a comprehensive 
understanding of gonadal development in black rockfish 
is lacking. In this study, RNA-seq was performed on the 
testes and ovaries of black rockfish to characterize key 
pathways and genes that are active during development 
and gamete maturation in this species. The transcripts 
were de novo assembled and annotated, greatly enrich-
ing the black rockfish gene database. The pathways and 
genes identified in this study provide novel insight into 
the reproductive biology of ovoviviparity teleosts.

Results
Identification of the stages of development of the ovary 
and testis through collection of basic physiological data 
and histological analysis
H&E staining was performed to identify the different 
stages of gonadal development that occur from October 
to March of the next year. As shown in Fig. 1, the testis 
was found to be in an early spermatogenesis stage (ES) 
from October until early November, when spermatogen-
esis was completed, marking the mature stage (M). After 
mating in December, sperm were totally emptied from 
the testis, showing that the testis was in the regressed 
stage (R). Previtellogenesis stage (PV) oocytes with lipid 
droplets and yolk accumulation initiation were observed 
in early November. Lipid droplets and yolks were 
observed to fuse in oocytes at the vitellogenesis stage (V). 
Completion of the first meiotic division and first polar 
body discharge were observed in mature-stage oocytes 
(M).

According to the identification by H&E staining, 3 
different stages of male and female gonads were distin-
guished; there were termed F_III, F_IV and F_V, repre-
senting the previtellogenesis stage, the vitellogenesis 
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stage, and the mature stage of ovarian development and 
M_III, M_IV and M_V, representing the early spermato-
genesis stage, the mature stage, and the regressed stage 
in the testis. The average body weight and gonad weight 
of the collected samples are shown in Additional file 1. In 
male rockfish, both high body weight (795.09 g±58.63 g) 
and high gonadosomatic index (GSI) (1.26) were 
observed in winter, the time during which mating behav-
ior occurs in ovoviviparous black rockfish. In females, 
high body weight (880.68 g±99.48 g) and GSI (7.57) were 
observed in mid-March when the oocytes matured and 
fertilization occurred.

de novo assembly and annotation of black rockfish gonadal 
transcripts
RNA-Seq was performed on ovary and testis samples 
from 3 different stages. A total of 1,029,619,820 raw reads 
(150 bp) were obtained from 18 gonad samples using the 
Illumina HiSeq X Ten platform. After preprocessing and 
filtration of low-quality sequences, the clean read count 
was 998,950,272 (Additional file  2). The de novo assem-
bled transcriptome included 517,848 transcripts with 
an N50 of 1,660, indicating a high-quality assembly. The 
transcripts of black rockfish gonads were annotated in 7 
public databases, including Nr, Nt, KO, SwissProt, Pfam, 
Gene Ontology (GO) and KOG with 61.63 % of genes 
annotated in at least 1 database. The nonredundant (NR) 
annotation showed that 72.6 % of transcripts were anno-
tated in 5 fish species, with the highest sequence similar-
ity to large yellow croaker (Larimichthys crocea) (Fig. 2a).

The functional classification of transcriptome data 
is a basic requirement for the application of functional 
genomic approaches in fishery research. Analyses based 
on the GO and KEGG databases are commonly used in 
the functional classification of transcriptomic sequences. 
The results obtained for our transcriptome data showed 
that Blast2Go assigned 123,181 transcripts to 56 func-
tional GO terms (Fig. 2b). Regarding the 3 primary ontol-
ogy categories, the majority of the annotations (26 terms) 
fell into the category of “biological process” (BP), followed 
by “cell component” (CC) (20 terms) and “molecular 
function” (MF) (10 terms). Based on the analysis of level 
2 GO terms, “cellular process” (GO:0009987) showed the 
most annotated genes in BP. For CC, “cell” (GO:0005623) 
and “cell part” (GO:0044464) contained the highest 
numbers of annotations. The GO terms related to MF 
with the highest number of annotations were “binding” 
(GO:0005488) and “catalytic activity” (GO:0003824). 
To understand the higher-order functional information 
associated with the biological system, KEGG analysis was 
performed [46]. Based on the analysis, 70,174 genes were 
annotated into 5 categories that included 32 significantly 
enriched KEGG pathways (Fig. 2c).

