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Abstract 

Background: Overlapping genes (OLGs) with long protein-coding overlapping sequences are disallowed by 
standard genome annotation programs, outside of viruses. Recently however they have been discovered in Archaea, 
diverse Bacteria, and Mammals. The biological factors underlying life’s ability to create overlapping genes require 
more study, and may have important applications in understanding evolution and in biotechnology. A previous study 
claimed that protein domains from viruses were much better suited to forming overlaps than those from other cel-
lular organisms - in this study we assessed this claim, in order to discover what might underlie taxonomic differences 
in the creation of gene overlaps.

Results: After overlapping arbitrary Pfam domain pairs and evaluating them with Hidden Markov Models we 
find OLG construction to be much less constrained than expected. For instance, close to 10% of the constructed 
sequences cannot be distinguished from typical sequences in their protein family. Most are also indistinguishable 
from natural protein sequences regarding identity and secondary structure. Surprisingly, contrary to a previous study, 
virus domains were much less suitable for designing OLGs than bacterial or eukaryotic domains were. In general, the 
amount of amino acid change required to force a domain to overlap is approximately equal to the variation observed 
within a typical domain family. The resulting high similarity between natural sequences and those altered so as to 
overlap is mostly due to the combination of high redundancy in the genetic code and the evolutionary exchangeabil-
ity of many amino acids.

Conclusions: Synthetic overlapping genes which closely resemble natural gene sequences, as measured by HMM 
profiles, are remarkably easy to construct, and most arbitrary domain pairs can be altered so as to overlap while retain-
ing high similarity to the original sequences. Future work however will need to assess important factors not consid-
ered such as intragenic interactions which affect protein folding. While the analysis here is not sufficient to guarantee 
functional folding proteins, further analysis of constructed OLGs will improve our understanding of the origin of these 
remarkable genetic elements across life and opens up exciting possibilities for synthetic biology.
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Background
The triplet nature of the standard genetic code and 
double-stranded configuration of DNA together entail 
that six amino acid sequences are conceptually encoded 
within any nucleotide sequence, in different reading 

frames. Redundancy in the code mapping, whereby 64 
nucleotide triplets encode just 20 amino acids, allows 
flexibility in what nucleotides are used for an amino acid 
sequence and consequently some freedom in the alter-
native frame sequences. The phenomenon of alterna-
tive frame coding has long been known to be utilised in 
viruses, with more than one amino acid sequence actu-
ally expressed from some loci [1, 2]. Unexpectedly how-
ever there is increasing evidence for overlapping coding 
in single-celled and multicellular organisms, for instance 
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recent discoveries of fully embedded protein-coding 
genes encoded in alternate reading frames of known 
genes in Archaea [3], Bacteria [4–6] and even in mam-
mals, including humans [7, 8]. Despite increasing evi-
dence for their abundance, they are still generally not 
considered a significant phenomenon outside of viruses, 
due perhaps to perceived difficulties in their evolu-
tion for some or all reading frames [9, 10]. The idea that 
they are widespread has long been theorized however 
[10, 11]. Most gene prediction algorithms still exclude 
non-trivially overlapping genes [12], especially outside 
of bacteriophages and other viruses. The NCBI rules for 
annotation of prokaryotic genes do not allow genes com-
pletely embedded in another gene in a different frame 
without individual justification [13]. Even in viruses, rela-
tively few fully embedded overlapping genes have been 
annotated, although more have recently been discovered, 
including in the pandemic viruses HIV and SARS-CoV-2 
[2, 14, 15]. This ubiquity of overlapping coding has poten-
tial applications in biotechnology but is not well under-
stood, and the contributions of fundamental biological 
factors such as the genetic code require further research.

Why do overlapping genes exist? While a mutation 
in a stop codon can easily create a short, trivial overlap 
in downstream neighbouring genes as a chance event, 
longer, non-trivial overlaps are only expected to be 
maintained over the long term if the overlapping region 
encodes a functional part of both proteins. There are 
a few hypothesised advantages to gene overlap, and the 
evidence for functional antisense overlaps and other 
alternative translation initiation sites in prokaryotes 
has been discussed in recent reviews [16, 17]. A selec-
tive advantage for long gene overlaps via the benefits of 
genome reduction has been proposed in viral genomes 
[18], but more recent evidence suggests that the genome 
reduction hypothesis has limited explanatory power [19]. 
Effects on gene regulation [20], in contrast, could be rel-
evant across taxonomic domains. For instance, two genes 
in a same-strand overlapping gene (OLG) pair could per-
haps be efficiently co-expressed if encoded within the 
same mRNA. Genes within an antisense overlapping 
pair could also influence each other, in a way similar to 
what has recently been termed a “noncontiguous operon” 
where non-overlapping genes encoded in antisense 
to each other were observed to be co-expressed as an 
operon [21]. A less direct proposed benefit of overlapping 
genes concerns gene origin - ORFs (open reading frames) 
overlapping existing genes may become translated and 
give rise to new genes [22, 23]. One aspect of this is that 
sometimes protein structure of new genes arising from 
overlapping ORFs may be partially templated from the 
existing ‘mother gene’. For genes encoded directly in anti-
sense (“-1 frame”) there is a tendency for the creation of 

proteins with a complementary polarity structure to the 
gene on the antisense strand [24–26]; while in the case 
of same strand, or sense-sense overlaps a similar hydro-
phobicity profile between unshifted and shifted frames 
has been observed [27, 28]. In general, overlapping open 
reading frames may play an important role in the origin 
of de novo genes, exploring new territory in the total 
space of sequences and functions [23, 27, 29–32]. While 
most currently extant OLGs in viruses are not taxonomi-
cally conserved and therefore appear to be evolutionarily 
young [33], one claimed example of an ancient OLG pair 
in cellular organisms is comprised of the two classes of 
aminoacyl-tRNA synthetases which can be encoded in an 
overlapping manner [34–38]. An ancient pairing between 
NAD-glutamate dehydrogenase and a heat shock protein 
70 has also been proposed [39, 40], but has been a topic 
of controversy [41].

