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Abstract

Background: The yield of many crop plants can be substantially reduced by plant-pathogenic Xanthomonas bacteria.
The infection strategy of many Xanthomonas strains is based on transcription activator-like effectors (TALEs), which are
secreted into the host cells and act as transcriptional activators of plant genes that are beneficial for the bacteria.
The modular DNA binding domain of TALEs contains tandem repeats, each comprising two hyper-variable amino
acids. These repeat-variable diresidues (RVDs) bind to their target box and determine the specificity of a TALE.
All available tools for the prediction of TALE targets within the host plant suffer from many false positives. In this paper
we propose a strategy to improve prediction accuracy by considering the epigenetic state of the host plant genome
in the region of the target box.

Results: To this end, we extend our previously published tool PrediTALE by considering two epigenetic features: (i)
chromatin accessibility of potentially bound regions and (ii) DNA methylation of cytosines within target boxes. Here,
we determine the epigenetic features from publicly available DNase-seq, ATAC-seq, and WGBS data in rice.
We benchmark the utility of both epigenetic features separately and in combination, deriving ground-truth from
RNA-seq data of infections studies in rice. We find an improvement for each individual epigenetic feature, but
especially the combination of both.
Having established an advantage in TALE target predicting considering epigenetic features, we use these data for
promoterome and genome-wide scans by our new tool EpiTALE, leading to several novel putative virulence targets.

Conclusions: Our results suggest that it would be worthwhile to collect condition-specific chromatin accessibility
data and methylation information when studying putative virulence targets of Xanthomonas TALEs.
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Background
The cultivation of crop plants can be severely impaired by
the infestation with phytopathogenic Xanthomonas bac-
teria. In many parts of the world, the crop yield of rice
plays a key role in ensuring nutrition of the population.
However, the yield of a rice field can be substantially
reduced due to infection with Xanthomonas oryzae pv.
oryzae (Xoo) or Xanthomonas oryzae pv. oryzicola (Xoc),
which cause significant loss in many cultivation areas [1].
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Host plant infection depends on the bacterial type III
secretion system. Specific bacterial effector proteins are
secreted into the plant cell, where they modulate plant
response. Of these, transcription activator-like effectors
(TALEs) are sequence-specific DNA-binding proteins that
bind to host promoters to activate the expression of down-
stream genes. If such genes promote disease, they are
termed susceptibility genes.
TALE proteins comprise a nuclear localization signal, a

modular DNA-binding domain, and an activation domain.
The DNA-binding domain of natural TALEs is composed
of 1.5 to 33.5 consecutive repeats, where each repeat binds
to one nucleotide of the target box [2, 3]. Each repeat com-
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prises ∼ 34, highly conserved, amino acids (AAs). Only
the residues at position 12 and 13 are hyper-variable and
are called repeat-variable diresidue (RVD). The second
residue of the RVD binds to the target base, while the first
residue has a stabilizing effect [4, 5].
The target boxes of a TALE can be predicted based on

the one-to-one correspondence between RVD and tar-
get base [3, 6]. For example, the RVD HD (His and Asp)
prefers to bind to base ’C’. Furthermore, TALE target boxes
show an additional preference for the base at “position
0” directly preceding the nucleotides bound by the repeat
array, which is usually ‘T’ [3, 7]. As a rare exception, indi-
vidual aberrant repeats of unusual length may loop out of
the repeat array to allow binding to a target DNA sequence
that is one bp shorter [8].
As shown recently [9, 10], DNA methylation alters the

preference of RVDs for cytosines. DNA methylation is an
epigenetic mechanism, where a methyl group is added to
cytosine to form 5-methylcytosine (5mC) [11]. Biochemi-
cal analyses [9] showed that methylated C is bound by NG
rather than HD. The RVD NG binds specifically to base T,
which is structurally identical to 5mC in the part that faces
the major grove of the DNA which essentially is bound by
the RVD [12]. Hence, the RVD NG may also bind well to
5mC in addition to T. The RVD N*, where ‘*’ represents
the deletion of the 13th amino acid, is known to preferen-
tially bind to T or C, and has been shown to also bind to
5mC and 5hmC [13].
Furthermore, it has been shown that the accessibility of

chromatin in the region of the target box has an impact on
the binding ability of TALEs [12, 14].
Several tools to identify potential target boxes based

on the RVD sequence exists. These include the “Target
Finder” of TALE-NT suite (http://tale-nt.cac.cornell.edu/)
[15, 16], the tool Talvez (http://bioinfo-web.mpl.ird.fr/cgi-
bin2/talvez/talvez.cgi) [17] and TALgetter (http://www.
jstacs.de/index.php/TALgetter) [18].
Our recently published tool PrediTALE (http://www.

jstacs.de/index.php/PrediTALE) [19] models binding
specificities based on quantitative data and includes
further aspects of the binding of TALEs to their target
boxes. It considers putative dependencies between adja-
cent RVDs and dependencies between the first RVD and
the preference at position 0 of the target box, as well as
the frame shift that may occur for aberrant repeats [8].
Prediction of TALE targets with PrediTALE achieves an
improved prediction accuracy compared with previous
approaches.
Still, the predictions of all tools suffer from many

false positives. All existing tools neglect epigenetic fea-
tures when predicting TALE target boxes, although DNA
methylation and chromatin accessibility are known to be
important determinants of TALE-DNA binding. Hence,
we aim at improving the accuracy of TALE target pre-

diction by incorporating such epigenetic features into an
extended version of PrediTALE termed EpiTALE.
Our new application suite EpiTALE contains all tools

necessary for TALE target prediction incorporating epi-
genetic features of the target site. First, we extend the
PrediTALE model to consider DNA methylation infor-
mation when making predictions and, second, we filter
predictions using accessibility data such as DNase-seq and
ATAC-seq.
We approximate the specificities of the different RVD

types for methylated cytosine based on experimental data.
Users of our new suite EpiTALE may then provide methy-
lation data in addition to genomic sequence or extracted
promoters, which will be considered in prediction scoring.
EpiTALE is the first approach that accounts for methy-
lated cytosine when predicting TALE target boxes.
To incorporate chromatin accessibility, we annotate the

chromatin accessibility of target sites predicted by Epi-
TALE using DNase-seq or ATAC-seq data and suggest
criteria to filter putatively inaccessible target boxes.
We benchmark EpiTALE based on RNA-seq data after

Xanthomonas infection of rice plants. Here, we consider
infection studies for 3 Xoo and 10 Xoc strains, where each
strain expresses a different repertoire of TALEs, with up
to 27 TALEs per strain [20–23].
We further apply EpiTALE using both, methylation

information and a filter based on chromatin accessibil-
ity, for genome-wide predictions and identify previously
neglected putative TALE target boxes, which show a tran-
scription response in infection experiments according to
RNA-seq data.

