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Abstract 

Background:  Identification of epistatic interactions provides a systematic way for exploring associations among 
different single nucleotide polymorphism (SNP) and complex diseases. Although considerable progress has been 
made in epistasis detection, efficiently and accurately identifying epistatic interactions remains a challenge due to the 
intensive growth of measuring SNP combinations.

Results:  In this work, we formulate the detection of epistatic interactions by a combinational optimization problem, 
and propose a novel evolutionary-based framework, called GEP-EpiSeeker, to detect epistatic interactions using Gene 
Expression Programming. In GEP-EpiSeeker, we propose several tailor-made chromosome rules to describe SNP com-
binations, and incorporate Bayesian network-based fitness evaluation into the evolution of tailor-made chromosomes 
to find suspected SNP combinations, and adopt the Chi-square test to identify optimal solutions from suspected 
SNP combinations. Moreover, to improve the convergence and accuracy of the algorithm, we design two genetic 
operators with multiple and adjacent mutations and an adaptive genetic manipulation method with fuzzy control to 
efficiently manipulate the evolution of tailor-made chromosomes. We compared GEP-EpiSeeker with state-of-the-art 
methods including BEAM, BOOST, AntEpiSeeker, MACOED, and EACO in terms of power, recall, precision and F1-score 
on the GWAS datasets of 12 DME disease models and 10 DNME disease models. Our experimental results show that 
GEP-EpiSeeker outperforms comparative methods.

Conclusions:  Here we presented a novel method named GEP-EpiSeeker, based on the Gene Expression Program-
ming algorithm, to identify epistatic interactions in Genome-wide Association Studies. The results indicate that 
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Introduction
Genome-wide association studies (GWAS) aim at iden-
tifying associations between Single Nucleotide Polymor-
phism (SNP) and disease, which has been an important 
way for identifying the genetic basis of diseases in the last 
decade [1–11].

GWAS is capable of finding single-locus SNP that is 
related to disease trait [7]. Great progress has been made 
in identifying single-locus SNP that is the genetic causes 
of diseases such as Mendelian diseases and diabetes, 
however, detecting causative loci for complex diseases 
is more complicated [3, 5, 6, 12]. Complex diseases are 
often caused by complicated effects of multi-locus SNPs, 
such as diabetes, rheumatoid arthritis and hypertension 
[6, 7, 13]. Some SNPs influence the complex disease traits 
and dominate the effect of other SNPs when interacting 
with each other [6, 7, 12]. In GWAS, the relation of an 
SNP influencing the effect of another SNP is described as 
epistasis [7, 12, 14]. Many studies have shown that epista-
sis exists in SNP interactions and plays an important role 
in human diseases [7, 15].

With the rapid development of high-throughput geno-
typing and sequencing technologies, it is an enormous 
challenge to analyze the epistatic associations between 
disease and millions of SNPs in GWAS. Recently, sev-
eral epistatic interaction detection methods have been 
designed for efficiently detecting epistasis. These efforts 
can be divided into three types [3, 6, 13, 14, 16–21] : (1) 
exhaustive search method, (2) stochastic search method, 
and (3) heuristic search method.

Exhaustive search method evaluates all possible multi-
locus SNP combinations to detect the associations 
between disease and SNPs. Therefore, exhaustive search 
methods can produce stable and global optimum solu-
tions. Some exhaustive search methods, such as MDR 
[22, 23], BOOST [24], TEAM [25], ESMO [6], have been 
proposed. Exhaustive search is a straightforward search 
strategy, but it may require huge computational resources 
and consume too much time as the size of SNP combina-
tions exponentially grows.

Stochastic search-based identifies SNP-SNP inter-
actions by random sampling [26, 27]. BEAM (Bayes-
ian Epistasis Association Mapping) [27] is an example. 
BEAM searches and categorizes disease-associated SNP 
interactions via posterior probabilities of the suspected 
candidate SNPs. Tang et  al. [28] constructed a Gibbs 

sampling approach for identifying epistatic interactions. 
Jiang et  al. [29] presented a stochastic method called 
epiForest to detect epistatic interactions using random 
forest. Although random sampling significantly reduces 
search space and accelerates the detection of SNP inter-
actions, the performance of stochastic search relies on 
the random sampling elements.

Heuristic search [3, 7, 12, 14, 30] adopts an approxi-
mate search strategy, which guides the search of epistatic 
interactions by heuristic information. For example, Wang 
et  al. [30] proposed a two-stage heuristic ant colony 
optimization (ACO) algorithm named AntEpiSeeker to 
detect epistatic interactions. AntEpiSeeker uses an ant 
colony optimization search to find disease-associated 
SNPs. Wan et al. [31] developed SNPRuler to detect epi-
static interactions utilizing prediction rule learning. Jing 
et  al. [3] presented a multi-objective optimization heu-
ristic method named MACOED, which complementarily 
combines the logistical regression and Bayesian network 
to identify epistatic interactions. Yuan et al . [7] designed 
a multi-objective ACO-based method named FAACOSE. 
FAACOSE combines multi-objective optimization func-
tions with an adaptive ant colony optimization algorithm 
to search epistatic interactions. Sun et al . [14] proposed 
an ACO-based method named EACO for identifying epi-
static interactions by incorporating heuristic information 
multi-SURF(Spatially Uniform ReliefF) into ant-decision 
rules.

Recently, in addition to the ACO-based algorithm, 
some other evolutionary methods have also been 
adopted for the heuristic search of disease-associated 
SNPs [15, 26, 32]. For example, Yang et al . [32] proposed 
a Genetic algorithm-based hybrid algorithm, which is 
named genetic ensemble (GE). GE combines an ensemble 
of classifiers with a multi-objective genetic algorithm to 
detect epistatic interactions. Aflakparast et  al. [15] pre-
sented an evolutionary-based heuristic search method 
CSE (Cuckoo Search Epistasis) to detect SNP interac-
tions. CSE integrates the evolutionary-based optimiza-
tion algorithm Cuckoo with the Bayesian network to 
mine SNP interactions. Tuo et al. [13] presented FHSA-
SED, which adopts a harmony search algorithm with 
the Bayesian network and Gini-score to detect epistatic 
interactions.

Heuristic search has become a popular search strategy 
of epistatic interactions for its heuristic positive feedback 

GEP-EpiSeeker could be a promising alternative to the existing methods in epistasis detection and will provide a new 
way for accurately identifying epistasis.
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and small search space for the past decades. However, 
heuristic search sometimes may lose the global optimum 
solutions for its approximate search strategy.

In recent years, Gene Expression Programming (GEP) 
algorithm is a notable evolutionary algorithm, which is 
a generalized method of Genetic Algorithm (GA) and 
Genetic Programming (GP) [33]. It has advantages for 
simply encoding complex problems and searching for 
global optimum solutions, and discovering rules and 
formulas [33–35]. Therefore, GEP algorithm has been 
widely adopted in solving complex nonlinear problems 
that are difficult to be solved by traditional methods for 
the possible loss of global optimum solutions [36–38].