Analysis of genes that are differentially expressed 
at various gonadal development stages
A total of 33,393 DEGs were obtained from 4 different 
gonadal development libraries (adjusted p value<0.01 
and absolute  log2 fold change>2) (Fig. 3). Of these, 464 
DEGs (151 upregulated and 313 downregulated) were 

Fig. 1  H&E-stained sections illustrating the gonadal development stages of the black rockfish. ES: early spermatogenesis; M: mature; R: regressed; 
PV: previtellogenesis; V: vitellogenesis. Scale bars (a, b, c) = 50 μm. Scale bars (d, e) = 100 μm. Scale bars (f) = 200 μm
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significantly differentially expressed in F_III vs. F_IV, 
and 329 DEGs (109 upregulated and 220 downreg-
ulated) were significantly differentially expressed 
in F_IV vs. F_V. Although males spent less time 
in the reproductive period than females, many 
more DEGs were found in males than in females, 

of these DEGs, 3,858 (1,611 upregulated and 2,247 
downregulated) were significantly differentially 
expressed in M_III vs. M_IV, and 30,160 DEGs 
(24,446 upregulated and 5,714 downregulated) 
were significantly differentially expressed in M_IV 
vs. M_V.

Biological Process Cellular Component Molecular Function
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Identification of DEGs during testis development in black 
rockfish
Based on the DEGs mentioned above, 3,858 and 30,160 
annotated DEGs were obtained from the M_III vs. M_IV 
group and from the M_IV vs. M_V group, respectively 
(Fig. 4a). Heatmap analysis of the 32,772 DEGs expressed 
at all 3 stages of testis development revealed that most of 
the genes in both early spermatogenesis stage and mature 
stage testis showed similar expression pattern, which 
upregulated genes at the early spermatogenesis stage 
(M_III) and the mature stage (M_IV) of the testis were 
downregulated at the regressed stage (M_V) of the testis, 
suggesting that the expression profiles of these DEGs and 
the male reproductive process, including gamete matu-
ration, were directly proportional (Fig. 4b). GO analysis 
of these DEGs showed that most of them mapped to MF 
terms (p value<0.01), especially to GO terms related to 
molecule binding (“anion binding”, GO:0043168, “small 
molecule binding”, GO:0036094 and others) (Fig. 4c).

Eleven and 14 KEGG pathways were significantly dif-
ferentially enriched between the M_III vs. M_IV group 
and between the M_IV vs. M_V group, respectively (p 
value <0.01) (Table 1). In the M_III vs. M_IV group, 11 
KEGG pathways were classified into 3 categories, includ-
ing “intercellular interaction and cytoskeleton”, “mol-
ecule amplification and repairment in the cell cycle”, and 

“other” (Fig.  5). The DEGs in the category intercellular 
interaction and cytoskeleton, including “extracellular 
matrix (ECM)-receptor interaction”, “focal adhesion”, and 
“regulation of actin cytoskeleton”, were upregulated in 
the mature stage compared with the early spermatogen-
esis stage. DEGs in the category molecular amplification 
and repairment in the cell cycle, including the “cell cycle”, 
“ubiquitin-mediated proteolysis”, “DNA replication”, 
“Fanconi anemia”, “RNA transport” and “mRNA surveil-
lance” pathways, were significantly enhanced in the early 
spermatogenesis stage, when spermatogenesis began and 
cell division and protein biosynthesis proceeded, com-
pared with the mature stage. Some other pathways, such 
as steroid hormone biosynthesis, were also upregulated 
in mature-stage testes.