Methods
Data
Bisulfite sequencing data of rice
We obtained publicly available whole genome bisul-
fite sequencing (WGBS) data of rice from the Euro-
pean Nucleotide Archive (ENA) https://www.ebi.ac.uk/
ena available under run accessions SRR3485276 (replicate
1) and SRR3485277 (replicate 2). These data have been
collected as part of a study by Zheng et al. [24], who inves-
tigated epigenetic changes under drought stress. The two
WGBS runs we consider in this study to determine DNA
methylation levels in rice correspond to two biological
replicates of Huhan3 (O. sativa L. ssp. japonica) under
normal conditions.
We clipped sequencing adapters and removed low-

quality bases at the ends of these paired end reads
using Trimmomatic (v0.33) [25] with parameters
“CROP:80 SLIDINGWINDOW:4:28 MINLEN:20”. We
mapped the processed reads to the rice genome (MSU7,
http://rice.uga.edu/pub/data/Eukaryotic_Projects/o_
sativa/annotation_dbs/pseudomolecules/version_7.0/all.
dir/all.chrs.con) via Bismark (v0.20.0) [26] and Bowtie2
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(v2.3.4.3) [27]. We used the deduplication tool from
Bismark to remove PCR artefacts.
We used the Bismark methylation extractor to deter-

mine the methylation levels and set the following param-
eters “–bedGraph –CX -p”, which reports methylation
of cytosines in the three contexts ‘CpG’, ‘CpHpG’ and
‘CpHpH’ (H = ‘A’, ‘C’ or ‘T’). The output contains a
coverage file reporting count values for methylated and
unmethylated cytosines. We finally merged the coverage
files of both replicates by simply summing the (unnor-
malized) counts at identical positions and then comput-
ing the methylation level. To obtain conservative methy-
lation calls, we introduced a bias towards unmethy-
lated cytosines in sparsely covered regions by adding a
pseudo count of 1 to the count values for unmethylated
cytosines.
Supplementary Figure S1 has been generated by the

methylation report of ViewBS [28], and shows the distri-
bution of methylation levels and the global methylation
level of the three methylation contexts.

RNA-seq data
To benchmark EpiTALE, we used RNA-seq data as
described previously [19]. Briefly, we used in-house
RNA-seq infection studies of rice leaves with Xoo
strains PXO83, PXO142, ICMP 3125T and publicly
available data from infection studies with Xoc strains
BLS256, BLS279, CFBP2286, B8-12, L8, RS105, BXOR1,
CFBP7331, CFBP7341, CFBP7342 [22]. Genes that are dif-
ferentially expressed in the infection studies compared to
mock control and whose promoters contain a putative tar-
get box of a TALE are defined as true positive targets. A
direct assignment to a single TALE of a strain is not pos-
sible based on the RNA-seq data, since the entire TALE
repertoire of a strain acts simultaneously in the infection
studies.

DNase-seq and ATAC-seq data
To identify accessible regions, we mapped publicly avail-
able DNase-seq and ATAC-seq data to the rice genome
(MSU7). Neither of these libraries has been collected
under conditions perfectly matching the RNA-seq data
from the infection studies. However, chromatin accessibil-
ity might still be sufficiently similar to be informative for
subsequent TALE target prediction.
We downloaded DNase-seq reads of rice seedlings

[29] from NCBI Sequence Read Archive (SRA), acces-
sion SRX038423, and used Cutadapt [30] for clipping
sequencing adapters and Trimmomatic (v0.33) [25] with
parameters “SLIDINGWINDOW:4:20 MINLEN:20” for
removing low-quality bases. We mapped the reads to the
rice MSU7 genome using Bowtie2 [27]. In the follow-
ing we will refer to this DNase-seq dataset as ’DNase’ to
improve readability. Two ATAC-seq datasets for wildtype
rice are publicly available. In the first study, nucleosome-

free chromatin of 14 day old rice leaves was measured in
a time series under different stress conditions [31]. As we
are interested in normal conditions, we only consider the
control experiments from the corresponding ENA archive
(accession: PRJNA305365). We refer to this dataset as
’ATAC1’.
For the second study [32], ATAC-seq data of rice nuclei

from leaf mesophyll cells where downloaded from ENA
(accession: PRJNA391551) and we refer to this dataset as
’ATAC2’.
For both datasets we used Trimmomatic (v0.39) in

paired end mode for clipping sequencing adapters and for
removing low-quality bases from the ends of reads with
parameters “ILLUMINACLIP:NexteraPE-PE.fa:2:30:10
SLIDINGWINDOW:4:20 MINLEN:20”, mapped the
resulting reads with Bowtie2 to rice genome (MSU7) and
removed duplicates with Samtools [33].
The mapping statistics of all three datasets are sum-

marized in Supplementary Table A. The two ATAC-seq
datasets have rather low numbers of uniquely mapped
reads. Especially the ATAC1 dataset has only ∼ 5%
uniquely mapped reads. Hence, we decided to use only
DNase and ATAC2 for benchmarking.
For both, the DNase and the ATAC2 dataset we used

JAMM [34] for peak calling with parameters “-f 1 -d y”,
which results in JAMM only considering 5’ ends of reads
and retaining duplicate reads.
We used the open-source library Jstacs [35, 36] (class

projects.encodedream.Pileup) to calculate the 5’
coverage with ATAC-seq or DNase-seq reads at each posi-
tion and normalized coverage relative to the mean of a
10000 bp sliding window.

Model
The statistical model behind EpiTALE is based on mod-
elling the total binding score of a putative target box x =
x0x1 . . . xL to the RVD sequence r = r1r2 . . . rL of length L.
Each RVD r� ∈ {AA, . . . ,YY ,A∗, . . . ,Y∗} is composed of
its two amino acids. Each putative target box is a sequence
of x� ∈ {A,C,G,T}. Since it is known that the 13th AA
of an RVD has the largest contribution to nucleotide pref-
erence [4, 5], and since quantitative data about binding
preference are sparse for many RVDs, the EpiTALEmodel
considers all RVDs with the same 13th AA as identical by
default. For a subset of RVDs with sufficient data, how-
ever, themodel explicitly considers the 12th AA of an RVD
as well.
In addition to the original definition of the PrediTALE

model, we introduce q� ∈[ 0, 1] as the methylation prob-
ability at position � and q ∈ q1 . . . qL as the sequence of
methylation probabilities for each nucleotide of the tar-
get box x. These methylation probabilities are considered
by the EpiTALE model for all nucleotides that are directly
bound by an RVD of a TALE.
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In the following, we provide the definition of the com-
plete EpiTALE model and highlight the differences to the
original PrediTALE model.
The total binding score of a putative target box x given

the RVD sequence r of a TALE and the methylation prob-
abilities q is modelled as the sum of the following terms: i)
the score m0(x0|r1, θ0) of the zero-th nucleotide x0 given
the first RVD r1, ii) the score m1

(
x1|r1, θ1, θm, θMm , q1

)

for binding between first RVD r1 and first nucleotide
x1, and iii) the score m

(
x�|r�−1, r�, θm, θMm , q�

)
for bind-

ing of the remaining RVDs to the remaining nucleotides.
The terms ii) and iii) may be weighted by a position-
dependent but sequence-independent term p(�|θp). In the
EpiTALE model, the terms ii) and iii) further depend on
the methylation probability q� of nucleotide x�:

s(x|r, q, θ) = m0(x0|r1, θ0)
+ m1(x1|r1, θ1, θm, θMm , q1) · p(1|θp)