A previous study by Opuu, Silvert, and Simonson [42] 
quantified the difficulty of constructing OLGs by picking 
random pairs of protein domains and rewriting them so 
as to overlap, with an algorithm minimizing the amino 
acid changes in each domain. This was a new approach, 
as prior studies had tried to create overlaps without 
changing the amino acid sequence of the two genes, 
which resulted in either a very limited overlap length [43] 
or could only be done for very specific genes [44]. They 
found that, remarkably, 16% of 125,250 arbitrary protein 
domain pairs were able to successfully overlap in at least 
one of the 3 reading frames they investigated, and one 
of two positions tested. Virus domains were much more 
likely to create putatively functional overlaps than were 
domains from prokaryotes or eukaryotes, as determined 
by BLAST searches of the SWISS-PROT database. This 
result suggests that creating overlaps is not as difficult 
as might be expected, implying that an abnormally high 
threshold of evidence as compared to other gene types 
should not be required in order to verify their existence. 
In our study the algorithm provided in [42] is improved 
in the evaluation of the constructed sequences as the pre-
vious analysis had some weaknesses resulting in incorrect 
claims. Determining whether an artificial sequence has a 
specific function based on its amino acid sequence only 
is a very hard problem and not possible today. Remark-
able progress is being made in predicting the protein 
structure from amino acid sequence [45–47], but pro-
tein structure does not determine function as essential 
binding sites can be rendered useless if the amino acid is 
changed even when the overall protein structure remains 
the same. Ultimately only laboratory experiments can 
definitively determine the function of a given amino acid 
sequence. In order to aid the design of expensive experi-
mental setups however, it can at least be determined 
bioinformatically how similar an artificial sequence is to 
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sequences with known functions. In this study the arti-
ficially designed sequences are compared to their origi-
nal sequences in terms of amino acid identity, amino acid 
similarity, Hidden Markov Model profile and secondary 
structure in order to determine the impact of OLG con-
struction and which sequences are potentially functional. 
We note that another recent study [48], independently 
made similar advances to this study in the use of a HMM 
algorithm for assessing the quality of designed overlaps, 
but also added a more sophisticated step which takes into 
account intra-protein interactions. While the study was 
multifaceted, Blazejewski et  al. did not make compari-
sons across taxonomic groups or genetic codes, or rigor-
ously assess success rates as we have done here.

In our study, we fully overlap arbitrary pairs of natural 
domains from the Pfam database, at random positions, 
re-implementing the algorithm of Opuu et  al. [42] and 
expanding it to all alternative reading frames. A Hidden 
Markov Model approach rather than BLAST is used to 
assess the quality of designed OLGs. Also, while an esti-
mate for an upper limit on how many domains can be 
successfully overlapped in at least one reading frame and 
position was previously made [42], here the average suc-
cess rate for OLG construction is determined instead. 
This is more relevant for understanding constraints on 
the formation rate of naturally occurring OLGs and in 
assessing the probability of successful synthetic crea-
tion of OLGs. Our results in one sense give an upper 
estimate of the ease of creating overlaps as the difficulty 
of obtaining an overlapping gene pair naturally is not 
directly addressed here. On the other hand, overlapping 

functional domains directly is a “worst case scenario” 
as there is some evidence that the critical functional 
domains of one protein in an OLG pair tend to overlap 
less constrained regions or residues of the other protein 
[49, 50], and this segregation is also intuitively plausible. 
However, a major limitation of the approach used here 
(in common with the previous study on which the analy-
sis is based - [42]) is that HMM profile methods do not 
take into account crucial interactions within a protein. 
As such, whenever “success” is used in this study with 
regards to a constructed overlap it cannot be taken to 
entail biological functionality, but rather just entails hav-
ing met an important first step in constructing protein-
like sequences.

In order to estimate the difficulty of achieving over-
printing naturally, the minimal number of nucleotide 
changes needed to create the OLG sequence is deter-
mined. Whether functional domains do in fact overlap 
in nature, however, deserves further attention. Because 
we expand the analysis of Opuu et al. [42] from the read-
ing frames ‘+2’,’-1’ and ‘-3’ to all reading frames (see 
Fig. 1 for reading frame definitions), we are able to relate 
the observed differences between reading frames to the 
structure of the standard genetic code. Potential optimi-
sation of the standard code for OLGs can be studied by 
constructing OLGs using randomly generated genetic 
codes. Using the improved evaluation of the designed 
OLGs we study the impact on properties of constructed 
domains in terms of amino acid identity, similarity, and 
protein secondary structure. We also investigate the 
evolutionary accessibility of the constructed domains in 

Fig. 1 Illustration of the alternative reading frames. The ‘+1’ frame is the standard or reference reading frame and ‘+2’/’+3’ the sense overlaps, while 
frames ‘-1’ to ’-3’ are on the anti-sense strand. Figure from Wichmann and Ardern (2019) [51]
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terms of total sequence change required, and what influ-
ence filtering to proteins restricted to particular taxo-
nomic groups (domains) has on the results.

Results
Previous dataset‑database biases and length‑dependence
In the previous study [42], constructed sequences were 
evaluated with a BLAST search against the SWISS-
PROT database. If both overlapping sequences had a 
match to the best hit with at most an e-value of 10^(-10) 
and a match length of 85%, the overlap was considered 
successful. However, the initial sequences were picked 
from the Pfam seed database and it can be shown that 
most of the chosen sequences are not well represented 
in the SWISS-PROT database (see left panel in Fig.  2), 
with the exception of virus genes. In a search against the 
SWISS-PROT database, identities of over 80% were only 
found for 15% of the non virus genes, while 70% of the 
virus genes could be found in this category. A curated set 
in which all sequences have a 100% match in the SWISS-
PROT database but otherwise the same properties has a 
remarkable 95% success rate for overlaps and the virus 
vs. non-virus difference vanishes (see right panel in 
Fig.  2). The advantage reported for virus genes is thus 
fully explained by dataset-database biases. In either case 
however, the extremely high overall success rate obtained 
should be investigated. Either creating overlaps is indeed 

unexpectedly easy or the evaluation of functionality used 
in [42] is not conservative enough. It can be shown that 
both factors appear to contribute to the surprising result.