As shown in Fig. 6, the 14 KEGG pathways associated 
with the DEGs in the M_IV vs. M_V groups were clas-
sified into 5 categories, including “progesterone-induced 
gamete maturation”, “molecule amplification and repair-
ment in the cell cycle”, “endoplasmic reticulum-related 
protein processing”, “exocytosis in the nervous system”, 
and “infection and immune-related”. In the category pro-
gesterone-induced gamete maturation, most DEGs were 
upregulated in early spermatogenesis stage testes due to 
the importance of steroid hormones in germ cell division. 
The category molecule amplification and repairment 
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Fig. 3 Venn diagram of the gonadal DEGs identified in 4 comparisons in black rockfish
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in the cell cycle was also upregulated both at the early 
spermatogenesis stage and at the mature stage, imply-
ing that marked changes in cellular metabolism continue 
throughout the entire reproductive process. “Protein 
processing in the endoplasmic reticulum”, “synaptic vesi-
cle cycle” and “retrograde endocannabinoid signaling” 
in the categories endoplasmic reticulum-related protein 
processing and exocytosis in the nervous system showed 
the most interesting and abundant DEGs. DEGs such as 
sar1b, Sect. 13, sec24c and slc18a2 are involved in trans-
port via vesicles, stx2 is related to epithelial morphogen-
esis due to exocytosis, cacna1b regulates hormone and 
neurotransmitter release, and gria1 and grm1 receive 
messages transmitted through the neurotransmitter glu-
tamate. It is suggested that the genes that are differen-
tially expressed in the early spermatogenesis stage and 
the mature stage are inseparable from the intense repro-
ductive process.

As shown in Additional file 3, 3 KEGG pathways, “cell 
cycle”, “mRNA surveillance” and “RNA transport”, were 
upregulated in both M_III vs. M_IV and M_IV vs. M_V, 
indicating that the activity process occurred throughout 
the period from early spermatogenesis to regression in 
the testis. Interestingly, ubiquitin-mediated proteolysis, 
which was highly expressed in M_III vs. M_IV and M_IV 
vs. M_V, presented totally different DEGs, suggesting that 
this pathway may play different roles at different develop-
mental stages. In the oocyte meiosis pathway, sgo1, stag3, 
smc1b and smc3 were upregulated at the mature stage, 
suggesting the exit of gametes from meiosis in the final 
reproductive stage. In addition, ccne1, ccnd2, and cdk2, 
DEGs in the p53 signaling pathway, were upregulated, 
and srsf10 was downregulated. srsf10 represses cell cycle 
G1 and G2 phase arrest by inhibiting ccne1, ccnd2, and 
cdk2, resulting in activation of the cell cycle in testes at 
the early spermatogenesis stage and the mature stage.
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3.2 Identification of DEGs during ovarian development 
in the black rockfish.

Due to the specialized reproductive strategy of female 
black rockfish, the transcriptomic changes in the ovary 
were not as marked as those in the testis. Annotation and 
enrichment analysis identified only 464 and 329 DEGs 
(adjusted p value<0.01 and absolute  log2 fold change>2) 
in the F_III vs. F_IV group and the F_IV vs. F_V group, 
respectively (Fig.  7a). The expression patterns of all 765 
DEGs differed from those in the testis, and these genes 
were upregulated in the ovary at the vitellogenesis stage 
(F_IV) and at the mature stage (F_V), suggesting that the 
development of the ovary is delayed compared with that 
of the testis (Fig. 7b).

Interestingly, GO analysis of these 765 DEGs resulted 
in annotation of a total of 205 DEGs in the membrane 
(GO:0016020) in CC (Fig.  7c). Additional file  4 shows 
detailed information on these 205 DEGs, most of which 
participate in membrane-anchored enzymatic reactions 

or molecular transport. Eleven biological function clas-
sifications and several subclassifications were identified: 
cell cycle, cell junction, cell structure, metabolism, DNA 
binding and transcription regulated, immune system, 
nervous system, molecular transport, protein modifi-
cation, RNA binding, and signal transduction. Among 
these classifications, molecular transport was the most 
abundant (40 DEGs), indicating the importance of the 
material transport process during the ovarian develop-
ment stage in black rockfish.

Validation of RNA‑Seq results by qPCR
To validate the RNA-Seq data, ten DEGs were randomly 
selected and subjected to qPCR analysis. The results 
showed that the qPCR expression pattern of the selected 
genes was significantly correlated with the RNA-Seq 
results  (R2: 0.933-0.9559). In total, the RNA-Seq data 
were confirmed by the qPCR results, implying the reli-
ability and accuracy of the RNA-Seq analysis (Fig. 8).