Motivated by GEP, we propose a novel evolutionary 
framework based on the GEP algorithm called GEP-
EpiSeeker to detect epistatic interactions. Distinguishing 
from other evolutionary-based methods, GEP-EpiSeeker 
contains the screening and cleaning stages to find the 
SNP interactions associated with specific diseases. In 
the screening stage, we developed a tailor-made Gene 
Expression Programming algorithm named EpiGEP for 
screening suspected SNP interactions. In the cleaning 
stage, we conducted Chi-square tests for each screened 
SNP combinations produced by EpiGEP to identify the 
significant epistatic interactions. Fig.  1 summarizes the 
flowchart of the GEP-EpiSeeker.

Results and discussion
We conducted experiments on 22 simulated disease 
models containing 12 disease models with marginal 
effects (DME) and 10 disease models with no marginal 
effects (DNME) to investigate the performance of GEP-
EpiSeeker. The experimental results of GEP-EpiSeeker 
were compared with the experimental results gained 
from five state-of-the-art epistasis detection methods 
including BEAM [27], BOOST [24], AntEpiSeeker [30], 
MACOED [3] and EACO [14] in terms of power, recall, 
precision, and F1-score. Furthermore, we investigated 
the influence of the proposed fuzzy adaptive genetic 
manipulation rate on GEP-EpiSeeker performance. The 
simulation datasets for the 22 disease models, evalua-
tion metrics, and parameter setting are introduced in the 
Methods section in detail.

Comparison with state‑of‑the‑art methods
Figures  2, 3 and 4 present the performance of differ-
ent methods on four multiplicative DME disease mod-
els (model 1 ~ model 4), four threshold DME disease 
models (model 5 ~ model 8) and four concrete DME 
disease models (model 9 ~ model 12), respectively. As 
shown in Fig.  2, GEP-EpiSeeker achieves higher power 
than all other methods and exhibits increasing power 
when h2=0.02. Similarly, as shown in Fig.  3 and Fig.  4, 

GEP-EpiSeeker outperforms all other methods in terms 
of power in most DME models with different parameter 
settings and is comparable with other methods in the rest 
DME models. Specifically, the power of GEP-EpiSeeker 
on the models 8 and 10 are equal to 1, and the power 
of GEP-EpiSeeker on the models 11 and 12 are equal to 
0.99, due to the effective search guided by the chromo-
some evolution of GEP-EpiSeeker. These results indi-
cate that the Bayesian fitness evaluation combined with 
the tailor-made chromosome evolution can fit the DME 
models well.

Figure 5 and Fig. 6 present the performance of different 
methods on ten DNME disease models under h2=0.01 
and MAF=0.2. The results of Fig. 5 and Fig. 6 reveal that 
GEP-EpiSeeker outperforms other methods on most 
DNME models. However, the power of GEP-EpiSeeker 
on DNME models does not reach the optimal level when 
comparing with its performance on DME models. This is 
because the SNP interactions in DNME models display 
no marginal effects and it is hard to capture these SNP 
interactions [14]. In addition, the performance of GEP-
EpiSeeker are quite comparable with the performance 
of BOOST in most models, whereas the power of GEP-
EpiSeeker is a little smaller than BOOST on DNME mod-
els 18 and 20. This is because the DNME models merely 
show interactive with no marginal effects whereas the 
mathematical model of BOOST only takes the interactive 
with no marginal effects into account, thus BOOST per-
fectly fits this dataset well.

To comprehensively evaluate the performance of 
our proposed method, we also compare the perfor-
mance of the GEP-EpiSeeker and other methods in 
terms of recall, precision and F1 on all disease mod-
els. Tables  1, 2 and 3 show the comparison results of 
recall, precision and F1 on different disease models, 
respectively. Note that the values in brackets are the 
p-values of the t-test between results of GEP-EpiSeeker 
and the corresponding comparative method. As seen 
from Tables 1, 2 and 3, compared with other compara-
tive methods, GEP-EpiSeeker achieves the best on 19 
out of 22, 20 out of 22, and 17 out of 22 disease mod-
els in terms of recall, precision and F1, respectively. In 
terms of recall, GEP-EpiSeeker just slightly underper-
forms MACOED and EACO on the disease model 7, 
slightly underperforms EACO on the disease model 9, 
and has poor performance than MACOED, EACO, and 
BOOST on the disease model 18. In terms of precision, 
GEP-EpiSeeker just slightly underperforms MACOED 
on the disease models 6 and 17. In terms of F1, GEP-
EpiSeeker just slightly underperforms MACOED and 
EACO on the disease models 6, 7, 9, 17, and 18. These 
results demonstrate that GEP-EpiSeeker outperforms 
comparative methods on most disease models. Overall, 
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GEP-EpiSeeker is superior to state-of-the-art methods 
in the experiment. This indicates that the effective opti-
mization of SNP combinations by the GEP algorithm 
greatly helps to narrow the search space and improve 
the power of our method. It is also interesting to see in 
Tables 1- 3 and Fig. 5 that the power, precision and F1 

of the results produced by GEP-EpiSeeker achieves bet-
ter performances than other comparative methods in 
most settings of DNME and DME models, demonstrat-
ing that the results of GEP-EpiSeeker on DNME and 
DME models are worth exploring, despite not obtain-
ing correspondingly high levels.

Fig. 1  The framework of GEP-EpiSeeker



Page 5 of 20Peng et al. BMC Genomics          (2021) 22:910 	

Fig. 2  Power performance comparisons between GEP-EpiSeeker and other comparative methods on four multiplicative DME disease models

Fig. 3  Power performance comparisons between GEP-EpiSeeker and other comparative methods on four threshold DME disease models
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Fig. 4  Power performance comparisons between GEP-EpiSeeker and other comparative methods on four concrete DME disease models

Fig. 5  Power performance comparisons between GEP-EpiSeeker and other comparative methods on five different DNME disease models with 
h2=0.01 and MAF=0.2
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Fig. 6  Power performance comparisons between the GEP-EpiSeeker and other comparative methods on the five different DNME disease models 
with h2=0.01 and MAF=0.2