Another difficulty with the previously published 
approach is that expectation values, e-values, are 
expected to be length-dependent. For instance, when 
introducing the minimal number of changes required 
for two random sequences to fully overlap each other, 
a similar percentage of each sequence is expected to 
change. As a longer sequence with the same similar-
ity has a lower probability of being found by chance in a 
database of a given size, in such a case the e-values of the 
constructed sequences would be strongly dependent on 
the length of the input sequences. Such a length-depend-
ence can be found in the BLAST evaluation (Supplemen-
tary Fig. S1). A fixed e-value cutoff cannot adequately 
evaluate sequences in such a situation as the cutoff value 
fully determines the result and is chosen arbitrarily. 
The sequences used in Opuu et al. [42] have a length of 
70-100 amino acids, and the observed high success rate 
for the curated set can be explained by a combination of 
the sequence length and the choice of the cutoff value.

Advantages of using Hidden Markov Models over BLAST
In order to find a reasonable alternative to the fixed 
e-value cutoff for construction success, a relative 
threshold is calculated through comparison to a set of 

Fig. 2 Left: Proportions of the dataset used in Opuu et al. with different match identities in SWISS-PROT - virus genes from this dataset have a 
higher average identity to a SWISS-PROT entry than non-virus genes. Right: Percentage of functional OLGs for the original dataset from Opuu et al. 
and the average of 10 curated datasets grouped into virus and non virus genes. In curated datasets all original sequences have an exact match 
in SWISS-PROT. Each curated dataset has 100 sequences with 70-100 amino acids. The virus versus non-virus difference observed in the previous 
study’s dataset vanishes for the curated datasets



Page 5 of 17Wichmann et al. BMC Genomics          (2021) 22:888  

homologues of the original sequence, obtained from the 
Pfam database [52], which is divided into curated sets 
of “seed” sequences which are the basis of each domain 
family, and the full database which is clustered accord-
ing to similarity to the seed sequences. In our approach, 
a constructed sequence is subsequently judged successful 
if its score against the HMM profile is higher than a cer-
tain percentile of the ‘full’ sequences in the appropriate 
family, thereby creating a threshold value which is indi-
vidual for each protein family and mostly independent 
of the length of the domains (see Methods). When judg-
ing the success of a constructed sequence, two particular 
percentile values are referred to in relation to the natural 
sequences in the Pfam domain family. Firstly, the 50th 
percentile (median), is used to mark the score of a typi-
cal sequence in the protein family. Sequences meeting 
this threshold can not be distinguished from the natu-
rally occurring protein domains with HMM profiles and 
they will be categorized as typical proteins. Secondly, 
since all of the homologues used are naturally occurring 
sequences, scoring at least as highly as any one of these 
sequences renders a sequence what we term “biologically 
relevant”. In order to avoid extreme outliers which may be 
misclassified however, the score of the 5th percentile of a 
domain family is conservatively used as the biologically 
relevant threshold for that family.

The construction algorithm previously used takes the 
conservation of each position in the protein domains 
into account in order to find an optimal OLG pair. 

Introducing these positional weights results in a lower 
success rate in the subsequent BLAST evaluation for 
OLG quality or success, since BLAST compares whole 
sequences pairwise and does not take the conservation of 
different positions into account. Using HMMs for assess-
ment on the other hand results in an increased success 
rate when introducing positional weights. Here we also 
optimise the strength of these positional weights (see 
methods).

Retaining amino acid sequence similarity
Retention of amino acid sequence identity is another 
- albeit minimal - indicator of functionality. It has been 
argued that a 34% amino acid identity between naturally 
occurring sequences ensures that both sequences have 
the same structure [53]. Comparing the altered part due 
to OLG construction with the original sequence, in 96.5% 
of cases both OLG sequences share at least 34% of amino 
acids with their original sequence. In some OLG pairs 
both sequences have an amino acid identity of up to 60% 
compared to their original sequence. In the arguably bio-
logically more relevant property of amino acid ‘similarity’, 
the worst-scoring of the two OLGs can be even up to 80% 
similar to its respective original sequence (cf. left panel of 
Fig. 3).

One quantitative impact of OLG design can be meas-
ured via the average amino acid identity and similarity 
between the two OLG sequences. The average amino 
acid identity is 60% in most cases (right panel of Fig. 3); 

Fig. 3 Probability density for different amino acid identities and similarities in constructed OLG pairs. The data is calculated from 505,000 OLG pairs. 
Left: The sequence with the lower identity is representative of the pair. The black line indicates the 34% amino acid identity threshold. Right: The 
mean similarity of both OLG sequences represents the pair
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in almost all OLG pairs one sequence is above and one is 
below 60% amino acid identity. The average amino acid 
similarity is 75% in most cases (right panel of Fig.  3) - 
again in almost all cases one of the two OLG sequences 
is above and one below 75% identity. The double peak 
structure of both panels in Fig.  3 can be explained by 
differences for OLG pairs in different relative reading 
frames, which are pooled here (cf. Supplementary Fig. 
S2). It follows that for an average designed OLG pair, it 
can be estimated that in 20% of all overlap positions the 
amino acids of both sequences are maintained, in 30% 
one sequence maintains its amino acid while the amino 
acid in the other sequence is changed to a similar one 
and in 50% one sequence maintains its amino acid and 
the other sequence cannot maintain a similar amino 
acid. Precisely how well the two sequences can be main-
tained after designed overlap is determined by the stand-
ard genetic code, the two specific sequences, the overlap 
position, their amino acid composition and the amino 
acid order. While the standard genetic code is a constant 
factor across all overlaps, all other factors are specific 
in each case and create the observed variability in the 
results.

The impact of OLG construction on secondary struc-
ture is the last factor studied here. Comparing the pre-
dicted secondary structure of the OLG sequence with 
that of the natural non-overlapped sequence, a second-
ary structure similarity score is determined. Secondary 
structure is predicted using Porter 5 [54] with the “--fast” 
flag. This program can distinguish between the eight 

different secondary structure motifs of the dictionary of 
protein secondary structure (DPSS) [55–57], which are 
3_10-, alpha-, and phi- helices, hydrogen bonded turns, 
beta sheets, beta bridges, bends and coils. Determining 
the same secondary structure similarity for all sequences 
in the seed group of the Pfam database yields a control 
group. This way the typical deviations between domains 
with the same function can be determined. Comparing 
probability densities for different secondary structure 
identities in both groups it can be seen that the con-
structed OLG sequences barely deviate from the seed 
sequences (cf. Figure 4). In conclusion, in regards to sec-
ondary structure the change inflicted on a sequence to 
create OLGs is no more than the differences within natu-
rally occurring protein domain families.