Fig. 5 Regulation of pathways in the M_III vs. M_IV group of black rockfish. Red and green orthogons represent up- and downregulated KEGG 
pathways and DEGs, respectively [46, 86, 90]
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Hormone concentrations assay
The concentrations of  E2 and T were measured to deter-
mine the hormone levels at different developmental 
stages in both sexes.  E2 levels in the testes did not dif-
fer at the early spermatogenesis stage, the mature stage, 
and the regressed stage. In the ovary,  E2 levels showed 
a significant difference at the previtellogenesis stage 
compared with the vitellogenesis stage and the mature 
stage (p<0.05) (Fig.  9a). T levels showed significant 
downregulation from the mature stage to the regressed 
stage in the testis (p<0.05). There were no significant 
differences in T levels during ovarian development 
(Fig. 9b).

Discussion
The black rockfish, as an economically crucial fish spe-
cies, has been the subject of recent research in reproduc-
tive physiology, toxicology and molecular biology due to 
its unusual ovoviviparous reproductive strategy [28, 33, 
36]. The transcriptomics profile associated with black 
rockfish gonadal development, however, is unclear. To 
investigate the mechanisms underlying gonadal devel-
opment, a series of sex-related genes and biological 
pathways should be identified and subjected to further 
exploration. The present study mainly focused on the 
identification of the key genes and pathways in ovary and 
testis development and germ cell renewal by histology 
and RNA-seq.

Fig. 6 Regulation of pathways in the M_IV vs. M_V group of black rockfish. Red and green orthogons represent up- and downregulated KEGG 
pathways and DEGs, respectively [46, 86, 90]
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Identification of stages and terminology related to gonadal 
development in the black rockfish
In most teleosts, reproduction is an annual, cyclic event 
in which the gonads pass through different develop-
mental stages of germ cell renewal. The critical phases 
of the fish reproductive cycle were determined using 
a conceptual model based on specific histological and 
physiological markers [47]. Black rockfish testes pass 
through a series of developmental stages, including an 
early spermatogenesis phase when no spermatozoa are 
present in the lumen of the lobules or sperm ducts, the 
mature phase when spermatogenesis is active, and the 
regressed phase in which few or no sperm are present 
[31, 47, 48]. In the present study, black rockfish testes in 
the early spermatogenesis stage, the mature stage, and 
the regressed stage were designated as M_III, M_IV, and 
M_V, respectively. In contrast to the oviparous strategy, 
the eggs of the black rockfish are fertilized and retained 
in the ovary during gestation [47]. In the present study, 
the identified developmental stages of the ovary were the 

previtellogenesis stage, the vitellogenesis stage, and the 
mature stage [47, 49], which were designated F_III, F_IV 
and F_V, respectively.

Key pathways in testis development and gametogenesis 
in the male black rockfish
The testes of male black rockfish showed marked vari-
ation from the early spermatogenesis stage to the 
regressed stage, and this variation was reflected in both 
the histological results and the transcriptomic profile. 
During development from the early spermatogenesis 
stage to the mature stage, intercellular interaction and 
cytoskeleton pathways showed significant upregulation. 
Similar to mammals, cellular interactions among Sertoli 
cells and germ cells in the seminiferous epithelium of fish 
play important structural and functional roles in repro-
duction. The testis undergoes dramatic morpho-func-
tional changes during the reproductive season to activate 
spermatogenic arrangement [50, 51]. Actin-related adhe-
sion among Sertoli cells and Sertoli cells to germ cells 

Table 1 Significantly enriched KEGG pathways in the M_IIIvsM_IV and M_IVvsM_V groups

Stage KEGG pathway ID Input gene Regulation

M_IIIvsM_IV

Intercellular interaction and cytoskeleton ECM-receptor interaction ko04512 39 DOWN

Focal adhesion ko04510 64 DOWN

Regulation of actin cytoskeleton ko04810 59 DOWN

Molecule amplification and repair in the cell cycle Cell cycle ko04110 39 UP

Ubiquitin-mediated proteolysis ko04120 27 UP

DNA replication ko03030 10 UP

Fanconi anemia pathway ko03460 12 UP

mRNA surveillance pathway ko03015 23 UP

Steroid hormone biosynthesis ko00140 21 DOWN

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis ko00563 7 UP

M_IVvsM_V

Progesterone- induced gamete maturation Progesterone-mediated oocyte maturation ko04914 117 UP

Oocyte meiosis ko04114 129 UP

Molecule amplification and repair in the cell cycle mRNA surveillance pathway ko03015 97 UP