+
L∑

�=2
m(x�|r�−1, r�, θm, θMm , q�) · p(�|θp)

The set of real-valued parameters θ = (
θ0, θ1, θm, θMm , θp

)

includes the parameters for binding to the zero-th, first
and remaining nucleotide, the binding specifities for 5mC
as well as the position-dependent term.
In the following, we provide a detailed definition of each

of the individual terms of the EpiTALE model.
As in the original PrediTALE model, the term for bind-

ing to the zero-th nucleotidem0(x0|r1, θ0) is independent
of methylation probabilities, since there are no appro-
priate activity or binding studies regarding methylation
sensitivity available, yet.
As in PrediTALE, this term corresponds to the sum of

the following parameter values: i) the a-priori parame-
ter of nucleotide zero πx0 , ii) the parameter θ0,x0 for the
zero-th nucleotide. In addition, we define a set R0 of all
RVDs with sufficient data to model the dependency of the
nucleotide preference at position zero on the first RVD. In
case that the first RVD r1 is in this setR0, we further add
the parameter θ0,x0|r1 for the zero-th nucleotide depending
on r1:

m0(x0|r1, θ0) = πx0 + θ0,x0 + δ(r1 ∈ R0) · θ0,x0|r1 .

Here, we define R0 = {HD,NN ,NG,NI,NS} and πT =
log(0.6),πC = log(0.3),πA = πG = log(0.05).
The binding of the first RVD to the first

nucleotide of the target box is modelled by the term
m1(x1|r1, θ1, θm, θMm , q1), which consists of the sum of
two terms, one for the unmethylated state and one for the
methylated state of nucleotide x1.
Specifically, the probability (1 − q1) that the first posi-

tion is unmethylated is multiplied by the term adopted

from the original PrediTALE model, which always con-
tains a parameter θm,x1|r1,13 for the general preference of
the 13th AA r1,13 of the RVD to nucleotide x1. For a sub-
setR1 of RVDs, a parameter θm,x1|r1 is added that models
the dependency on the complete RVD. For a second sub-
setR2 of RVDs, a parameter θ1,x1|r1,13 captures a deviating
nucleotide preference of the 13th AA of the RVD that is
specific to position 1 of the target box. The setsR1 andR2
are again chosen according to the availability of sufficient
data.
Given a methylation probability q1 > 0 at position 1,

this methylation probability is multiplied by the parameter
θMm,x1|r1,13 modelling the preference of the 13th AA of the
first RVD to bind to amethylated cytosine. If the first RVD
r1 belongs to the set R1, the general preference θMm,x1|r1
of the complete first RVD to bind methylated cytosine is
added. In the methylated case, data are not sufficient to
also determine parameters specific to position 1, and the
third parameter in analogy to the unmethylated case is
omitted.
Combining all these terms into the formal definition of

m1(x1|r1, θ1, θm, θMm , q1), we obtain

m1
(
x1|r1, θ1, θm, θMm , q1

)

= (1 − q1) · [
θm,x1|r1,13 + δ(r1 ∈ R1) · θm,x1|r1

+δ(r1,13 ∈ R2) · θ1,x1|r1,13
]

+ q1 ·
[
θMm,x1|r1,13 + δ(r1 ∈ R1) · θMm,x1|r1

]
.

The subsets of RVDs are set to R1 =
{HD,NN ,NG,HG,NI,NK} andR2 = {D,N ,G, I} as orig-
inally proposed for PrediTALE [19], and are also used in
the remaining, third term of the model that is described
in the following.
The binding to the remaining positions is modelled by

termsm
(
x�|r�−1, r�, θm, θMm , q�

)
, which are identical to the

previous PrediTALE variant in the unmethylated case.
Again, we have a term θm,x�|r�,13 for the binding prefer-
ence of the 13th AA of the RVD. For RVDs with sufficient
data (i.e. those inR1), a term θm,x�|r� for the preference of
the complete RVD is added. For RVDs with sufficient data
to also model dependencies between adjacent RVDs (i.e.,
those in R3), we include a third term θm,x�|r�,r�−1,12 , where
the nucleotide preference depends on the current RVD
and the 12th AA of the previous RVD as in the original
PrediTALE model.
In case of a methylation probability q� > 0, the prefer-

ence θMm,x�|r�,13 of the 13th amino acid to bind a methylated
cytosine and, if applicable, the preference θMm,x�|r� of the
entire RVD for a methylated cytosine are included. Again,
data for the methylated case are not sufficient to also
include a term modelling dependencies between adjacent
RVDs, and this term in analogy to the unmethylated case
is omitted. Hence, we obtain the complete definition of



Erkes et al. BMC Genomics          (2021) 22:914 Page 5 of 18

m
(
x�|r�−1, r�, θm, θMm , q�

)
as

m
(
x�|r�−1, r�, θm, θMm , q�

)

= (1 − q�) · [
θm,x�|r�,13 + δ(r� ∈ R1) · θm,x�|r�

+δ(r�, r�−1 ∈ R3) · θm,x�|r�,r�−1,12

]

+ q1 ·
[
θMm,x�|r�,13 + δ(r� ∈ R1) · θMm,x�|r�

]
.

In analogy to the original PrediTALE publication, we set
R3 = {HD,NN ,NG,NI}.
We set q� := 0, if the nucleotide at position � of the

target sequence is not a cytosine.

Scale parameters to model specificities for 5mC
As described in the previous section, we extended the
previously trained PrediTALE model by adding param-
eters for the specificity to bind to ’5mC’ to incorporate
methylation information into the TALE target predic-
tion of EpiTALE. The former training [19] included pairs
of TALEs and their putative target boxes from different
experiments [37–41].
A thorough study by Zhang et al. tested all theo-

retically possible combinations of RVDs to bind to 5-
methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC),
cytosine and thymine [10]. For this purpose, the activa-
tion of a GFP expression reporter was measured in the
screening.
To obtain fitted values for the parameters θMm (see above)

representing binding preferences to methylated cytosines,
we considered specificities formethylated cytosines deter-
mined by Zhang et al. [10]. To this end, we scaled the
measured values from Zhang et al. to match the range
of parameter values of the original PrediTALE model.
Specifically, we used the two reference points for cytosine
and thymine also present in the data of Zhang et al. to
scale the raw measured values ωx�|r� to fit to our trained
parameter space.
Let ωx�|r�,13 be the arithmetic mean of all ωx�|r� with the

same 13th AA.
The specificity of the 13th AA of the RVD to bind 5mC

is determined by the following scaling:

θMm,5mC|r�,13 = ω5mC|r�,13 · a + b

with

a = maxs∈{C,T} θm,s|r�,13 − mins∈{C,T} θm,s|r�,13
maxs∈{C,T} ωs|r�,13 − mins∈{C,T} ωs|r�,13

,

b = min
s∈{C,T}

θm,s|r�,13 − a · min
s∈{C,T}

ωs|r�,13

The parameters for the specificity of RVDs from R1 to
bind 5mC result from the following scaling:

θMm,5mC|r� = ω5mC|r� · a + b − θMm,5mC|r�,13 ,

with

a = maxs∈{C,T} θm,s|r�,r�,13 − mins∈{C,T} θm,s|r�,r�,13
maxs∈{C,T} ωs|r� − mins∈{C,T} ωs|r�

,

b = min
s∈{C,T}

θm,s|r�,r�,13 − a · min
s∈{C,T}

ωs|r� ,

θm,T |r�,r�,13 = θm,T |r� + θm,T |r�,13 ,
θm,C|r�,r�,13 = θm,C|r� + θm,C|r�,13

Here, we consider only values measured for 5mC but
not those measured for 5hmC for two reasons. First, the
plant genome contains much less 5hmC than 5mC [42,
43]. Second, it is not possible to distinguish between 5mC
and 5hmC in bisulfite sequencing. We also decided not to
calculate the average over both measurements, since the
specificity of both differs substantially for some RVDs.
A visualization of the model parameters of EpiTALE

including the parameters for 5mC is shown in Fig. 1. Sev-
eral of the thirteenth amino acids and several of the com-
mon RVDs show large differences in specificity between
an unmethylated and a methylated cytosine.

Accessibility filter
Target boxes predicted by EpiTALE may further be fil-
tered for chromatin accessibility. For each predicted target
sequence, a window from 300 bp upstream to 50 bp down-
stream of the target box is checked for an overlapping
peak within the peaks determined by JAMM [34] from
chromatin accessibility data.
As an additional filter criterion, the number n of posi-

tions that correspond to at least one 5’-end of a read
within a defined region around the predicted target box
is considered. For promoterome-wide predictions, this
region corresponds to the complete promoter sequence
(-300 bp to +200 bp relative to TSS [18]) that is scanned
for putative TALE target boxes. In genome-wide predic-
tions, the complete genomic sequence of the host plant
is scanned for putative TALE target boxes and the scan-
ning process is annotation-agnostic by concept. Hence,
an anchor point similar to the TSS in promoterome-wide
predictions is lacking for genome-wide predictions. As a
proxy, we use the position of the predicted target box in
this case, and consider a window from -300 bp to +200 bp
around the predicted target box, instead.
If there is an overlapping peak or the coverage filter cri-

terion is fulfilled, we consider the target box as accessible.

Prediction of TALE target boxes
The basic procedure of score calculation in a sliding win-
dow along the input sequences remains as described pre-
viously [19]. Additionally, we use the scaled parameters
formethylation specificity and themethylation levels from
WGBS data for promoterome-wide TALE target predic-
tion. Here, we compare promoterome-wide predictions
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Fig. 1 Parameters of the EpiTALE model. Parameters are represented by circles that are arranged in rows according to the bound nucleotide
including 5mC. Column labels indicate the RVD, 13th AA, or combination of RVD and previous 12th AA that a parameter depends on. The outer
circles are filled by a coloured circle proportional to the corresponding specificity parameters, where different colours are used for the four
nucleotides and 5mC, respectively. For instance, the RVD ’HD’ has a strong preference for C, while A, 5mC and T are bound in decreasing preference,
and G is a clear mismatch for ’HD’. There are no separate parameters for methylated cytosines for the sub-model at position 0, position 1 and the
“conditional” sub-model, as there are no sufficient data available yet

with and without methylation information and we per-
form these studies for each TALE of 3 Xoo strains and 10
Xoc strains (Supplementary File F).
In addition, DNase-seq andATAC-seq data were used to

check the predicted targets for accessibility and to derive
a filter criterion based on the predictions for TALEs from
the 3Xoo strains.We then applied this fixed filter criterion
to the predictions for TALEs from the 10 Xoc strains.

Genome-wide predictions & filtering
With EpiTALE, we perform genome-wide predictions in
the Oryza sativa Nipponbare genome (MSU7) including
methylation information and the filter based on chro-
matin accessibility. For the resulting top 100 predictions
of each TALE, we use above mentioned RNA-seq data
to search for a differentially expressed region near the
putative target box using DerTALE, as described pre-
viously [19]. We visualize the resulting profiles with
an auxiliary R script, which plots the RNA-seq profile
surrounding the putative target box and uses gff3 files
to display known genes overlapping with the profile.
Here, we use the MSU7 annotation (http://rice.uga.edu/
pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/
pseudomolecules/version_7.0/all.dir/all.gff3). For differ-
entially expressed regions with no overlapping annotated
gene, it might be that a true gene locus is missing from
the existing annotation, even for high-quality annotations
like MSU7. Especially the annotation of non-coding
RNAs may be incomplete for non-model plants. For this
reason, we use blastx and blastn to search for similar
sequences in the non-redundant protein sequence (nr)
database and the reference RNA sequences (refseq_rna)
database using NCBI BLAST+ version 2.7.1 [44] (ftp://
ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/).
High-quality BLAST matches in other organisms may
provide indication that the differentially expressed region
is indeed a functional gene. Furthermore, functional
annotations from these organisms may also give insights
into the role of such genes in the infections process.

Evaluation of prediction results
To compare the impact of the two epigenetic features, we
evaluate the following prediction variants: original Pred-
iTALE model without epigenetic features (P), EpiTALE
with consideration of methylation (P + Methyl), EpiTALE
with filtering based on the accessibility filter criterion (P
+ Access) and EpiTALE with methylation and accessibility
filtering (P + Methyl + Access).
We compare the performance of these 4 variants for the

above mentioned Xoo and Xoc strains based on the cor-
responding RNA-seq infection studies. For benchmarking
based on differentially expressed genes, we consider a pro-
moter region 300 bp upstream of the transcription start
site to 200 bp downstream of the transcription start site or
until the start codon as described previously [18, 19]. In
addition, we apply the previous tools for TALE target pre-
diction Target Finder [15, 16], Talvez [17], and TALgetter
[18] using default parameters to the extracted promoter
sequences providing the RVD sequences of the TALEs
present in the respective Xanthomonas strain. In case of
multiple predictions per gene, only the prediction yielding
the best prediction score is considered.
The use of RNA-Seq data from inoculation studies to

evaluate the predictions entails two problems: First, when
plant tissue is inoculated with a Xanthomonas strain, mul-
tiple TALEs lead to differential gene expression. Hence,
it is not possible to clearly assign differentially expressed
genes to a particular TALE. The RVD sequences of the
TALEs of the Xanthomonas strains studied are given
in F. Secondly, it is not clear whether a gene was up-
regulated by the binding of a TALE to its promoter or by
secondary effects triggered through inoculation with the
Xanthomonas strain.
In order to compare previous tools and the 4 Epi-

TALE prediction variants mentioned above, we proceed
in analogy to the previous comparison of PrediTALE with
alternative approaches [19]: We vary the number t of pre-
dictions considered per TALE between 1 and 50, i.e., we
only consider the t predictions with the largest prediction

http://rice.uga.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.gff3
http://rice.uga.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.gff3
http://rice.uga.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.gff3
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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scores for each TALE. Given the list of predicted target
genes corresponding to the top t predictions per TALE,
we may check each of these target genes for up-regulation
in the infection experiment.
Specifically, we define all genes as true positives (TPs)

that are up-regulated in the RNA-seq data relative to con-
trol and have a predicted target box within the promoter.
We define those genes as false positives (FPs) that are not
up-regulated after inoculation, but have a predicted tar-
get box in their promoter. The definition of false negatives
is not clearly possible, since up-regulated genes without a
predicted target box could be indirect target genes. Fol-
lowing this procedure, we record the number of TPs given
each cutoff t on the number of predictions per TALE.