Table 1  The recall of the comparative methods with different disease models

Note that the values in brackets are the p-values of the t-test between results of GEP-EpiSeeker and the corresponding comparative method. The best performances 
of each disease model are shown in bold and italics

model id BOOST BEAM AntEpiSeeker MACOED EACO GEP-EpiSeeker

model 1 0.05±0.00 (0.00) 0.02±0.00 (0.00) 0.01±0.00 (0.00) 0.02±0.00 (0.00) 0.09±0.00 (0.00) 0.37±0.03
model 2 0.05±0.01 (0.00) 0±0.00 (0.00) 0±0.00 (0.00) 0.04±0.00 (0.00) 0.11±0.01 (0.00) 0.22±0.02
model 3 0.01±0.00 (0.00) 0±0.00 (0.00) 0.19±0.00 (0.00) 0.27±0.02 (0.00) 0.34±0.01 (0.00) 0.38±0.01
model 4 0.01±0.00 (0.00) 0±0.00 (0.00) 0.31±0.02 (0.00) 0.37±0.01 (0.00) 0.39±0.01 (0.00) 0.43±0.01
model 5 0.58±0.03 (0.00) 0.58±0.002 (0.00) 0.35±0.03 (0.00) 0.43±0.03 (0.00) 0.62±0.03 (0.00) 0.73±0.01
model 6 0.70±0.02 (0.00) 0.45±0.03 (0.00) 0.82±0.04 (0.00) 0.94±0.01 (0.00) 0.94±0.02 (0.03) 0.95±0.01
model 7 0.74±0.03 (0.00) 0.19±0.02 (0.00) 0.84±0.03 (0.00) 1±0.00 (0.00) 0.98±0.02 (0.03) 0.96±0.02

model 8 0.12±0.01 (0.00) 0.03±0.00 (0.00) 0.97±0.02 (0.00) 0.98±0.02 (0.00) 0.98±0.01 (0.00) 1±0.00
model 9 0.10±0.02 (0.00) 0.92±0.02 (0.00) 0.97±0.01 (0.00) 0.97±0.02 (0.00) 0.98±0.02 (0.00) 0.95±0.03

model 10 0.84±0.03 (0.00) 0.84±0.02 (0.00) 0.98±0.01 (0.00) 0.99±0.01 (0.00) 0.98±0.01 (0.00) 1±0.00
model 11 0.98±0.02 (0.07) 0.13±0.03 (0.00) 0.84±0.03 (0.00) 0.97±0.01 (0.00) 0.97±0.01 (0.00) 0.99±0.01
model 12 0.96±0.02 (0.00) 0.11±0.03 (0.00) 0.95±0.03 (0.00) 0.98±0.02 (0.05) 0.97±0.02 (0.00) 0.99±0.01
model 13 0.56±0.04 (0.00) 0±0.00 (0.00) 0.2±0.02 (0.00) 0.20±0.03 (0.00) 0.44±0.04 (0.00) 0.58±0.03
model 14 0.63±0.02 (0.00) 0±0.00 (0.00) 0.19±0.03 (0.00) 0.22±0.03 (0.00) 0.63±0.02 (0.00) 0.69±0.02
model 15 0.62±0.02 (0.02) 0±0.00 (0.00) 0.20±0.03 (0.00) 0.20±0.02 (0.00) 0.60±0.02 (0.00) 0.64±0.02
model 16 0.96±0.02 (0.12) 0±0.00 (0.00) 0.63±0.04 (0.00) 0.64±0.02 (0.00) 0.93±0.02 (0.00) 0.97±0.01
model 17 0.41±0.02 (0.00) 0±0.00 (0.00) 0.11±0.02 (0.00) 0.12±0.03 (0.00) 0.53±0.02 (0.00) 0.56±0.02
model 18 1±0.00 (0.00) 0±0.00 (0.00) 0.75±0.03 (0.00) 0.98±0.02 (0.00) 0.98±0.02 (0.00) 0.95±0.02

model 19 0.59±0.02 (0.00) 0±0.00 (0.00) 0.11±0.03 (0.00) 0.20±0.04 (0.00) 0.61±0.02 (0.00) 0.63±0.01
model 20 1±0.00 (0.00) 0±0.00 (0.00) 0.80±0.03 (0.00) 1±0.00 (0.00) 1±0.00 (0.00) 1±0.00
model 21 0.98±0.02 (1.00) 0±0.00 (0.00) 0.81±0.03 (0.00) 0.98±0.02 (1.00) 0.97±0.02 (0.00) 0.98±0.01
model 22 0.97±0.02 (0.02) 0±0.00 (0.00) 0.62±0.03 (0.00) 0.97±0.02 (0.03) 0.97±0.01 (0.00) 0.98±0.01



Page 8 of 20Peng et al. BMC Genomics          (2021) 22:910 

Although the recalls of MACOED and EACO on dis-
ease models 7, 9 and 18 are better than those of GEP-
EpiSeeker, the precision of GEP-EpiSeeker is higher 
than that of MACOED and EACO. Similarly, the recalls 
of BOOST on models 18, 20 and 21 are higher or equal 
to those of GEP-EpiSeeker, but the precisions of GEP-
EpiSeeker on these models are much higher than those 
of BOOST, thereby resulting in GEP-EpiSeeker’s supe-
rior performance in F1. These results demonstrate that 
GEP-EpiSeeker performs well in both recall and preci-
sion by coupling the EpiGEP algorithm with the Chi-
square test.

Note that the values in brackets are the p-values of 
the t-test between results of GEP-EpiSeeker and the 
corresponding comparative method. The best perfor-
mances of each disease model are shown in bold and 
italics.

The influence of fuzzy adaptive genetic manipulation rate
In this section, we investigate whether fuzzy adaptive 
control will affect the performance of GEP-EpiSeeker. 
The comparisons on all metrics are based on the average 
score of 20 times of each epistasis model. Figures 7, 8 and 
9 show the comparison result, where GEP-EpiSeeker-f 

represents that GEP-EpiSeeker uses fuzzy adaptive 
genetic manipulation rate, while GEP-EpiSeeker-n repre-
sents GEP-EpiSeeker does not use fuzzy adaptive genetic 
manipulation rate but uses the same fixed genetic manip-
ulation rate as the original GEP. We observe from Fig-
ures 7- 9 that, on most epistasis models, GEP-EpiSeeker-f 
outperforms GEP-EpiSeeker-n over all the metrics. This 
indicates that the use of fuzzy adaptive genetic manipula-
tion rate in GEP-EpiSeeker improves epistatic interaction 
detection, which is largely because the fuzzy adaptive 
genetic manipulation rate can improve the global search 
of GEP.

Conclusion
In this work, we presented a novel method named GEP-
EpiSeeker, based on the Gene Expression Programming 
algorithm, to identify epistatic interactions in Genome-
wide Association Studies. In GEP-EpiSeeker, we pro-
posed several tailor-made chromosome rules to depict 
SNP combinations, and integrated Bayesian network-
based fitness function into the evolution of the chromo-
somes to search candidate SNP combinations and used 
the Chi-square test to identify optimal solutions from 
candidate SNP combinations.