Cell cycle ko04110 140 UP

Ubiquitin-mediated proteolysis ko04120 143 UP

RNA transport ko03013 139 UP

p53 signaling pathway ko04115 69 UP

Apoptosis - multiple species ko04215 34 UP

Endoplasmic reticulum-related protein processing 
and exocytosis in nervous system

Protein processing in endoplasmic reticulum ko04141 159 UP

Synaptic vesicle cycle ko04721 102 UP

Retrograde endocannabinoid signaling ko04723 179 UP

Infection- and immune-related Staphylococcus aureus infection ko05150 49 DOWN

Transcriptional misregulation in cancer ko05202 174 DOWN

Pertussis ko05133 73 DOWN

RNA transport ko03013 30 DOWN

Huntington’s disease ko05016 205 UP
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is associated with multiple events that are crucial for 
spermatogenesis and normal fertility and especially for 
spermatid elongation in mature-stage testes [51, 52]. In 
a transcriptomics analysis of the spotted knifejaw (Ople-
gnathus punctatus), a similar intercellular interaction 
pathway (cell adhesion molecules) was also found to be 
significantly enriched in the testis [23].

In fishes, cytoplasmic extensions of Sertoli cells form 
an envelope around a single synchronously developing 
group of germ cells derived from a single spermatogo-
nium. The formation of this group of germ cells, namely, 
spermatogenesis, is a highly organized and coordinated 
process during which diploid spermatogonia prolifer-
ate and differentiate into mature spermatozoa [2]. Both 
processes require large numbers of molecules, including 
DNA, RNA, protein, lipids, and steroids, for cell ampli-
fication. In the present study, molecular amplification, 
and repair in the cell cycle, including the “cell cycle”, 
“ubiquitin-mediated proteolysis”, “DNA replication”, 

“Fanconi anemia”, “mRNA surveillance”, “RNA transport”, 
“p53 signaling” and “apoptosis” pathways, were signifi-
cantly upregulated in stage III and IV testes. In contrast 
to mammals, fish show a cystic type of spermatogen-
esis and go through different stages by an accompanying 
group of Sertoli cells. The shape shifting of a cyst envel-
oped by Sertoli cells is accompanied by strong prolifera-
tion of Sertoli cells [53, 54]. In African catfish and Nile 
tilapia, Sertoli cell proliferation occurs primarily during 
spermatogonial proliferation [54]. In Leporinus taenia-
tus, spermatogenesis is also a process in which diploid 
spermatogonia proliferate and differentiate into haploid 
spermatozoa [55]. On the other hand, the Fanconi ane-
mia pathway has been confirmed as an efficient DNA 
repair pathway [56, 57]. In Fanconi anemia disease caus-
ing genes mutant zebrafish, the DNA damage repairment 
failed and caused a series of abnormal development.

Testis development and spermatogenesis require 
specific metabolites, especially androgens. In fish, 
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Fig. 8 qPCR validation of 10 differentially gonadally expressed genes generated from the RNA-Seq results. The expression levels of the selected 
genes were normalized to the 18 S gene. a: F_III vs. F_IV; b: F_IV vs. F_V; c: M_III vs. M_IV; d: M_IV vs. M_V. Gene abbreviations are: nuclear receptor 
corepressor 1 (ncor1); collagen alpha-1(XXVII) chain B (col27a1); cathepsin Z (ctsz); steroidogenic acute regulatory protein (star); sodium/myo-inositol 
cotransporter (slc5a11); cyclooxygenase 2 (cox2); transcriptional regulator ATRX (atrx); syndecan-2 (sdc2); importin-4 (ipo4); and pericentriolar 
material 1 protein (pcm1)