Availability
The EpiTALE suite is available as a JavaFX-based
stand-alone application with graphical user inter-
face and as command line application under http://
jstacs.de/index.php/EpiTALE. A minimal example for
testing is available from zenodo at https://www.doi.
org/10.5281/zenodo.4749294. Source code is avail-
able from https://github.com/Jstacs/Jstacs in package
projects.tals.epigenetic.
The EpiTALE suite contains tools, that (i) convert Bed-

Methyl files to Bismark format, (ii) merge two Bismark
files, (iii) compute a coverage pileup of 5’ ends of mapped
reads from an DNase-seq or ATAC-seq experiment, (iv)
normalize the coverage pileup relative to the mean of a
10000 bp sliding window, (v) convert methylation data
(Bismark files) and chromatin accessibility data (coverage
pileup and/or narrowPeak file) to promoter coordinates
and (vi) predict TALE target boxes with optional epige-
netic input within genomic or promoter sequences.

Results and discussion
It has been shown previously [9, 10] that the specificity of
RVDs for methylated cytosines differs from unmethylated
cytosines. In EpiTALE, we include separate specificities
for methylated cytosines (cf. Methods) and allow for con-
sidering methylation levels along the input sequences in
TALE target prediction. In addition, binding of TALEs
to their target box may be influenced by local DNA
accessibility [12, 14]. Hence, EpiTALE implements an
accessibility-based filter on predictions of target boxes.
The potential improvements achieved by these exten-

sions may be twofold. First, introducing separate speci-
ficity parameters for methylated cytosines may yield more
meaningful prediction scores, ideally improving the ranks
of true positive predictions of target boxes. Second,
an accessibility-based filter that predominantly excludes
previous false positive predictions of target boxes may
achieve a better enrichment of true positives among the
top predictions of EpiTALE. In a practical scenario where

only a limited number of predictions may be validated in
wet-lab experiments, improved ranks of true positive pre-
dictions and exclusion of false positive predictions from
the top ranks have the potential to increase the rate of
validated and potential virulence targets.
In the following sections, we first assess the stabil-

ity of prediction performance regarding different filtering
criteria on the accessibility data. We then present a com-
prehensive benchmarking experiment including differ-
ent variants of EpiTALE considering epigenetic features,
where we also include previously published tools for TALE
target prediction as a reference. We further investigate to
which extent epigenetic features help to improve the ranks
of true positive predictions, and finally apply EpiTALE
including methylation information and the accessibility-
based filter to yield genome-wide predictions of TALE
targets.

Performance evaluation of different accessibility filter
parameters on DNase dataset
In this section, we benchmark the effect of different fil-
ters based on chromatin accessibility applied to EpiTALE
predictions – at this stage still without using methylation
information. To this end, we test different filtering thresh-
olds for predicting target boxes of the TALEs present in
3 Xoo strains, and we evaluate the chosen filter criteria
on independent data for 10 Xoc strains. Here, we need to
resort to a rather indirect assessment of predictions based
on RNA-seq data, because currently ChIP-seq data for
TALEs are lacking.
Hence, predictions are evaluated based on RNA-seq

data from infection experiments of these Xoo and Xoc
strains compared to mock control. Specifically, we con-
sider a predicted target gene as true positive (TP) if its
promoter contains a predicted TALE target box and this
gene is up-regulated in the infection experiment. We con-
sider a predicted target gene as false positive (FP) if its
promoter contains a predicted TALE target box but is not
up-regulated in the infection experiment (cf. Methods:
Evaluation of prediction results).
Supplementary Figure S2 shows violin plots of the

accessibility values for the three accessibility datasets con-
sidered. Here, we compare the accessibility of TP predic-
tions compared with FP predictions according to RNA-
seq data. Predictions are generated for TALEs present in
Xoo and the Xoc strains and chromatin accessibility is
summarized per predicted target box as the fraction of
promoter positions that are covered by at least one 5’ end
of a read. We always consider the window starting 300 bp
upstream and ending 50 bp downstream the target box in
the strand orientation of the downstream gene.
The violin plot of the DNase dataset shows a visible

although small difference in accessibility between TP and
FP targets for both Xoo and Xoc. The two ATAC-seq

http://jstacs.de/index.php/EpiTALE
http://jstacs.de/index.php/EpiTALE
https://www.doi.org/10.5281/zenodo.4749294
https://www.doi.org/10.5281/zenodo.4749294
https://github.com/Jstacs/Jstacs
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datasets, however, show substantially smaller differences
with almost identical median values and generally low
fraction of covered promoter positions. The p-values of
a Wilcoxon rank sum test show a statistically significant
difference between TP and FP predictions for all three
datasets and strains, except for the ATAC1 dataset in case
of the Xoc strains. These ATAC-seq datasets are likely of
limited use for filtering TALE target predictions. Hence,
we focus on the DNase-seq data in the following analyses,
and provide results using the ATAC2 dataset as sup-
plementary figures. The reason that the two ATAC-seq
datasets are less suited for filtering TALE target predic-
tions may be the relatively low genomic coverage with
ATAC-seq reads but also different experimental condi-
tions when collecting these publicly available ATAC-seq
data. Plants at different life stages and grown under differ-
ent greenhouse conditions may have different accessibility
profiles. For the DNase-seq data, this issue seems to be
less severe, although DNase data have been collected for
rice seedlings. We speculate that high-coverage ATAC-
seq data collected under the same conditions as for the
infection experiments might still be informative for TALE
target prediction.
The accessibility filter criterion consists of two parts: A

putative target box from the initial predictions survives
the filter if it has an overlapping peak of chromatin acces-
sibility within the window from 300 bp upstream to 50
bp downstream of the target box. A putative target box
also survives the filter if at least n positions within the
complete promoter correspond to at least one 5’ end of a
read.
The performance of EpiTALE with a filter based on the