Table 2  The precision of the comparative methods with different disease models

Note that the values in brackets are the p-values of the t-test between results of GEP-EpiSeeker and the corresponding comparative method. The best performances 
of each disease model are shown in bold and italics

model id BOOST BEAM AntEpiSeeker MACOED EACO GEP-EpiSeeker

model 1 0.15±0.02 (0.00) 0.10±0.02 (0.00) 0.25±0.02 (0.00) 0.42±0.03 (0.00) 0.51±0.03 (0.00) 0.62±0.03
model 2 0±0.00 (0.00) 0.11±0.02 (0.00) 0±0.00  (0.00) 0.85±0.03 (0.01) 0.81±0.03 (0.00) 0.87±0.02
model 3 0±0.00 (0.00) 0.01±0.01 (0.00) 0.66±0.04 (0.00) 0.74±0.03 (0.00) 0.71±0.03 (0.00) 0.78±0.03
model 4 0±0.00 (0.00) 0.02±0.02 (0.00) 0.68±0.04 (0.00) 0.44±0.03 (0.00) 0.65±0.03 (0.00) 0.72±0.03
model 5 0.50±0.03 (0.00) 0.71±0.03 (0.00) 0.90±0.03 (0.00) 0.96±0.02 (0.00) 0.96±0.03 (0.01) 0.98±0.01
model 6 0.55±0.04 (0.00) 0.45±0.03 (0.00) 0.91±0.03 (0.00) 0.98±0.02 (0.00) 0.92±0.02 (0.00) 0.96±0.01

model 7 0.50±0.03 (0.00) 0.12±0.03 (0.00) 0.92±0.03 (0.00) 0.96±0.02 (0.11) 0.94±0.02 (0.00) 0.97±0.01
model 8 0.12±0.03 (0.00) 0.01±0.02 (0.00) 0.98±0.02 (1.00) 0.94±0.02 (0.00) 0.98±0.02 (1.00) 0.98±0.01
model 9 0.13±0.03 (0.00) 0.76±0.03 (0.00) 0.96±0.02 (0.00) 0.99±0.01 (0.01) 0.97±0.02 (0.00) 1±0.00
model 10 0.57±0.04 (0.00) 0.75±0.03 (0.00) 0.98±0.02 (0.04) 0.98±0.02 (0.04) 0.98±0.02 (0.04) 0.99±0.01
model 11 0.63±0.04 (0.00) 0.34±0.04 (0.00) 0.98±0.02 (0.04) 0.98±0.02 (0.04) 0.98±0.02 (0.04) 0.99±0.01
model 12 0.65±0.04 (0.00) 0.02±0.01 (0.00) 0.96±0.02 (0.00) 0.99±0.02 (0.05) 0.98±0.02 (0.00) 1±0.00
model 13 0.51±0.03 (0.00) 0±0.00 (0.00) 0.92±0.03 (0.00) 0.95±0.02 (0.04) 0.92±0.02 (0.00) 0.96±0.01
model 14 0.52±0.03 (0.00) 0±0.00 (0.00) 0.86±0.03 (0.00) 0.88±0.02 (0.00) 0.87±0.02 (0.00) 0.91±0.02
model 15 0.45±0.03 (0.00) 0±0.00 (0.00) 0.83±0.03 (0.00) 0.83±0.02 (0.00) 0.84±0.02 (0.00) 0.87±0.02
model 16 0.65±0.04 (0.00) 0±0.00 (0.00) 0.92±0.02 (0.00) 0.99±0.02 (0.98) 0.98±0.02 (0.04) 0.99±0.01
model 17 0.41±0.04 (0.00) 0±0.00 (0.00) 0.71±0.03 (0.00) 0.75±0.03 (0.00) 0.74±0.02 (0.00) 0.68±0.03

model 18 0.68±0.04 (0.00) 0±0.00 (0.00) 0.93±0.02 (0.00) 0.97±0.02 (0.05) 0.97±0.02 (0.05) 0.98±0.01
model 19 0.48±0.03 (0.00) 0±0.00 (0.00) 0.85±0.04 (0.00) 0.92±0.02 (0.00) 0.92±0.02 (0.00) 0.94±0.02
model 20 0.62±0.03 (0.00) 0±0.00 (0.00) 0.98±0.02 (0.00) 1±0.00  (0.00) 1±0.00  (0.00) 1±0.00
model 21 0.61±0.04 (0.00) 0±0.00 (0.00) 0.98±0.02 (0.92) 0.96±0.02 (0.00) 0.98±0.02 (0.93) 0.98±0.01
model 22 0.62±0.04 (0.00) 0±0.00 (0.00) 0.97±0.02 (0.04) 0.98±0.02 (0.90) 0.98±0.02  (0.93) 0.98±0.01
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Furthermore, we proposed two genetic operators 
with multiple and adjacent mutations and an adap-
tive genetic manipulation method with fuzzy con-
trol to improve the convergence and accuracy of our 
method. We conducted experiments on 22 disease 
models including 12 DME models and 10 DNME 

models to evaluate our method. Experimental results 
show that GEP-EpiSeeker is comparable or even supe-
rior to other comparative methods including BEAM, 
BOOST, AntEpiSeeker, MACOED and EACO in terms 
of power, recall, precision and F1-score on all datasets. 
These results indicate that GEP-EpiSeeker could be a 

Table 3  The F1 of the comparative methods with different disease models

Note that the values in brackets are the p-values of the t-test between results of GEP-EpiSeeker and the corresponding comparative method. The best performances 
of each disease model are shown in bold and italics

model id BOOST BEAM AntEpiSeeker MACOED EACO GEP-EpiSeeker

model 1 0.08±0.02 (0.00) 0.03±0.02 (0.00) 0.02±0.03 (0.00) 0.04±0.02 (0.00) 0.15±0.03 (0.00) 0.46±0.03
model 2 0±0.00 (0.00) 0±0.00 (0.00) 0±0.00 (0.00) 0.08±0.02 (0.00) 0.19±0.04 (0.00) 0.35±0.03
model 3 0±0.00 (0.00) 0±0.00 (0.00) 0.30±0.04 (0.00) 0.40±0.04 (0.00) 0.46±0.03 (0.00) 0.51±0.03
model 4 0±0.00 (0.00) 0±0.00 (0.00) 0.43±0.04 (0.00) 0.40±0.03 (0.00) 0.49±0.03 (0.00) 0.54±0.03
model 5 0.54±0.03 (0.00) 0.64±0.02 (0.00) 0.50±0.04 (0.00) 0.59±0.03 (0.00) 0.75±0.04 (0.00) 0.84±0.03
model 6 0.62±0.03 (0.00) 0.45±0.02 (0.00) 0.86±0.02 (0.00) 0.96±0.02 (0.04) 0.93±0.03 (0.00) 0.95±0.02

model 7 0.60±0.04 (0.00) 0.15±0.02 (0.00) 0.88±0.03 (0.00) 0.98±0.02 (0.00) 0.96±0.02 (1.00) 0.96±0.02

model 8 0.12±0.04 (0.00) 0.02±0.02 (0.00) 0.97±0.03 (0.00) 0.96±0.02 (0.00) 0.98±0.02 (0.04) 0.99±0.01
model 9 0.11±0.04 (0.00) 0.83±0.03 (0.00) 0.96±0.03 (0.07) 0.98±0.02 (0.03) 0.97±0.02 (0.98) 0.97±0.01