It is noteworthy that only amino acid identity and simi-
larity have a strong correlation (r=0.82) so combined 
with the other parameters, namely the relative HMM 
score (see methods) and the secondary structure identity, 
there is a set of three more or less independent proper-
ties for evaluating constructed OLGs, and probably for 
protein homologues in general. The relative HMM score 
is the HMM score of the OLG sequence divided by the 
HMM score of a sequence at any threshold percentile 
as discussed above in the section on the advantages of 
HMMs. Between each pair of parameters the Pearson’s 
correlation is below 0.2, with the exception of the cor-
relation between secondary structure identity and HMM 
score which has r=0.37 or r=0.39 for thresholds of 95% 
or 100% respectively.

Fig. 4 Probability densities for different secondary structure identities for OLGs and seed sequences calculated from a dataset of 50 sequences 
consisting of at least 70 amino acids. OLGs are as similar to their original sequences in secondary structure as observed for comparisons of seed 
sequences of naturally occurring protein domains to the sequence best representing the respective domain family
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Construction success rates and reading frame
The proportion of potential overlap positions where 
successful overlap is achieved differs across genes. The 
distribution of the percentage of successful positions in 
each OLG pair was calculated from up to 50 different 
positions across all possible pairings of 150 domains (see 
Fig. 5). 50.3% of all OLG pairs form biologically relevant 
sequences (with the worst-scoring sequence of the pair 
scoring at least as highly as the lower 5% of the original 
sequence’s domain family) at all positions in every read-
ing frame while only 2.5% cannot form a biologically rel-
evant sequence at any position (see Fig.  5). 1.9% of the 
pairs even form typical proteins, as determined by the 
50th percentile threshold, at every position in any read-
ing frame (see right panel in Fig. 5). This result is strongly 
dependent on the threshold percentile chosen, but due to 
the wide range of possible results it can still be concluded 
that the chance of success of a constructed OLG pair 
depends strongly on the particular genes used, as might 
be expected.

The five alternative reading frames differ strongly in 
the combinatorial constraints imposed by the reference 
gene (mother gene) via the standard genetic code [9], 
e.g. the sequence N|GCN|, with N being any nucleo-
tide, always translates to alanine in both the +1 and the 
-2 frames. We investigate whether this difference in con-
straint transfers to the success rate for designing OLGs. 
For OLGs resembling typical proteins of their respective 

families, the success rates for OLG construction by our 
analysis varies from 14.9% in the ‘-3’ frame to 3.0% in the 
‘-2’ frame with an average value of 9.6% across all reading 
frames (see Fig. 6). Calculating the e-value just as in the 
earlier study [42] as a reference, the constructed OLGs 
have a median e-value of 10^-(28) to 10^(-37), decreas-
ing with stricter homolog family percentile. The result is 
strongly threshold (homolog family percentile) depend-
ent as 94.5% of the constructed sequences score at least 
as highly as the worst sequence in the full group, while 
only 0.02% score better than 95% of the full group. Con-
sidering combinatorial restrictions of different reading 
frames, the rankings of frames by success rate are exactly 
as expected, insofar as the success rate of each reading 
frame is inversely proportional to the extent of combina-
torial restrictions calculated in Lèbre and Gascuel [9] (see 
Fig. 6): the ‘-2’ frame is the least successful reading frame 
and has the highest restrictions, followed by the ‘-1’ 
frame, which is the second most restricted frame. Next 
are reading frames ‘+2’ and ‘+3’, which have exactly the 
same restrictions and surprisingly almost the same suc-
cess rates, not only in their average value but also in every 
single dataset (data not shown), despite expected stochas-
tic fluctuations due to some genes simply fitting better to 
each other. Last is the ‘-3’ frame, which has no combina-
torial restrictions and the highest success rate. Plotting 
the different success rates in the different reading frames 
as a function of the calculated number of combinatorial 

Fig. 5 Frequency of successful overlap positions in OLGs. 150 randomly chosen domains with a minimum length of 70 amino acids are used as 
a basis, resulting in 11,325 OLG pairs. In each OLG pair 30 sets of up to 50 random positions were tested against the Pfam group HMMs using the 
‘biologically relevant’ threshold (5th percentile) and the ‘typical sequence’ threshold (50th percentile) for a successful overlap. While 50.3% of the 
pairs can be overlapped at any position and 2.5% in no position using the biological threshold only 1.9% can be overlapped at any position and 
66.7% in no position using the threshold of typical sequences. The sequence threshold strongly influences the result
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constraints [9], results in a linear relation for the lowest 
possible threshold, namely that all sequences which are 
at least as good as the worst in the comparison group are 
judged successful. As the threshold is increased the linear 
relation is gradually lost (see supplementary Fig. S3). For 
higher thresholds most of the sequences are below the 
threshold and very little data is left, which might lead to 
the observed behaviour. In summary, the structure of the 
standard genetic code appears to strongly influence the 
construction of OLGs. Whether the observed relation-
ship between predicted constraints in different frames 
and the difficulty of constructing OLGs is borne out by 
the proportion of natural OLGs found across frames 
deserves attention across diverse taxa.

Taxonomic differences
Besides the four basic taxonomic groups (three domains 
of cellular life: archaea, bacteria, eukaryotes, plus viruses) 
also ancient genes can be studied by picking only fami-
lies which have at least one sequence in all four taxo-
nomic groups since it is expect that these families have 
already been present in LUCA or another ancient ances-
tor (although this high level categorisation is not perfect 
due to widespread horizontal gene transfer). Surpris-
ingly, bacterial and eukaryotic genes are generally sig-
nificantly better suited to OLG construction than virus 
and archaeal genes with only minimal dependence on 
the threshold percentile, cf. Fig. S4. The largest depend-
ence on the threshold percentile is found for the “Found 

in All” genes, of which only a total of 50 sequences can be 
found in the Pfam database, so higher stochastic fluctua-
tions are to be expected. Using the ‘biologically relevant’ 
threshold, the biggest difference is between eukaryotic 
and archaeal genes which have a 20% difference in their 
success rate (see left panel of Fig.  7). For OLGs which 
are typical proteins of their respective family, eukaryotic 
genes are almost twice as likely to be successful as virus 
genes (see right panel of Fig. 7).