DNase-seq dataset compared with the original PrediTALE
neglecting chromatin accessibility is shown in Supple-
mentary Figure S3 for three Xoo strains. Here, different
thresholds n on the number of positions covered by the
5’ end of at least one read are considered, and the num-
ber of true positive (TP) target boxes is plotted against the
number of predictions allowed per TALE, with a rank cut-
off from 1 to 50. To ensure comparability to the original
PrediTALE publication [19], we use the same type of per-
formance plots with the same rank cutoffs and the same
definition for differentially up-regulated genes caused by
the respective strains in the RNA-seq infection studies.
Briefly, we consider those genes as putatively up-regulated
by TALEs that have an uncorrected p-value below 0.05
in the RNA-seq infection studies of the 3 Xoo strains and
are at least 2-fold up-regulated. Here, we consider these
rather relaxed criteria, as we want to avoid predictions to
be erroneously considered false positives due to the larger
variation at the early time point after infection (24 h) for
the Xoo strains.
Using the accessibility filter, a threshold of n = 30 yields

the largest area under the curve of TP predictions (AUC-

TP) for the strains ICMP 3125T and PXO83. In case of
ICMP 3125T, filtering with this threshold for any rank cut-
off shows improved or at least identical performance as
PrediTALE without filtering, and a larger improvement
than any other filter threshold tested. For PXO83, the
same effect can be observed, where only when consider-
ing the top 3 predictions per TALE, a threshold of n = 35
results in one additional TP. For PXO142, accessibility fil-
tering with a threshold of n = 30 within a range of 1 to
30 total predictions per TALE increases or at least retains
the number of TP predictions. For higher rank cutoffs, the
filtering results in one TP less than for the unfiltered ver-
sion. Thus, a threshold of n = 30 leads to a reduction of
TPs only in rare cases and mostly leads to an increase in
the number of TPs within the top predictions. In complete
analogy, Supplementary Figure S7 shows performance
plots for the 10 Xoc strains. As described previously [19],
we consider standard criteria for differentially expressed
genes (q − value < 0.01, log2 fold change > 2) for the
Xoc strains, as these RNA-seq data have been collected 48
h after infection. For 8 of the 10 strains, the accessibility
filtering based on the DNase dataset results in a higher
AUC-TP for each of the 6 thresholds. However, for 7 of
these 8 strains a threshold of n = 25 results in the high-
est AUC-TP. The threshold of n = 30 chosen from the
Xoo datasets does not result in the optimal result for Xoc,
but performs substantially better than the original Pred-
iTALE version without filtering. Filtering based on the
DNase-seq dataset works slightly worse only for strains
CFBP7331 and CFBP7341.
For the predictions of the top 50 target boxes of each

TALE of the Xoo and Xoc strains considered, the propor-
tion of TP and FP target boxes that pass the accessibility
filter is shown in Supplementary Figure S9. The TP target
boxes are usually accessible according to the accessibility
filter criterion with a threshold of n = 30. FP target boxes
in turn are rather filtered out as they are occasionally
inaccessible.

Performance of EpiTALE model considering epigenetic
DNAmodifications
In this section, we further investigate the effect of includ-
ing methylation-specific parameters into the EpiTALE
model, and its combination with the accessibility filter
studied in the previous section. Specifically, we consider
four modelling alternatives: i) the original PrediTALE
model (P), ii) the EpiTALE model including specificities
for methylated cytosines (P + Methyl), iii) the PrediTALE
model combined with the accessibility filter (P + Access),
and iv) the EpiTALE model combined with the accessi-
bility filter (P + Methyl + Access). As a reference, we
further include tools for TALE target prediction that have
been published previously, namely Target Finder [15, 16],
Talvez [17], and TALgetter [18]. Neither of these three
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tools considers epigenetic features when predicting TALE
targets.
The results of the performance evaluation of previous

tools and these four EpiTALE variants for TALE target
prediction of Xoo TALEs are shown in Fig. 2. Here, acces-
sibility is determined based on the DNase dataset. The
number of true positive predictions is improved by either
of the epigenetic features for the strains ICMP 3125T and
PXO83, where the improvement due to the accessibility
filter is more pronounced than the improvement due to
including methylation levels into the EpiTALE model. For
both strains, performance is further increased by combin-
ing both epigenetic features. For PXO142, the accessibility
filter alone leads to slightly decreased prediction perfor-
mance, whereas methylation information alone as well
as the combination of both epigenetic features leads to
a slight improvement compared with the original Predi-
TALE variant. All variants of EpiTALE yield a considerable
improved compared with previous tools for TALE target
prediction.
The results for the Xoc strains are shown in Fig. 3.

For 8 of the 10 strains, methylation information, filtering
according to target box accessibility, and the combination
of both epigenetic features lead to a clear increase of AUC-
TP compared to PrediTALE without these features. For
CFBP7331 and CFBP7341, only considering the methy-
lation information leads to an improvement, because the
accessibility criterion for these two strains is too strict in
some cases and a few TP target boxes are determined to
be inaccessible. However, the EpiTALE variant consider-
ing methylation and accessibility still yields more accurate
predictions than previous tools for TALE target prediction
excepting PrediTALE.

The performance based on the accessibility dataset
ATAC2 for 3 Xoo strains is presented in Supplementary
Figure S5. In this case, the performance of the EpiTALE
variants for which accessibility is used for filtering is sub-
stantially lower. In order to rule out the possibility that
the decrease in performance is simply due to the cho-
sen filtering criteria, we tested different thresholds for this
dataset as presented in Supplementary Figure S6. How-
ever, none of the thresholds considered leads to restoring
the performance of the original PrediTALE variant.

Considering epigenetic features improves ranks of true
positive targets
In this section, we focus on the top 20 predictions of
the four EpiTALE variants for three Xoo and ten Xoc
strains that also show upregulation after infection with
the respective strains. The complete list of true posi-
tive predictions is given in Supplementary Table C, and
the subset of predictions for Xoo strains is provided in
Table 1. For each of the 3 Xoo strains, all three Epi-
TALE variants including epigenetic features mostly yield
an improvement of the rank of the true positive target
gene compared with the original PrediTALE variant with-
out epigenetic features. The strongest rank improvement
is almost always achieved by the EpiTALE variant that
considers methylation of the target box as well as its acces-
sibility. However, an improvement can often be observed
already when considering only one of the epigenetic fea-
tures.
The gene Os09g07460, coding for a kelch repeat pro-

tein, is among the top 20 predictions for TalBA8 for all
three EpiTALE variants considering epigenetic features.
This gene has not been among the top 20 predictions of

Fig. 2 EpiTALE performance evaluation for three Xoo strains considering epigenetic features. We plot the number of predicted target genes that are
also up-regulated in the infection (true positives, TPs) against the number of predicted target sites per TALE for PrediTALE (P) and three EpiTALE
variants including only methylation information (P+Methyl), only filtering based on chromatin accessibility (P+Access), or a combination of both
(P+Methyl+Access). As a reference, we include the previous TALE target prediction tools Target Finder, Talvez, and TALgetter that do not consider
epigentic features. In the legends, we further report the area under the curve of TP predictions (AUC-TP) for the three previous tools, PrediTALE and
the individual EpiTALE variants
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Fig. 3 EpiTALE performance evaluation for ten Xoc strains considering epigenetic features. We plot the number of predicted target genes that are
also up-regulated in the infection (true positives, TPs) against the number of predicted target sites per TALE for PrediTALE (P) and three EpiTALE
variants including only methylation information (P+Methyl), only filtering based on chromatin accessibility (P+Access), or a combination of both
(P+Methyl+Access). As a reference, we include the previous TALE target prediction tools Target Finder, Talvez, and TALgetter that do not consider
epigenetic features. In the legends, we further report the area under the curve of TP predictions (AUC-TP) for the three previous tools, PrediTALE and
the individual EpiTALE variants
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Table 1 Putative TALE target genes that are among the top 20 predictions per TALE for any of the four approaches