model 10 0.68±0.04 (0.00) 0.79±0.03 (0.00) 0.98±0.02 (0.04) 0.98±0.02 (0.04) 0.98±0.02 (0.04) 0.99±0.01
model 11 0.77±0.03 (0.00) 0.19±0.03 (0.00) 0.90±0.03 (0.00) 0.97±0.02 (0.00) 0.97±0.02 (0.00) 0.99±0.01
model 12 0.78±0.03 (0.00) 0.03±0.02 (0.00) 0.95±0.02 (0.00) 0.98±0.02 (0.04) 0.97±0.03 (0.01) 0.99±0.01
model 13 0.53±0.03 (0.00) 0±0.00 (0.00) 0.33±0.04 (0.00) 0.33±0.03 (0.00) 0.60±0.04 (0.00) 0.72±0.04
model 14 0.57±0.03 (0.00) 0±0.00 (0.00) 0.31±0.05 (0.00) 0.35±0.04 (0.00) 0.73±0.03 (0.00) 0.78±0.02
model 15 0.52±0.04 (0.00) 0±0.00 (0.00) 0.32±0.04 (0.00) 0.32±0.04 (0.00) 0.70±0.04 (0.01) 0.74±0.03
model 16 0.78±0.03 (0.00) 0±0.00 (0.00) 0.75±0.02 (0.00) 0.78±0.04 (0.00) 0.95±0.02 (0.00) 0.98±0.01
model 17 0.41±0.05 (0.00) 0±0.00 (0.00) 0.19±0.04 (0.00) 0.21±0.04 (0.00) 0.62±0.04 (0.45) 0.61±0.04

model 18 0.81±0.03 (0.00) 0±0.00 (0.00) 0.83±0.03 (0.00) 0.97±0.01 (0.02) 0.97±0.01 (0.02) 0.96±0.01

model 19 0.53±0.04 (0.00) 0±0.00 (0.00) 0.19±0.04 (0.00) 0.33±0.04 (0.00) 0.73±0.03 (0.04) 0.75±0.03
model 20 0.77±0.03 (0.00) 0±0.00 (0.00) 0.88±0.05 (0.00) 1±0.00 (0.00) 1±0.00 (0.00) 1±0.00
model 21 0.75±0.03 (0.00) 0±0.00 (0.00) 0.89±0.03 (0.00) 0.97±0.01 (0.03) 0.97±0.02 (0.02) 0.98±0.01
model 22 0.76±0.03 (0.00) 0±0.00 (0.00) 0.76±0.03 (0.00) 0.97±0.01 (0.03) 0.97±0.01 (0.03) 0.98±0.01

Fig. 7  Comparison of GEP-EpiSeeker using the fuzzy adaptive genetic manipulation rate or not on the recall score
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promising alternative to the existing methods in epista-
sis detection and will provide a new way for accurately 
identifying epistasis.

Generally, the length of the GEP chromosome grows 
as the epistatic order increases, which results in a large 
increase in computation resources. A possible solution 
for this problem is to implement high-performance par-
allel algorithms for detecting epistasis interactions, which 
would be of interest in future work.

Methods
For solving the epistasis detection problem with high 
dimension and small sample size, we transformed the 
identification of disease-causing SNP combinations 
into a heuristic combinatorial optimization problem. 
Then, GEP-EpiSeeker formulates SNP combinations 

using tailor-made GEP chromosome rules for epista-
sis detections, and discovers candidate SNP combina-
tions by integrating Bayesian fitness evaluation with the 
tailor-made chromosome evolution, and finds optimal 
solutions from candidate SNP combinations by the 
Chi-square test. Furthermore, two genetic operators 
with multiple and adjacent mutations and an adaptive 
genetic manipulation method with fuzzy control are 
proposed to guide the tailor-made chromosome evolu-
tion, which helps to improve the convergence and accu-
racy of the algorithm.

In this section, we first briefly introduce the fundamen-
tals of GEP in the first subsection. Then the proposed 
method GEP-EpiSeeker is introduced in detail, which 
involves the definitions of tailor-made chromosome 
and genetic operators, fuzzy adaptive control of genetic 

Fig. 8  Comparison of GEP-EpiSeeker using the fuzzy adaptive genetic manipulation rate or not on the precision score

Fig. 9  Comparison of GEP-EpiSeeker using the fuzzy adaptive genetic manipulation rate or not on the F1 score
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manipulation rate, and Bayesian network-based fitness 
function in the screening stage, and Chi-square tests for 
cleaning significant epistasis in the cleaning stage. Finally, 
we introduce the experimental method in this work, 
which involves the datasets, evaluation metrics for com-
paring the performance of the comparative methods, and 
the parameter setting.

Fundamentals of Gene Expression Programming
Gene Expression Programming (GEP) is an excel-
lent evolutionary algorithm, which is based on the 
gene expression law of biological genetics [33, 39]. 
GEP does not rely on gradient information and initial 
search point and is strong at searching optimum solu-
tions [33, 39]. GEP heuristically searches the optimum 
solutions using chromosome evolution. A GEP chro-
mosome consists of one or multiple genes. Each gene 
in the chromosome consists of a head and a tail. The 
head consists of function set F, which contains a series 
of simple functors, and terminator set T, which con-
tains a series of decision variables and constants. The 
tail only consists of the terminator set. Assuming that 
the gene head length is h, the tail length t satisfies the 
following Exp. (1), where n is the maximum arity of the 
functors in F.

The GEP chromosome has two forms of expression, 
one of which is the Karva expression (K-expression), 
and the other is the expression tree. Each gene in the 
chromosome can be expressed in a K-expression and 
an expression tree. Both K-expression and expression 
trees can be transformed into each other. We can trans-
form the expression tree into K-expression by travers-
ing the expression tree from top to bottom and left to 
right. Similarly, we can transform K-expression into 
an expression tree by filling the expression tree layer 
by layer with the symbols of K-expression from left to 
right. For example, Exp. (2) is a GEP chromosome with 
a gene of length 9, which includes functors {Q,*,-,+} and 
terminators {a,b,c,d,2},

where Q denotes the square-root function. According 
to GEP algorithm, the expression tree of the chromo-
some in Exp. (2) is shown in Fig. 10, and this expression 
tree can be interpreted as Exp. (3) in mathematics.

Each chromosome of GEP can be regarded as a solu-
tion of a target problem and is evaluated by the fitness 

(1)t = h× (n− 1)+ 1

(2)Q ∗ − + ab2dc

(3)
√

(a− b) ∗ (2+ d)

function of GEP. The higher optimal fitness value 
of the solution is, the better solution represented in 
the chromosome is. The chromosomes can gradually 
evolve after a series of genetic manipulations until 
obtaining a solution with an acceptable fitness value. 
The genetic manipulation of GEP mainly includes 
selection, mutation, and crossover. The flowchart 
of GEP is shown in Fig.  11. For more details of GEP, 
please refer to [33, 36].