Fig. 9 Measurement of  E2 (a) and T (b) concentrations at different developmental stages of the ovary and testis. Four individuals were analyzed in 
each developmental stage. Different lowercase letters indicate significant differences between developmental stages in the testis (p<0.05). Different 
capital letters indicate significant differences between developmental stages in the ovary (p<0.05)
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transduction of the gonadotropin signal stimulates the 
production of 11-ketotestosterone (11-KT), a major 
androgen in fishes [58], functionally activating androgen 
receptors [59, 60]. To complete the process, enzymes and 
other proteins are required for biosynthesis [61]. In the 
present study, the steroid hormone biosynthesis path-
way and the key genes 3b-hsd and cyp11a1 were sig-
nificantly upregulated in mature-stage testes, indicating 
the importance of steroidogenesis for spermatogenesis 
[59, 62]. Similar results have also been reported in tur-
bot (Scophthalmus maximus), in which steroidogenesis-
related genes including hsd17b3, star, and cyp21a2 were 
highly expressed in the testis during maturation [63]. 
Hormone level measurement during maturation in male 
black rockfish also indicate the importance of steroido-
genesis for spermatogenesis. A few pathways related 
to RNA transcription and translation transportation, 
namely, RNA transport, mRNA surveillance pathway and 
ubiquitin mediated proteolysis, were also significantly 
enriched in mature-stage testis, suggesting that metabo-
lism and synthesis under the influence of gonadotropins 
and steroid hormones is crucial for the maintenance of 
spermatogenesis [59, 64]. Interestingly, the pathways 
(progesterone-mediated oocyte maturation and oocyte 
meiosis) were both enriched in mature-stage testes, 
implying the importance of the role that progestogen 
plays in spermatogenesis. Serum 17α,20β-dihydroxy-
4-pregnen-3-one (DHP), a fish-specific progestin, was 
higher at the mature stage, concomitant with testicu-
lar development in male turbot [65]. Knockout of the 
nuclear receptor of DHP in Nile tilapia (Oreochromis 
niloticus) resulted in a smaller testis and a lower GSI 
compared with normal testis [66].

Key genes in ovarian development and gametogenesis 
in the female black rockfish
Due to the special reproductive strategy of the female 
black rockfish, the transcriptomic level changes in the 
ovary did not seem as marked as those in the testis. A 
total of 765 DEGs were significantly enriched, and these 
were classified into 12 categories: cell cycle, cell junction, 
cell structure, metabolism, DNA binding and transcrip-
tion regulated, immune system, nervous system, molecu-
lar transport, protein modification, RNA binding, signal 
transduction and unclassified genes.

Similar to the testis of the black rockfish, ovarian devel-
opment presented DEGs that were significantly enriched 
in pathways related to the cell cycle, cell junctions and 
the cytoskeleton. Matrix metalloproteinases (MMPs) 
are a family of extracellular proteinases that play a role 
in ECM remodeling associated with many physiologi-
cal and pathological processes [67]. Previous studies in 
mammals have shown increased MMP19 expression in 

preovulatory follicles [68], and estrogen receptor knock-
out leads to downregulation of MMP19 and failure in 
the release of mature oocytes [69]. In the present study, 
mmp19 was also upregulated in vitellogenic ovaries, 
which may be related to the maturation and subsequent 
rupture of ovarian follicles in black rockfish.

The black rockfish vipr gene showed significantly 
increased expression in ovaries at the vitellogenesis 
stage, implying that it plays a critical role in folliculogen-
esis. The neuropeptides vasoactive intestinal polypeptide 
(VIP) and pituitary adenylate cyclase-activating poly-
peptide (PACAP) are thought to stimulate ovarian func-
tions such as steroidogenesis and cAMP accumulation in 
rat granulosa cells [70] through PACAP/VIP receptors. 
VIPR has been found to have equal affinity for PACAP 
and VIP [71]. In zebrafish, vipr expression remained high 
throughout the follicle stage until the full-growth stage 
[72].

The classification molecular transport showed the 
most DEGs in ovary development of black rockfish with 
20 genes of the solute carrier (SLC) gene superfamily 
enriched. The SLC gene superfamily encodes a series of 
membrane transporters [73] that includes passive trans-
porters, cotransporters and exchangers in various cel-
lular membranes [74]. Members of the slc6 gene family 
(slc6a11, slc6a15, slc6a6, and slc6a8), which perform 
 Na+- and  Cl−-dependent transport of the neurotransmit-
ter γ-aminobutyric acid (GABA), creatine and taurine, 
were differentially expressed during ovarian develop-
ment. The result was coincident with the transcriptomic 
analysis of hapuku (Polyprion oxygeneios) [75]. However, 
these transport proteins are more commonly studied in 
the central nervous system of vertebrates [76], which 
implies that SLCs may also function in the ovary. Zinc 
is necessary for meiosis in zebrafish and mammals [77, 
78], and the zinc transport protein slc30 gene family was 
found to be expressed in oocytes and in cumulus cells 
during maturation in mice (Mus musculus) [79], which 
may be a proper explanation that slc30a9 showed up-
regulated in early oocyte maturation for zinc transport. 
In a study on striped bass (Morone saxatilis), SLC fam-
ily members were significantly enriched in the ovarian 
transcriptome, consistent with the results of the present 
study on black rockfish [80].