Eukaryotes and “Found in All” genes are typically 
the easiest to overlap, which is somewhat unexpected 
as domain families restricted to eukaryotes might be 
expected to typically be younger, and so to appear less 
‘flexible’ due to having sampled less of the functional 
sequence space through mutations. More understandable 
however is that due to being closer to mutational satu-
ration (if more ancient on average) and therefore hav-
ing explored a larger proportion of functional sequence 
space, “Found in All” genes might appear more ‘flexible’, 
resulting in lower weights and thresholds.

Evolutionary distance of constructed OLGs to biological 
sequences
In order to estimate the difficulty of naturally forming 
OLG sequences, the minimum number of nucleotide 
changes needed in order to reach the OLG sequence 
from any of the two original sequences is determined (see 
Fig.  8). By only taking OLGs in which both sequences 
are above a certain HMM threshold, extreme outliers 

Fig. 6 Success rates for OLG design in different reading frames as a function of threshold percentile. Each value is an average from 20 different 
datasets of 150 sequences with at least 70 amino acids and the error bars are equal to the standard deviation. The threshold chosen within the Pfam 
group has a very strong influence on success rates. The ordering of the reading frames by success rates, namely ‘-3’, ’+2’/’+3’, ‘-1’ and ‘-2’, matches the 
ordering by combinatorial restrictions in the standard genetic code, beginning with the least restricted frame



Page 9 of 17Wichmann et al. BMC Genomics          (2021) 22:888  

are gradually removed with increasing threshold but the 
rest of the distribution stays the same. This indicates that 
this property is independent of the threshold value, just 
as for the amino acid identity and similarity, as fewer 

and fewer designed OLGs pass a higher threshold which 
makes extreme outliers less likely to occur. On average a 
designed OLG sequence has a 25% difference in nucleo-
tides to its original, with half of constructed sequences in 

Fig. 7 Average success rates in different taxonomic groups calculated from 20 datasets with 150 domains consisting of at least 70 amino acids 
each; the black lines indicate the standard deviation. The ordering of ‘biologically relevant’ genes (threshold percentile 5%, left) is mostly identical to 
‘typical’ genes (threshold percentile 50%, right). Sequences from Bacteria and Eukaryota sequences outperform Viruses and Archaea

Fig. 8 Percentage nucleotide change of OLGs as a function of HMM threshold %. The minimal nucleotide distance of each of 1,010,000 OLG 
sequences (two per pair), with a minimal length of 210 nucleotides, to their respective original sequence is determined
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the range of 20-30% change. Most interesting are outli-
ers on the lower end of the distribution as they indicate 
whether OLGs exist that are potentially reachable by 
naturally occurring mutations. The lowest nucleotide dif-
ference observed is 1.8%, which was for an OLG pair that 
scores better than 25% of the domains in the comparison 
group. 0.6% of OLGs required less than 10% nucleotide 
change, i.e. 5843 sequences of the 955,846 sequences cre-
ated in this dataset that scored at least as highly as the 
worst sequence in the comparison group. This suggests 
intuitively that creating overlaps of the sort constructed 
here could be possible naturally through accumulation 
of random mutations. The population genetics of such a 
hypothetical process is a potential topic for further study, 
as is an experimental evaluation of functionality.

Influence of the genetic code and code optimality
By comparing OLG sequences constructed with the 
standard genetic code (SGC) to sequences constructed 
with artificial codes the level of optimality of the SGC 
can be inferred. Since such an approach depends strongly 
on the codeset used [51], four different versions with 
increasing restrictions will be tested. There are two fac-
tors defining a genetic code, namely its amino acid com-
position and the arrangement of amino acids on the 64 
codons. The first code set is the random code set and 
does not constrict any of the two factors. Each code can 
have any of the 20 amino acids used in the SGC at any 
codon. The second set only restricts the composition of 
its codes and is called the degeneracy code set. All codes 
in this set contain the same amount of codons for each 
amino acid as in the SGC and thus conserving its amino 
acid composition. The third set is the blocks code set 
whose codes have a very similar structure to the SGC 
and while it also restricts the composition of the codes 
to some degree it mostly determines their arrangement. 
This code set is created by assigning all codons of the 
SGC that code for the same amino acid into blocks and 
shuffling the amino acids assigned to each block and 
thus conserves the degeneracy structure of the SGC on 
the third nucleotide. Lastly a code set that maintains the 
mutational robustness of the SGC as previously calcu-
lated [51] is tested. In short, the mutational robustness 
is the average change of amino acids due to point muta-
tions and has been shown to be extremely optimal in the 
SGC relative to similar codes [58]. This set contains block 
codes like in the second set but only the codes whose 
mutational robustness is at least as high as the SGC are 
kept. Since these codes are fundamentally block codes 
they are partly restricted in their amino acid composi-
tion, but the arrangement of amino acids in these codes is 
even more restricted as point mutations from any codons 
should result in similar amino acids. This code set reflects 

the fact that different properties of the SGC have a differ-
ent impact on the fitness or biological optimality of the 
SGC with the mutational robustness most likely being 
one of the most important features. Here this code set is 
called the mutational robustness blocks set (MR-blocks 
set) and it tests the optimality of constructing OLGs as an 
additional property of the SGC after taking into account 
the mutational robustness.

Comparing the degeneracy, the block and the MR-
blocks code set to the random set, the influence of code 
composition and arrangement can be determined (see 
left panel of Fig.  9). The degeneracy code set reflecting 
the composition of the SGC has the codes with the high-
est average success rates indicating that the composi-
tion of the SGC is a major factor for this property, but 
the SGC itself has a very low success rate in comparison, 
indicating that the amino acid arrangement is an even 
stronger - in this case negative - factor as the SGC is 
worse than both the random codes and the degeneracy 
codes. The block structure of the SGC has a strong nega-
tive impact on successful OLG design and the SGC is a 
typical member of this set. Enforcing even more struc-
ture on the artificial codes in order to maintain the muta-
tion robustness of the SGC further reduces the ability of 
the SGC to create successful OLGs.

Studying the optimalities of each of the four code sets 
for flexibility in OLG design, it is apparent that the more 
restricted the code set is, the more optimal the SGC is 
relative to the set (see right panel of Fig. 9). Especially in 
the MR-blocks code set only a few codes are better than 
the SGC, however no codeset or reading frame has fewer 
than 5% of codes doing better (see Supplementary Fig-
ures  S5-S8), which has been a recommended threshold 
for inferring optimality [59]. This is an expected result 
even if the code has been optimised for OLGs as the suc-
cess rate for constructing OLGs reflects merely the ‘flex-
ibility’ of a code system, but OLG sequences also need to 
be conserved, which is an almost directly opposing prop-
erty which also has not been found to be strongly opti-
mal by itself [51]; it might indeed be expected that overall 
optimality involves a trade-off between the two.