Gene lfc P P+Methyl P+Access P+Methyl+Access Annotation

ICMP 3125T

Os02g06670 3.815 TalBA8 (1) TalBA8 (1) TalBA8 (1) TalBA8 (1) retrotransposon
protein

Os09g29820 [6, 45] 2.819 TalAR13 (2) TalAR13 (2) TalAR13 (2) TalAR13 (2) OsTFX1 - bZIP
transcription factor

Os03g51760 2.734 TalAD22 (9) TalAD22 (7) TalAD22 (6) TalAD22 (6) OsFBX109 - F-box
protein

Os04g05050 2.221 TalAB16 (11) TalAB16 (8) TalAB16 (7); TalAB16 (7) pectate lyase

Os01g40290 [6] 1.894 TalAA15 (1) TalAA15 (1) TalAA15 (1) TalAA15 (1) expressed protein

Os05g45070 1.704 TalAO15 (15) TalAO15 (13) TalAO15 (11) TalAO15 (10) harpin-induced
protein 1

Os11g26790 [17] 1.695 TalAH11 (1) TalAH11 (1) TalAH11 (1) TalAH11 (1) dehydrin

Os06g03710 1.591 TalES1 (19) TalES1 (17) TalES1 (13) TalES1 (12) DELLA protein SLR1

Os01g73890 [6, 46] 1.079 TalBM2 (1) TalBM2 (1) TalBM2 (1) TalBM2 (1) transcription initiation
factor IIA gamma

Os10g28240 0.918 TalAR13 (6) TalAR13 (6) TalAR13 (4) TalAR13 (4) calcium-transporting
ATPase

Os09g07460 0.746 TalBA8 (22) TalBA8 (19) TalBA8 (18) TalBA8 (17) kelch repeat protein

PXO142

Os02g49350 5.163 TalBH2 (8) TalBH2 (5) TalBH2 (7) TalBH2 (5) plastocyanin-like

Os03g09150 2.530 TalBH2 (4) TalBH2 (3) TalBH2 (4) TalBH2 (3) pumilio-family RNA
binding

Os11g31190 2.514 TalBH2 (3) TalBH2 (2) TalBH2 (3) TalBH2 (2) SWEET14 (nodulin
MtN3)

Os09g29820 [6, 45] 2.272 TalAR14 (3) TalAR14 (2) TalAR14 (2) TalAR14 (2) OsTFX1 - bZIP
transcription factor

Os03g51760 1.368 TalAD23 (13) TalAD23 (11) TalAD23 (8) TalAD23 (8) OsFBX109 - F-box
protein

Os01g40290 [6] 0.887 TalAA16 (1) TalAA16 (1) TalAA16 (1) TalAA16 (1) expressed protein

Os06g29790 [18] 0.833 TalAO16 (4) TalAO16 (4) TalAO16 (3) TalAO16 (3) phosphate
transporter 1

Os07g06970 [6] 0.824 TalAP15 (1) TalAP15 (1) TalAP15 (1) TalAP15 (1) HEN1

PXO83

Os09g29820 [6, 45] 2.82 TalAR3 (5) TalAR3 (4) TalAR3 (1) TalAR3 (1) OsTFX1 - bZIP
transcription factor

Os02g06670 2.74 TalAR3 (83);TalBA2 (1) TalAR3 (74);TalBA2 (1) TalAR3 (52);TalBA2 (1) TalAR3 (48);TalBA2 (1) retrotransposon
protein

Os03g51760 1.91 TalAD5 (13) TalAD5 (11) TalAD5 (8) TalAD5 (8) OsFBX109 - F-box
protein

Os04g19960 1.70 TalAC5 (1) TalAC5 (1) TalAC5 (1) TalAC5 (1) retrotransposon
protein

Os04g05050 1.62 TalAB5 (11) TalAB5 (8) TalAB5 (7) TalAB5 (7) pectate lyase

Os07g06970 [6] 1.40 TalAP3 (1) TalAP3 (1) TalAP3 (1) TalAP3 (1) HEN1

Os03g03034 1.18 TalAQ3 (5) TalAQ3 (4) TalAQ3 (4) TalAB5 (97);TalAQ3 (3) flavonol synthase

For each Xoo strain, we list the gene ID (MSU7) and the log fold change (lfc) in the corresponding RNA-seq experiment. For each of the four EpiTALE variants, we further list
the TALE(s), for which a gene has been predicted as a target and in parentheses the corresponding prediction rank. For known TALE target genes, we provide the
corresponding reference after the gene ID
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the original PrediTALE variant, but has been reported by
Talvez [17, 19].
Regarding target boxes predicted for TALEs from ten

Xoc strains (cf. Supplementary Table C), all three EpiTALE
variants including epigenetic features in the majority of
cases either yield an improved or an unchanged prediction
rank for true positive genes.
The accessibility filter criterion appears to be inappro-

priate for some putative target boxes upstream of true
positive target genes, which are determined to be inac-
cessible, although they are upregulated in the RNA-seq
experiments. This applies to the putative target box in
the promoter of Os01g52130 for TalBF members from
Xoc strains B8-12, BLS256, BLS279, CFBP2286, BXOR1,
CFBP7331, CFPB7341, CFPB7342, L8, RS105; the putative
target box upstream of Os02g06130 for TalAF from B8-12
and L8; the putative target box upstream of Os07g01490
for TalBD from B8-12, BLS256, BLS279, BXOR1, L8; the
putative target box upstream of Os07g03279 for TalBE
from BXOR1, CFBP7331, CFPB7341; the putative target
box upstream of Os03g22020 for TalBU from CFBP7331
and the putative target box upstream of Os12g06930 for
TalBI from CFPB7342.
Out of 323 true positive target boxes, themajority of 212

target boxes, however, obtains an improved rank when
considering both epigenetic features, while the rank of 87
target boxes remains unchanges compared with the orig-
inal PrediTALE variant. Among the target genes with an
improved prediction rank are well known TALE targets
like Os07g06970 coding for HEN1, but also promising
novel candidates like Os03g53800 a beta-glucosidase pre-
cursor.
Both the methylation information and chromatin acces-

sibility considered in this study have been derived from
publicly available datasets that have been collected for
different purposes and scientific questions. Hence, these
have been determined under different conditions, e.g.,
from different plants at a different life stage than for the
infection studies that are represented by the RNA-seq
data. On the one hand, this may explain both the lowered
ranks of the above-mentioned true positive target genes
when considering methylation information, but also tar-
get genes that are up-regulated in the infection studies
not passing the accessibility filter. On the other hand, the
widely improved prediction ranks for many of the remain-
ing true positive target genes provide a strong indication
that both types of data provide valuable information for
TALE target prediction. Our results suggest that with
matched WGBS and DNase-seq/ATAC-seq data of suf-
ficient quality, the quality of computational TALE target
predictions could be boosted even further.