Screening stage: EpiGEP for screening SNP 
combinations
In this section, we will elaborate on our GEP-based 
algorithm named EpiGEP for detecting epistatic inter-
actions. In EpiGEP, we proposed several tailor-made 
chromosome rules, two new genetic operators, and a 
tailor-made fitness function, and a genetic manipulation 
method with adaptive rate to accurately detect epistatic 
interactions. Fig.  12 provides the pseudocode of Epi-
GEP. In the following, we will elaborate on the proce-
dure of EpiGEP.

Tailor‑made chromosome
In EpiGEP, each chromosome in a population is a can-
didate solution of a k-way SNP interaction combination 
that is associated with disease status Y. Recall that each 
gene in the GEP chromosome consists of a head and a 
tail. In EpiGEP, each gene consists of a head, a tail and 
an GT domain. The GT domain represents a genotype 
of one SNP. Let Chri be ith chromosome in a population 

Fig. 10  Example of GEP Expression Tree (ET)
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with L chromosomes, i=1, 2, …, L. The chromosome Chri 
can be described by Exp. (4):

where Sij is the jth SNP in the SNP dataset, j=1, 2…, 
k; Gtij is the variable of Sij genotypes with values of 
{0,1,2}; (Sij, Gtij) indicates a gene of the chromosome 
Chri.

Exp. (5) gives an example of an EpiGEP chromosome 
Chrk. Chrk is the kth chromosome with head length h=3 
in a population, which is described as a 2-way SNP inter-
action combination with genotypes 0 and 2. In Exp. (5), 
Chrk includes two genes: (*- + 1825, 0) and (+ *+ 3674, 
2). In gene (*- + 1825, 0), the head is “*- +”, the tail is 
“1825” and the GT domain is “0”.

(4)Chri = (Si1 Gti1) (Si2 Gti2)
(

Sij Gtij
)

. . .
In EpiGEP, any k-way (k=1, 2, 3, …) SNP interaction 

combination can be described by Exp. (4). In order to 
map each EpiGEP chromosome into a valid solution in 
SNP interaction detections, we define several idealized 
rules:

•	 EpiGEP only uses functors {+,-,*, /} and terminators 
{1, 2,…, n}, n is the total number of SNP in the dataset.

•	 Each chromosome in EpiGEP cannot contain iden-
tical SNP markers. The decoding result of Six and 
Siy in a chromosome must not be identical (x≠y), 
or else this chromosome has to be mutated to get a 

(5)(∗ − +1825, 0)(+ ∗ +3674, 2)

Fig. 11  Flowchart of GEP algorithm
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new valid solution. The adjacent mutation is prefer-
able (see section 3.2.2 for details).

•	 When EpiGEP decoding the expression trees of 
genes, the decoding results will be performed mod-

ulo by the number of SNP in the dataset. EpiGEP 
takes the absolute value of the modulo results as the 
final results.

Fig. 12  The pseudocode of EpiGEP

Fig. 13  The expression trees of an EpiGEP chromosome
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The EpiGEP chromosome of Exp.(5) can be encoded 
into expression trees and these trees are shown in 
Fig. 13. These expression trees can be decoded into 49 
and 29, which correspond to the 49th and 29th loci of 
SNP, respectively. Then a candidate SNP interaction 
combination of Si49 and Si29 can be derived from the 
decoding results of these expression trees.

Tailor‑made genetic operators
EpiGEP inherits the genetic operators of GEP and 
expands two new genetic operators including adjacent 
mutation and multi-gene mutation to improve epistatic 
interaction detection. There are considerable correla-
tions among neighboring SNPs in the genome as meas-
ure by linkage disequilibrium (LD) [15]. This is a helpful 
clue for finding epistatic interactions. We developed a 
novel genetic operator called adjacent mutation using the 
LD-specific heuristics to narrow the combination space 
and accelerate the convergence of EpiGEP. The adjacent 
mutation obeys the following idealized rules:

•	 The adjacent mutation performs mutation when a 
random number between 0 and 1 is smaller than 
the given threshold value called adjacent mutation 
rate;

•	 The adjacent mutation aims at refining the solu-
tions with the neighborhoods of the current solu-
tion. To achieve this goal, the adjacent mutation 
only mutates at the tail or the GT domain of the 
objective gene. When adjacent mutation takes at 
the tail, the adjacent mutation randomly replaces 
the locus of the mutation point with one of the 
neighboring loci of the mutation point. When adja-
cent mutation takes at the GT domain, the adjacent 
mutation replaces the genotype with one of the rest 
genotypes.

In addition, we proposed another novel genetic 
operator Multi-gene mutation for EpiGEP. Multi-
gene mutation simultaneously implements mutation 
operation on multiple points of different genes. The 
Multi-gene mutation could increase the diversity of 
population, assisting EpiGEP to jump out of the cur-
rent search area, which avoids EpiGEP falling into 
local optimum to some extent and finally enhances the 
global exploration power of EpiGEP.

Fuzzy adaptive control of genetic manipulation rate
The crossover rate of evolutionary algorithms will 
largely influence their convergence efficiency, while the 
mutation rate determines whether the algorithms can 
globally find the optimal solution out of the local opti-
mum solution or not [40]. Nevertheless, similar to other 
evolutionary algorithms, GEP keeps the initial param-
eters unchanged during the procedure of the program. 
As evolution is ongoing, it is not easy to jump out of the 
local optimum solution due to the loss of population 
diversity.

In this work, we use a fuzzy control method to dynami-
cally and automatically adjust the genetic manipulation 
rates of EpiGEP to find the globally optimum solution out 
of the local optimum solution.

First, population diversity is measured according to the 
dispersion degree of individual fitness in the population. 
Population diversity is evaluated by the ratio d of opti-
mal fitness (Fbest) to average fitness (Fave) of the current 
population. Equation (6) is used to determine the popu-
lation diversity when Fbest ≤Fave. On the contrary, Equa-
tion (7) is used. As the population converges, d gradually 
approaches one.

(6)d =
Fmin

Fave
, Fbest ≤ Fave

Fig. 14  Input and output of the membership function
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We designed some different fuzzy controllers to 
describe the size of population diversity and dynami-
cally adjust the genetic manipulation rate. To simplify, 
we introduce how to use three different fuzzy controllers 
to adjust the crossover rate, mutation rate and adjacent 
mutation rate combined with fuzzy mathematics. These 
three fuzzy controllers use the current population diver-
sity and the number of the current iterations as input. 
Outputs of the three fuzzy controllers are crossover rate, 
mutation rate and adjacent mutation rate of the next-
generation population. Membership function of input 
and output is constructed by the triangular membership 
function and trapezoid membership function. Five fuzzy 
linguistic variables {XL, ML, M, MH, XH} are repre-
sented by low, low-medium, medium, medium-high and 
high diversity, respectively. They are used to describe the 
five fuzzy membership functions, as shown in Fig.  14. 
When the population diversity becomes low, GEP will 
increase the mutation rate to enhance diversity. When 
the population diversity becomes too high, GEP will 
increase the crossover rate and reduce the mutation rate.