If the SGC has been optimized in this way this could 
indicate a turning point at which a further increase in 
mutational robustness results in a smaller fitness increase 
compared to an increase in the flexibility to create OLGs 
- how to measure fitness for a genetic code is however 
not clear. While the code composition of the SGC is 
beneficial for both the ability to create successful OLGs 
and the mutational robustness, the code arrangement of 
the SGC is only beneficial for mutational error robust-
ness (see Fig. 2 of Wichmann and Ardern [51]), indicat-
ing that, in an optimization framework, the mutational 
robustness is the more important property. Only in the 
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set of codes with the same mutational robustness does 
the optimality for OLG design become stronger, support-
ing the ‘turning point’ hypothesis.

Discussion
There are many different aspects of the synthetic con-
struction of OLG pairs which could be studied for use-
ful insight. Here factors including sequence length and 
the influence of sequence conservation are taken into 
account. The analysis shows that an evaluation with 
BLAST and a fixed e-value cutoff cannot accurately 
assess the potential functionality of the designed OLGs. 
While the combination of sequence length and an e-value 
cutoff completely determines the success rate of the con-
structed OLGs, adding in positional weights can only 
negatively influence the sequences constructed with this 
method. Both problems can be approached more fruit-
fully however by instead using HMM profiles to deter-
mine sequence similarity and then using these to define 
a threshold for successful OLGs derived from sequences 
in the same protein family. In addition, further optimi-
zation of the construction algorithm can be achieved by 
determining the optimal weight strength (influence of 
sequence conservation), which we found to be k=0.5. 
The HMM profiles and the thresholds are however both 
derived from the Pfam database [52], which makes these 
results strongly dependent on the database quality. For 

example, if in one taxonomic group sequences are very 
similar due to being mostly from the same species or 
genus, thresholds would appear to be higher and it would 
be harder for designed OLGs to pass these thresholds. 
More fundamentally, the underlying alignment processes 
used to create the database are imperfect, and more pre-
cise approaches such as including structural information 
during alignment [36] would improve accuracy - with 
the recent expansion of in silico structural determination 
[46], many opportunities for improved studies of pro-
tein families will be possible. Taking into account intra-
protein interactions, as has been done in an impressive 
recent study of synthetic OLG construction [48], will 
also be important in future, as HMM methods treat each 
position in the alignment as independent.

We find that 94.5% of the constructed OLG sequences 
score at least as highly as the worst-scoring biological 
sequences in Pfam groups - i.e. the vast majority of con-
structed sequences would fit into the Pfam group of the 
natural sequence. Further, 9.6% of the sequences cannot 
be distinguished from naturally occurring domains in 
their respective protein family, in that they score better 
than 50% of family members. This gives the intriguing 
result that the typical variation inside protein families 
is of the same order of magnitude as the change needed 
in order to construct artificial OLGs by arbitrary pair-
ing of protein domains. This result also holds true for 

Fig. 9 OLG design success rates for different alternative code sets. The average is calculated from 20 sets of 100 alternative codes, except for the 
MR-blocks set with 10 sets of 500 codes. The error bars indicate the standard deviation. Left: The average success rates compared to the SGC. While 
the composition of the SGC is a positive factor, the arrangement of the SGC is a negative factor. Right: The optimality of different code sets. The 
black line indicates the 5% threshold. The more restricted the code set the more optimal the SGC appears indicating that the ability to successfully 
create OLGs can only be seen as optimized in the SGC if other properties are maintained
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other bioinformatic factors like amino acid identity and 
secondary structure, since the constructed OLGs are 
typically very similar to naturally occurring domains 
in these properties. Studying artificial OLG design suc-
cess from the perspective of an even more constrain-
ing biological parameter like tertiary structure would 
be an important next step, and has been implemented 
to some extent in a recent study [48]. Fully taking 
into account effects on tertiary structure is complex, 
as besides the amino acid sequence, codon usage can 
also impact protein structure [60], along with environ-
mental factors such as the presence of chaperone pro-
teins. Ultimately, proof of the functionality of artificial 
sequences cannot yet be realised bioinformatically, and 
experimental verification is required. To this end, ide-
ally all known independent protein properties available 
from the sequence should be tested in order to cre-
ate a gold standard for possibly functional sequences. 
From this study it is clear that sequence similarity (or 
identity), HMM-scores and secondary structure are 
relevant properties that all contribute something when 
judging similarity to natural sequences. Determining 
relative HMM scores for high thresholds could be used 
to prefilter sequences for secondary structure predic-
tion as it is the computationally most intensive part of 
this analysis.

Considering that domain-domain overlaps are expected 
to be much harder than overlapping a domain with a less 
conserved region in another gene, it appears that de novo 
origin of genes from overlapping ORFs may be much 
less difficult than widely assumed. Some constructed 
OLG sequences varied only by 1.8% from their original 
sequence, and there will plausibly often be other natural 
sequences from the same domain family that are even 
closer to the OLG sequence. This result could be a start-
ing point for estimating the difficulty of evolving OLGs 
from different starting sequences in natural systems, 
which is still relatively unexplored despite some early 
work [61]. The structure of the standard genetic code is 
crucial in explaining differences between reading frames 
and is a strong factor in the overall success rate of OLG 
construction. For example, OLGs can maintain an aver-
age 60% amino acid identity and an average 75% amino 
acid similarity, which is mostly due to the genetic code. 
The structure of the standard genetic code is defined by 
its composition, namely how many codons code for each 
amino acid, and its arrangement, namely which codons 
code for each amino acid. It is known that the compo-
sition alone cannot explain the strong optimality of the 
standard genetic code for mutational robustness as it 
stands out from between codes with the same composi-
tion as the standard genetic code [51, 62]. Considering 
that the arrangement of the standard genetic code creates 

such high mutational robustness values [58] it is remark-
able that designing OLGs also works so well.