Conclusions
The present study is the first to provide transcriptomic 
information on gonadal development in the ovovivipa-
rous black rockfish. Several important candidate path-
ways and genes in both testis and ovarian development 
have been identified. Among these pathways and genes, 
the categories intercellular interaction and cytoskeleton, 
molecule amplification and repair in the cell cycle were 
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found to be crucial in testis development and spermato-
genesis along with a series of metabolite biosynthesis. 
Some key genes in ovarian development, such as mmp19 
and neuropeptide receptor gene vipr, the expression 
of which is important for follicle maturation and rup-
ture, and the membrane transporter families slc6 and 
slc30, were identified. These data provide comprehensive 
insight into black rockfish gonadal development and pro-
vide a basis for further study of reproductive physiology 
and molecular biology in ovoviviparity teleosts.

Materials and methods
Ethics statement
All animal experiments were reviewed and approved 
by the Institutional Animal Care and Use Committee 
of Ocean University of China. The protocol for animal 
care and handling used in this study was approved by 
the Committee on the Ethics of Animal Experiments of 
Ocean University of China (Permit Number: 20,141,201) 
prior to the initiation of the study. The studies did not 
involve endangered or protected species. All experiments 
were performed in accordance with the relevant guide-
lines and regulations. Briefly, individuals were anesthe-
tized with ethyl 3-aminobenzoate methanesulfonic acid 
(MS-222, 0.2 g/L) and sacrificed by decapitation quickly 
with scissors cutting the spinal column to minimize suf-
fering of the animals.

Sample collection
In total, 27 adult male and 27 adult female black rockfish 
cultured in the northern Yellow Sea were obtained from 
October to March of the next year. 9 individuals were 
sampled for each developmental stage in all 3 develop-
mental stages in both sexes. The fish were acclimatized at 
a density of 10 individuals per tank (diameter 1 m, height 
1.5  m) under laboratory conditions for 2 days without 
feeding. After acclimation, body weight (including head) 
and gonad weight of each individual were measured to 
calculate the GSI. To ensure the status of gonad develop-
ment of each fish were in the same stage, gonad of each 
individual was sampled and divided into 3 parts: (a) parts 
of gonad were fixed in Bouin’s solution for further his-
tological analysis; (b) parts of gonad were immediately 
frozen in liquid nitrogen and stored at -80℃ for RNA iso-
lation and transcriptome analysis; (c) parts of gonad were 
also frozen in liquid nitrogen and stored at -80℃ for fur-
ther hormone concentration measurements.

Histological analysis and RNA isolation
Part of the testes and ovaries obtained at different devel-
opmental stages were fixed in Bouin’s solution, dehy-
drated and embedded in paraffin. Tissue sections were 
cut into 6 μm by a microtome (Leica, Wetzler, Germany) 

and stained with hematoxylin-eosin. All photomicro-
graphs were taken using an Olympus brightfield light 
microscope (Olympus, Tokyo, Japan). Other parts of the 
same gonad were frozen in liquid nitrogen for isolation 
of total RNA with TRIzol reagent (Invitrogen, USA). The 
quality and concentration of the total RNA were assessed 
by agarose gel electrophoresis and analysis on an Agilent 
2100 Bioanalyzer system (Agilent Technologies, USA), 
respectively.

Library construction and transcriptome sequencing
To mask the difference among sample replicates, equal 
amounts of total RNA from 3 individual ovaries or testes 
at the same developmental stage were pooled. Eighteen 
sequencing libraries were generated using the NEBNext® 
Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) 
according to the manufacturer’s instructions, and index 
codes were added to attribute sequences to each sample. 
The samples were sequenced on an Illumina HiSeq X Ten 
platform, and 150-bp paired-end reads were generated. 
The raw sequences have been deposited in the Short Read 
Archive of the National Center for Biotechnology Infor-
mation (NCBI) with accession number of PRJNA573572.