Bayesian network‑based fitness function
A Bayesian network (BN) is a probabilistic directed 
graphical model [3]. In the GWAS Bayesian network, 
a directed graphical BN model has consisted of a set of 
nodes and edges [6]. Each node represents a genotype or 
phenotype, while each edge represents the conditional 
dependencies between nodes. Given the Markov condi-
tion, in a BN model with m+1 nodes (m SNP nodes and 

(7)d =
Fave

Fmax
, Fbest > Fave

a disease state), the joint probability distribution for the 
m+1 nodes can be calculated as the following [3, 6]:

where pa(xi) denotes the set of parent nodes of xi. 
An instance of m-SNP epistasis BN model is given in 
Fig. 15. Note that, in the epistasis BN model, there are 
only edges going from an SNP node to a disease node 
[6]. As we can see in Fig.  15, for an m-SNP epistasis 
BN model, the total number of combinations of SNP 
and disease state is Cm

n  , where n is the total number of 
SNP in the SNP set.

In EpiGEP, we take the K2 score given in [3] as the fit-
ness evaluation function. K2 score can be calculated as 
the following:

where I is the total number of SNP combinations, and 
I=3m as the possible values of SNP node are 0, 1 or 2. J 
denotes the state number of disease nodes [3]. ri is the 
number of ith SNP combination and rij denotes the num-
ber of ith SNP combination connected with jth disease 
state [3, 6]. K2 score has been proposed to the m-locus 
epistasis detection in MACOED [3] and FHSA-SED [13], 
but these swarm intelligence based algorithms are only 
effective in detecting 2-locus epistasis. In this work, m 
can be set as a positive integer larger than 1 according to 
the users’ requirement.

(8)p = (x1, x2, · · · , xm) =

m
∏

i=1

p(xi|pa(xi))

(9)

K2 scorelog =

1
�

i=1





ri+1
�

b=1

log(b)−

J
�

j=1

rij
�

d=1

log(d)





Fig. 15  A m-SNP epistasis BN model between disease state y and m SNPs x1, x2, x3, . . . , xm
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Cleaning stage: Chi‑square tests for cleaning 
significant epistasis
In the screening stage, GEP-EpiSeeker gets a candidate 
solution set that consists of all suspected disease-caus-
ing SNP combinations. In the cleaning stage, the task 
of GEP-EpiSeeker is to identify the real disease-causing 
SNP combinations from candidate solutions. Previous 
researches [3, 41] showed that the Chi-square test can 
simply and powerfully identify the SNP combinations 
associated with the disease without considering dis-
ease models. GEP-EpiSeeker conducts an exhaustive 
search in candidate solutions with the Chi-square test 
to identify the significant epistasis. In the Chi-square 
test, the null hypothesis is that the candidate solution 
and the specific disease are not associated [3, 41]. The 
alternative hypothesis is that the candidate SNP com-
binations associated with the disease are accepted 
when the P-value of the Chi-square test is smaller than 
0.05 [3, 41].

Experimental method
Datasets
We used 22 GWAS datasets corresponding to 22 epista-
sis models as GWAS datasets, which were generated 
by the classic simulation software GAMETES 2.0 [42]. 
GAMETES was widely used in the performance evalu-
ation of epistasis detection [43]. In 22 epistasis mod-
els, there are 12 disease models with marginal effects 
(DME) and 10 disease models with no marginal effects 
(DNME).

The 12 DME models contain three types of DME 
epistasis models including 4 multiplicative models, 
4 threshold models and 4 concrete models. These 12 
DME models are produced by three different pene-
trance functions. These penetrance functions of the 12 
DME epistasis models are shown in Table 4 [3]. These 
models have both marginal and interaction effects. 
The parameters α and β are used to control the pen-
etrance table. The disease prevalence P(D), the genetic 
heritability h2 and the minor allele frequency MAF can 
be determined by α and β [3]. In this work, P(D)=0.1. 
In the experiments, the multiplicative models, thresh-
old models and concrete models are named as model 
1 ~ model 4, model 5 ~ model 8, model 9 ~ model 12, 
respectively.

The 10 DNME models (model 13 ~ model 22) are 
limited to the Hardy-Weinberg equilibrium (HWE) 
constraints but not limited to specific predetermined 
models. The penetrance table of the DNME models was 
produced by an exhaustive search.

Table 5 lists the details of 22 epistasis models. In each 
model of our experiments, there are 100 datasets with 
750 controls and 750 cases genotyped by 100 SNPs.

Evaluation method
In this section, we compare the performance of GEP-
EpiSeeker with other representative methods [3, 14, 24, 
27, 30]. Following [3], we also used four common metrics 
including power, recall, precision and F1-score (F1) to 
evaluate the performance of these comparative methods. 
These metrics are defined as follows:

where Ns is the number of identified disease-causing 
models from all Nd datasets (in the experiments, Nd= 
100 for each disease model). TP denotes the number 
of SNP combinations associated with disease verified 
by the comparative algorithm, where the P-value of 
the Chi-square test is smaller than the given threshold 
(P<0.05). FN denotes the number of SNP combinations 
that are truly associated with disease but are identified as 
not associated with disease by the algorithm. FP denotes 
the number of SNP combinations that are not associated 

Power =
Ns

Nd
,

Recall =
TP

TP + FN
,

F1 =
2 • Recall ∗ Precision

Recall + Precision

Table 4  Penetrance functions of the three types of DME 
epistasis models

Note: The parameters {α, β} of the model 1~ model 12 are set as {0.0980, 0.7464}, 
{0.0960, 0.4329}, {0.0921, 0.2526}, {0.0782, 0.1610}, {0. 0958, 4.5647}, {0. 0918, 
2.4771}, {0. 0836, 1.5108}, {0.0519, 1.6474}, {0.0804, 1.3856}, {0.0717, 1.2817}, 
{0.0608, 1.3997} and {0.0671, 1.3070}

Multiplicative model Loci 1

AA Aa aa

Loci 2 BB α α α

Bb α α(1+β)2 α(1+β)3

bb α α(1+β)3 α(1+β)4

   Threshold model Loci 1

AA Aa aa

Loci 2 BB α α α

Bb α α(1+β) α(1+β)

bb α α(1+β) α(1+β)

   Concrete model Loci 1

AA Aa aa

Loci 2 BB α α(1+β) α(1+β)

Bb α(1+β) α α

bb α(1+β) α α
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Table 5  Penetrance tables of the twenty-two epistasis models with a different set of parameters

Model id h2 MAF Penetrance function

Genotypes (SNP A) Genotypes (SNP B)