The analysis presented here depends primarily on the 
reliability of HMM profiles of Pfam groups as a guide to 
biological functionality in constructed sequences. Reli-
ability for classifying biological protein sequences into 
ortholog families, the main use of these HMMs, may 
not correlate well with reliability in scoring artificially 
constructed sequences for functionality. In other words, 
these profiles no doubt fail to capture some important 
requirements for protein tertiary structure and/or func-
tionality. Future research ought to test the best candidates 
experimentally, and if the best candidates from the meth-
ods developed here are not successful, additional fac-
tors should also be considered in comparing constructed 
sequences and their natural precursors. For instance, 
many protein characteristics can be assessed using serv-
ers or packages incorporating multiple bioinformatic 
tools such as PredictProtein, for various secondary struc-
tural elements [63], and many sequence properties, such 
as hydrophobicity profiles, can be computed using the 
VOLPES server [64], related methods to which have been 
applied to the related case of frame-shifted sequences 
compared to their mother genes [27]. Other properties 
required for functional protein sequences can be inferred 
from the evolutionary information contained in sequence 
alignments of protein families. For instance, it has been 
calculated based on a study of residue-residue co-evolu-
tion in ten well-characterized protein families that the 
proportion of all sequences which fold to the family’s 
structure ranges from approx  10−24 to  10−126 [65]. These 
principles have been successfully used in the design of 
functional proteins [66], and could conceivably also be 
applied to OLG construction.

Factors facilitating the existence of OLGs may possi-
bly help in predicting OLGs in sequenced genomes and 
should be explored further. For instance, a careful study 
of relatively ‘flexible’ sequence regions in taxonomically 
widespread genes may help find more overlapping genes. 
Most interestingly, bacterial and eukaryotic genes can be 
overlapped more easily than virus genes, contrary to pre-
vious findings [42]. These earlier results can be explained 
entirely with dataset-database biases, so this algorithm 
gives no support for the common assumption of a higher 
intrinsic OLG formation capacity of viruses compared 
with bacteria or eukaryotes. Two of the main differences 
between the taxonomic groups are the expected muta-
tion rates and the average length of a protein. While 
genomes with higher mutation rates explore sequence 
space faster and therefore their proteins should appear 
to be more ‘flexible’ (i.e. less constrained), despite having 
the highest mutation rate virus domains do not actually 
appear to be very flexible. Another factor which deserves 
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further exploration is the age of a protein family, i.e. the 
time since gene birth. This may correlate with appar-
ent ‘sequence flexibility’, which is the strongest influence 
on the result via the threshold values, due to increasing 
mutational saturation in older protein families. Being 
able to distinguish genuine sequence flexibility from 
mutational saturation, even in broad terms, could be very 
useful here. The length of the sequences on the other 
hand has been removed as a factor in this analysis. An 
artificial factor not considered could be database biases 
or an exchange matrix (BLOSUM62) biased towards cer-
tain kinds of proteins. The latter could be tested by using 
different matrices created from sequences from different 
taxonomic groups. It would be important to use the new 
matrix not only in the construction of the OLGs but also 
in the evaluation by the HMMs. So far it is not clear why 
protein families from different taxonomic groups are so 
different in their calculated ability to create OLGs.

The construction of overlapping genes also opens up 
many interesting possibilities for synthetic biology. For 
instance, mutations in overlapping regions are expected 
to be more deleterious on average, so an artificial genome 
with many OLGs is not only smaller but also expected to 
be more stable over time on a population level, as muta-
tions are more likely to be strongly selected against. A 
recent method for stabilizing synthetic genes [67], where 
an arbitrary ORF was constructed to overlap a gene of 
interest and was concatenated with an essential gene 
downstream, could be taken a large step forward by over-
lapping whole genes thereby creating a system where not 
only ‘polar’ mutations are selected against but also more 
minor mutations, if they also affect the mother gene. 
Genome size has become a significant limiting factor for 
biomolecular computing, in which genetic programs are 
inserted into cells [68]. Existing compression methods 
[69] could be greatly improved by using OLGs, making 
more complex systems possible. In this context a well-
designed stable synthetic genome could include fail-safe 
measures, such that faulty genetic programs would shut 
down. In summary, a better theoretical understanding 
of overlapping genes will be extremely useful in micro-
bial genome annotation methods, the study of evolution, 
and in synthetic biology, and therefore deserves renewed 
attention.

Conclusions
In this study we have shown that encoding overlap-
ping protein domains is possible for a large majority of 
arbitrary domain pairs, as assessed by Hidden Markov 
Models based on Pfam protein domain families. Similar 
secondary structure to natural proteins was also able to 
be achieved in constructed sequences. Contrary to previ-
ous reports, viral proteins were not easier to overlap than 

those from other taxonomic groups. The success rate in 
different reading frames however matches expectations 
based on combinatorial constraints, validating previous 
key theoretical work on overlapping genes in different 
relative reading frames. This research helps in under-
standing the ubiquity of overlapping genes (OLGs) across 
the domains of life, implies that OLGs should be sought 
outside of virus genomes, and supports the potential use 
of synthetically constructed overlapping genes in diverse 
areas of biotechnology. Additional research into the theo-
retical underpinnings of natural overlapping gene pairs 
building on this work will further improve our under-
standing of molecular evolution and genome annotation, 
and will provide new opportunities for synthetic biology.

Methods
Applying Hidden Markov Models for OLG evaluation
Pfam consists of a ‘seed’ database containing trusted 
sequences for each protein domain family as well as a 
‘full’ database containing all the sequences of Uni-Prot 
sorted into the different families using HMM profiles 
created from the ‘seed’ database. Here the ‘seed’ database 
is used to create HMM profiles using HMMER3 (v3.2.1) 
[70] and the ‘full’ database is tested against those profiles, 
in order to find the representative sequence (that which 
scores highest) and to calculate the naturally occurring 
deviations. The representative sequence chosen for OLG 
construction and to determine the natural variation in 
homologues should be the most typical sequence in the 
respective protein domain. Choosing a randomly picked 
sequence instead of a representative one could result in 
choosing an outlier, resulting in unreliable comparison 
scores and less chance of designed sequences retain-
ing functionality. While it is not clear how to determine 
the most typical sequence using BLAST, it is straight-
forward using Hidden Markov Models (HMMs), which 
reflect the ‘average’ sequence and are therefore a good 
representative for the whole protein family. When con-
structing HMM profiles from trusted homologues of a 
specific protein domain, the sequence with the best fit to 
the profile is chosen for OLG construction. The scores of 
the remaining sequences define the typical deviations of 
the protein domain and are used to define family-specific 
thresholds for the constructed sequences.