De novo assembly and annotation of sequencing reads
De novo assembly was performed on clean gonadal reads 
using the Trinity assembly software suite [81] without a 
reference genome. Transcripts (both contigs and single-
tons) were annotated by BLASTx searches [82] using the 
NCBI non-redundant (Nr), NCBI nucleotide sequences 
(Nt) and Swiss-Prot databases with a cutoff “e-value” of 
<1e-5. Domain-based comparisons with Protein fam-
ily (Pfam) and KOG (a eukaryote-specific version of the 
Clusters of Eukaryotic Ortholog Groups) databases were 
performed by RPS-BLAST tool from locally installed 
NCBI BLAST + v2.2.28 and the HMMER 3.0 program, 
respectively. Annotated transcripts were analyzed to GO 
classification with the aid of the Blast2Go program [83]. 
These gene terms were then enriched on the three GO 
categories (Biological Process, Cellular Component and 
Molecular Function at level 2) using the GOseq R pack-
age [84]. KEGG (a database of biological systems) maps 
were retrieved using the online KEGG Automatic Anno-
tation Server for the overview of metabolic pathway anal-
ysis [85, 86].

Differential gene expression analysis
The reads obtained from each library were mapped to the 
de novo assembled transcripts using the bowtie 2 pro-
gram for mismatch checking [87]. The count numbers 
of mapped reads and FPKM (expected number of frag-
ments per kilobase of transcript sequence per million 
base pairs sequenced) were obtained and normalized 
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by RSEM V1.2.15 [88]. Statistical analysis of differential 
gene expression in gonads at different developmental 
stages was conducted using the DEGSeq R package [89] 
with a cutoff “q value” of 0.01 and |log2(fold change)|>2. 
Transcripts with absolute fold change values greater than 
2.0 were marked as significantly differentially expressed 
genes.

Experimental validation by quantitative real‑time PCR
To validate our Illumina sequencing data, analysis of 
the expression of 10 selected DEGs was performed by 
quantitative real-time PCR (qPCR) using specific prim-
ers. The primers used are described in Additional file 5. 
Samples were generated from F_III, F_IV, and F_V ova-
ries and from M_III, M_IV, and M_V testes. After RNA 
extraction and reverse transcription, all cDNA products 
were diluted to 500 ng/µL. The 20 µL qPCR reaction mix-
ture consisted of 2 µL of cDNA template, 0.4 µL of each 
primer, 10 µL of KAPA SYBR®FAST qPCR Master Mix 
(2X), 0.4 µL of ROX and 6.8 µL of RNase-free water. PCR 
amplification was performed by incubation in a 96-well 
optical plate at 95  °C for 30  s followed by 40 cycles of 
95 °C for 5 s, 58 °C for 30 s and a final extension at 72 °C 
for 2 min. qPCR was performed using the StepOne Plus 
Real-Time PCR System (Applied Biosystems), and the  2−
ΔΔCT method was used to analyze the expression level of 
genes.

Measurement of hormone concentrations
Tissue homogenates were prepared from the gonads of 
individual fish (n=4) at different developmental stages. 
The tissues were ground in 0.9 % saline solution (W/
V=1:9), followed by centrifugated at 3,000  rpm for 
15 min at 4  °C, and then, the supernatant was stored at 
-80℃ for subsequent measurement. The 17β-estradiol 
 (E2) and testosterone (T) levels of each individual were 
tested by iodine  [125I] radioimmunoassay (RIA) kits 
(Beijing North, China) according to the manufacturer’s 
instructions. The binding rate is highly specific with low 
cross-reactivity to other steroids, which was less than 
0.1 % for most circulating steroids.

Statistical analysis
All data are presented as the mean values ± S.E.M. Gene 
expression and hormone concentrations were analyzed 
using one-way ANOVA followed by Duncan’s and Dun-
nett’s T3 multiple range tests. p<0.05 were considered 
significant. All statistical analyses were performed using 
SPSS 19.0 software (SPSS, Chicago, IL, USA).
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