BB Bb bb

model 1 0.005 0.05 AA 0.0980 0.0980 0.0980

Aa 0.0980 0.2989 0.5222

aa 0.0980 0.5222 0.9121

model 2 0.005 0.1 AA 0.0960 0.0960 0.0960

Aa 0.0960 0.1971 0.2824

aa 0.0960 0.2824 0.4047

model 3 0.005 0.2 AA 0.0921 0.0921 0.0921

Aa 0.0921 0.1445 0.1810

aa 0.0921 0.1810 0.2266

model 4 0.005 0.5 AA 0.0782 0.0782 0.0782

Aa 0.0782 0.1054 0.1223

aa 0.0782 0.1223 0.1420

model 5 0.02 0.05 AA 0.0958 0.0958 0.0958

Aa 0.0958 0.5331 0.5331

aa 0.0958 0.5331 0.5331

model 6 0.02 0.1 AA 0.0918 0.0918 0.0918

Aa 0.0918 0.3192 0.3192

aa 0.0918 0.3192 0.3192

model 7 0.02 0.2 AA 0.0836 0.0836 0.0836

Aa 0.0836 0.2099 0.2099

aa 0.0836 0.2099 0.2099

model 8 0.02 0.5 AA 0.0519 0.0519 0.0519

Aa 0.0519 0.1374 0.1374

aa 0.0519 0.1374 0.1374

model 9 0.02 0.05 AA 0.0804 0.1918 0.1918

Aa 0.1918 0.0804 0.0804

aa 0.1918 0.0804 0.0804

model 10 0.02 0.1 AA 0.0717 0.1636 0.1636

Aa 0.1636 0.0717 0.0717

aa 0.1636 0.0717 0.0717

model 11 0.02 0.2 AA 0.0608 0.1459 0.1459

Aa 0.1459 0.0608 0.0608

aa 0.1459 0.0608 0.0608

model 12 0.02 0.5 AA 0.0671 0.1548 0.1548

Aa 0.1548 0.0671 0.0671

aa 0.1548 0.0671 0.0671

model 13 0.01 0.2 AA 0.6377 0.4884 0.3826

Aa 0.4638 0.7645 0.9566

aa 0.5798 0.5624 0.7189

model 14 0.01 0.2 AA 0.2216 0.2758 0.1414

Aa 0.2587 0.1690 0.4013

aa 0.2781 0.1279 0.4196

model 15 0.01 0.2 AA 0.2216 0.2758 0.1414

Aa 0.2587 0.1690 0.4013

aa 0.2781 0.1279 0.4196



Page 18 of 20Peng et al. BMC Genomics          (2021) 22:910 

with disease but are identified as disease-related by the 
algorithm.

For each epistasis model and comparative method, it 
was independently run 20 times with the same 100 data 
files in our experiment to avoid stochastic deviation. For 
each epistasis model, we conducted some t-tests on 20 
results of each method to validate the performance of the 
comparative models and GEP-EpiSeeker.

Parameter setting
Since the Elitism mechanism can guarantee the 
global convergence of GEP [34], EpiGEP uses the rou-
lette wheel selection model and the Elitism mecha-
nism when it produces offspring. The parameters of 
GEP-EpiSeeker are: population_size=100, number_
of_iteration=1000, head_length=5, initial_genetic_
manipulation_rate = 0.3. EpiGEP will terminate when 
the number of iteration N_i >1000. For a k-locus epista-
sis detection, the number of gene N_g in an EpiGEP 
chromosome is k.

The parameters for BEAM and BOOST were set as the 
default of the BEAM and BOOST packages, respectively. 
Due to AntEpiSeeker, EACO and MACOED being three 

ACO-based methods, the parameter settings of these 
ACO-based methods were the same to conduct a fair 
comparison. The ant number and iteration number were 
set to 200 and 1000, respectively; the initial pheromone 
τ0 was set to 100; the parameters and that determine the 
weights of pheromone and heuristic information were 
set to 1. The evaporation coefficient of pheromones was 
set to 0.3. In addition, the rest of parameter settings for 
AntEpiSeeker were: largesetsize = 6, smallsetsize = 3, iIt-
CountLarge = 150, iItCountSmall = 300.

Abbreviations
SNP: Single nucleotide polymorphism; GWAS: Genome-wide association 
studies; BEAM: Bayesian Epistasis Association Mapping; ACO: The ant colony 
optimization algorithm; MACOED: A multi-objective optimization heuristic 
method for identifying epistatic interactions; FAACOSE: A multi-objective 
ACO-based method for identifying epistatic interactions; EACO: An ACO-
based method for identifying epistatic interactions by incorporating heuristic 
information multi-SURF into ant-decision rules; SURF: Spatially Uniform ReliefF; 
GE: A Genetic Algorithm-based hybrid algorithm, which is named genetic 
ensemble; CSE: A Cuckoo Search method for identifying SNP interactions; 
FHSA-SED: A harmony search algorithm with the Bayesian network and Gini-
score for identifying epistatic interactions; GEP: The Gene Expression Program-
ming algorithm; GA: The Genetic Algorithm; GP: The Genetic Programming 
algorithm; DME: Disease models with marginal effects; DNME: Disease models 
with no marginal effects; GT domain: A substructure of the chromosome 
that represents the gene type; LD: Linkage disequilibrium; BN: The Bayesian 

Table 5  (continued)

Model id h2 MAF Penetrance function

Genotypes (SNP A) Genotypes (SNP B)

BB Bb bb

model 16 0.01 0.2 AA 0.1391 0.1882 0.2214

Aa 0.1901 0.1114 0.0198

aa 0.2056 0.0514 0.2530

model 17 0.01 0.2 AA 0.1391 0.1882 0.2214

Aa 0.1901 0.1114 0.0198

aa 0.2056 0.0514 0.2530

model 18 0.01 0.4 AA 0.1032 0.0634 0.1242

Aa 0.0978 0.0858 0.0693

aa 0.0210 0.1467 0.0595

model 19 0.01 0.4 AA 0.1852 0.2908 0.2340

Aa 0.2860 0.2009 0.2770

aa 0.2486 0.2661 0.1657

model 20 0.01 0.4 AA 0.0731 0.0418 0.0146

Aa 0.0240 0.0639 0.0591

aa 0.0682 0.0188 0.0946

model 21 0.01 0.4 AA 0.0462 0.1275 0.0694

Aa 0.1150 0.0667 0.0971

aa 0.1067 0.0691 0.1085

model 22 0.01 0.4 AA 0.0950 0.1222 0.1267

Aa 0.0973 0.1294 0.0999

aa 0.2014 0.0439 0.1222
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network; GAMETES: A simulation software for generating simulation GWAS 
datasets; MAF: The minor allele frequency; HWE constraints: The Hardy-
Weinberg equilibrium constraints; TP: True Positive; TN: True Negative; FN: False 
Negative; FP: False Positive.
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