Choosing a family-specific threshold value takes care 
of most of the length dependencies, but in order to be 
sure and to be able to compare sequences of different 
lengths, each score resulting from a comparison between 
a sequence and a HMM profile is divided by the sequence 
length. Here scores are used instead of e-values, as the 
latter also depend on the database size, an arbitrary fac-
tor in this analysis. Aligning the best sequence with the 
‘seed’ sequences using MAFFT (v7.419) [71], weights 
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used for sequence construction can be determined just 
as in [42]. A more detailed description of the calculation 
of the weights and their influence can be found below. 
When studying the influence of a protein family’s taxo-
nomic classification on the construction of OLGs, the 
‘seed’ and the ‘full’ database are first filtered by the four 
major taxonomic groups - archaea, bacteria, eukaryotes 
and viruses - before creating the profiles and the thresh-
olds. MUSCLE (v3.8.31) [72] was used for realigning the 
‘seed’ sequences after taxonomic filtering. For subsequent 
analyses, random sets from the ~17,000 Pfam families 
were chosen, with the condition that each family must 
have at least 10 ‘seed’ sequences and 4 ‘full’ sequences in 
order for the weights and the thresholds to be reasonably 
defined. Each dataset consists of 150 families since the 
variance of the resulting OLG success rate barely declines 
for larger sets (see supplementary Fig. S9). Figure  10 
summarizes the workflow.

Determining the average success rate from random 
overlap positions
In order to estimate the expected success rate of an indi-
vidual overlap attempt, the domains are overlapped such 
that one domain is fully embedded into the other, at a 
random position. Just as in [42] the sequence with the 
lower quality of the two constructed OLGs is used as a 
conservative representative of the pair. After determining 
the success for each position, the percentage of successful 

positions for each OLG pair, the average success rate in 
each reading frame, and the overall success rate averaged 
across reading frames were calculated. The number of 
possible positions for each OLG pair is equal to their dif-
ference in length plus one, so using more than one over-
lap position in each pair is only possible for genes with 
different lengths. Increasing the number of positions with 
overlaps calculated for each gene does not change the 
expected success rate but reduces its variation between 
different sets (see supplementary Fig. S10). Comparing 
the variation caused by choosing random positions and 
the variation caused by choosing random Pfam families, 
the former turns out to be negligible and consequently 
only a single randomly chosen position for each OLG 
pair is used for subsequent analyses.

Length dependence of the HMM evaluation
In order to determine whether the relative evaluation of 
OLGs really removed the length dependency, the aver-
age quality ‘Q’ of an OLG pair is determined and com-
pared for OLG pairs with different lengths. Q is defined 
as the ratio of the scores of the constructed sequence 
(S) over the original sequence (S_max) times 100. The 
quality is therefore the percentage score loss due to the 
overlap. Supplementary Fig. S11 shows the mean qual-
ity for datasets with different sequence lengths. Starting 
from around 50 amino acids, Q is indeed mostly inde-
pendent of sequence length. The low Q values of smaller 

Fig. 10 Workflow for OLG construction and evaluation using HMMs and the Pfam database. HMM profiles are constructed from the seed 
sequences. The sequence with the highest score from the full group is used for OLG design. The remaining sequences in the full group are used to 
construct threshold scores used to evaluate the designed OLGs
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sequences are because these sequences are less frequently 
matched to their respective HMM-profile, which results 
in a score of zero. The reason is probably that the shorter 
sequences fall below internal detection thresholds of 
HMMER3 more easily. Changing a single amino acid in 
a short gene changes its quality to a greater extent than 
in a long gene, resulting in larger fluctuations, which can 
lower the sequence below detection thresholds. Lower-
ing internal thresholds of HMMER3 did not lead to more 
sequences being recognized by their respective profile.

In further analysis the minimum sequence length of 
70 amino acids is used so that the percentage of OLG 
pairs in which at least one sequence is not recognised 
is below 5% (see Supplementary Fig. S11). When taking 
both sequences of each pair and not only the one with 
the lower quality, the quality distribution converges to 
a broad peak at around 76% with increasing sequence 
length (see Supplementary Fig. S12). Since the quality 
also depends on the flexibility of the HMM profiles used 
to score the sequences the peak is not expected to get 
any narrower with increasing sequence length and thus 
to reduce variations in sequence similarities between the 
constructed and the original sequences.

Optimisation of strength of positional weighting
The algorithm to construct OLG sequences from Opuu 
et  al. uses an exchange matrix (Blosum62 [73]) to find 
the closest overlapping sequences to the original ones. It 
determines the codon with the highest sum of the scores 
for the exchanges in both sequences at each position. 
Sequence weights can prioritise the score of either one 
or the other sequence at different positions in order to 
increase the chance of obtaining functional sequences. 
In [42], the weight w_i at position i of the sequence is 
w_i=e^(-S_i), where S_i is the entropy calculated at posi-
tion i in the alignment. The weights could be defined dif-
ferently such that their influence on OLG construction 
is stronger or weaker. In order to optimize the weight 
strength a factor k is added to the entropy in their calcu-
lation such that w_i=e^(-kS_i). Varying k>0, the optimal 
weight strength for constructing OLGs can be deter-
mined, while k=0 means no weights are being used. In 
the HMM evaluation the influence of k is very weak. A 
value of k=0.5 is used in order to maximise the quality, Q 
(see Supplementary Fig. S13). Picking very high k values 
Q goes to zero. In this case at each position the sequence 
with the higher conservation maintains its amino acid. 
This indicates that it is crucial that at each position both 
sequences are changed in order to create functional 
OLGs.

In the BLAST evaluation k=0 is optimal (see Sup-
plementary Fig. S14), such that no better value can be 
found for k>0. BLAST does not take special account of 

conserved regions of a sequence, so weights can improve 
one sequence but at the same time will reduce the score of 
the other. Since the lowest scoring of the two sequences is 
taken to represent the OLG pair, introducing weights has 
a high chance of reducing the success rate in an evalua-
tion using BLAST, despite increasing biological relevance. 
This makes an evaluation using HMM or any other method 
that takes into account sequence conservation significantly 
preferable for judging constructed OLG pairs.
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