Genome-wide TALE target prediction considering DNA
methylation and chromatin accessibility
Independently of existing gene annotations, we performed
genome-wide predictions of TALE target boxes in Oryza
sativa Nipponbare (MSU7) for 3 Xoo and 10 Xoc strains
using the EpiTALE version with methylation and DNase
accessibility data. As accessibility filter, we select regions
around the binding site based on criteria that are similar
to the promoter setting. Either a peak of chromatin acces-
sibility must be present in a region from -300 bp to +50 bp
relative to the target box or at least 30 positions within the
window from -300 bp to +200 bp relative to the target box
must be covered by the 5’-end of at least one DNase-seq
read. The latter criterion implies that at least 30 DNase-
seq reads must overlap this window around the target
box, but might even require a larger number of DNase-
seq reads if the 5’-ends of multiple reads map to the same
location.
To determine differentially expressed regions near pre-

dicted target boxes, we use our tool DerTALE [19] and
the mapped RNA-Seq from above-mentioned infection
studies. For DerTALE we use the same settings as in the
original PrediTALE publication [19]. Briefly, we search for
differentially expressed regions of at least 300 bp within a
region of ± 3000 bp around the top 100 predicted target
boxes of each TALE.
Genome-wide prediction shows that for 16 Xoo TALEs,

differential expressed regions are close to at least one pre-
dicted target box. In total, we obtain 20 of such target
boxes (complete list in Supplementary Table D), of which
13 have also been observed in the previous prediction lim-
ited to promoters. Among these 20 target boxes, 18 have
already been reported in the original PrediTALE publica-
tion [19]. By using the two epigenetic features in the Epi-
TALE variant, we obtain 2 novel target boxes near differ-
entially expressed regions. Figure 4 presents the RNA-seq
profile in the region of a target box predicted for members
of family TalAB on chromosome 2. The putative target
boxes of TalAB5 (PXO83) and TalAB16 (ICMP 3125T)
are identical and do not overlap with a gene annotation
known from MSU7. We extracted the sequences under
the differentially expressed regions, and first compared
them against the NCBI protein database ‘nr’ using blastx
but received no matching result. We additionally com-
pared these sequences against the NCBI reference RNA
sequences (‘refseq_rna’) using blastn, which resulted in
a predicted mRNA, coding for a calcium-transporting
ATPase (XM_015770644.2).
However, one putative target box reported from

genome-wide predictions in the original PrediTALE pub-
lication (Os04g05050) appears on a lower rank due to
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Fig. 4 Genome-wide predictions of TalAB in Oryza sativa Nipponbare profile for 3 Xoo strains in the area of the TalAB target box. RNA-seq coverage
of 3 replicates after inoculation (thin blue lines) are compared with the RNA-seq coverage of 3 replicates of mock control (thin brown lines). In
addition, we plot the average coverage of individual replicates after inoculation as a thick blue line and the average coverage of individual replicates
of mock control as a thick brown line. The blue shaded boxes mark the differentially expressed regions. The arrows under the profiles reflect the
MSU7 annotation within the genomic region. The genomic position of the TALE target box is marked by a vertical blue line. Vertical grey bars
indicate the number and 5’-position of reads in the DNase data

methylation of the target box, which might be caused
by non-matching experimental conditions as discussed
previously.
A complete list of the genome-wide predictions of

TALEs from the ten Xoc strains is given in Supplementary
Table E, of which we select two examples for a detailed
discussion. The first of these is a predicted target box of
members of the TalAX family located on chromosome
1. Members of TalAX are present in all ten Xoc strains.
The corresponding class tree is shown in Supplementary
Figure S11 and the RNA-seq profile around the putative
target box is provided in Fig. 5. Close to the putative target
box is a differentially expressed region that has no over-
lapping MSU7 gene annotation. For 7 of the 10 strains,
the predicted target box is among the top 100 predic-
tions. For strains CFBP7331 and CFPB7341, this target
box appears only in the top 200 prediction due to differ-
ences in the RVD sequence of the TalAXmembers present
in these strains. However, the RNA-seq data suggest that
these TALEs are still capable of activating downstream
expression since a differential region is detected for these
strains as well. TalAX2 from CFBP7342 deviates even fur-
ther from the RVD composition of the remaining strains,

and no target box in this region was predicted for TalAX2.
In agreement with this prediction, we do not observe a
differentially expressed region after Xoc CFBP7342 infec-
tion. For the sequences under this differentially expressed
region, database search using blastx and blastn against ’nr’
and ’refseq_rna’, respectively, did not result in a match.
As a second example, we discuss a putative target box

on chromosome 6 for members of the TalBN class present
in 8 of 10 Xoc strains. The corresponding class tree is
shown in Supplementary Figure S12 and the RNA-seq
profile around the binding site is presented in Fig. 6. The
TalBN members from 7 of the 8 strains have identical
RVD sequences, whereas TalBN2 of CFBP7342 show one
difference in RVD sequence. This target box on chro-
mosome 6 is among the top 100 predictions only for
these 7 TalBN members and DerTALE report a differen-
tially expressed region after infection with these strains.
The remaining TalBN members (TalBN2 of CFBP7342)
has no putative target box among the top 100 predic-
tions at this position, and the region shows no differential
expression as well as for the 2 strains with no TalBN
member (CFBP7341, CFBP7331). This indicates that this
differentially expressed region may be caused by TalBN
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Fig. 5 Genome-wide predictions of TalAX in Oryza sativa Nipponbare profile for 10 Xoc strains in the area of the TalAX target box. RNA-seq coverage
of 3 replicates after inoculation (thin blue lines) are compared with the RNA-seq coverage of 3 replicates of mock control (thin brown lines). In
addition, we plot the average coverage of individual replicates after inoculation as a thick blue line and the average coverage of individual replicates
of mock control as a thick brown line. The blue shaded boxes mark the differentially expressed regions. The genomic position of the TALE target box
is marked by a vertical blue line. Vertical grey bars indicate the number and 5’-position of reads in the DNase data
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Fig. 6 Genome-wide predictions of TalBN in Oryza sativa Nipponbare profile for 10 Xoc strains in the area of the TalBN target box. RNA-seq coverage
of 3 replicates after inoculation (thin blue lines) are compared with the RNA-seq coverage of 3 replicates of mock control (thin brown lines). In
addition, we plot the average coverage of individual replicates after inoculation as a thick blue line and the average coverage of individual replicates
of mock control as a thick brown line. The blue shaded boxes mark the differentially expressed regions. The arrows under the profiles reflect the
MSU7 annotation within the genomic region. The genomic position of the TALE target box is marked by a vertical blue line. Vertical grey bars
indicate the number and 5’-position of reads in the DNase data
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members of the strains with the putative target site. The
differentially expressed region does not overlap with an
annotated MSU7 gene and the corresponding sequence
had no matches in BLAST searches.

Conclusions
With the goal of improving the prediction of TALE tar-
gets, we present EpiTALE, an extended version of Pred-
iTALE including epigenetic features. Both, methylation
levels and the chromatin accessibility around putative tar-
get sites have a decisive impact on the likelihood of being
bound by a TALE. Even if a putative target box matches
the specificity of the RVDs of a TALE, inaccessibility of the
respective chromatin may inhibit binding and thus inhibit
activation of the transcription of the downstream gene
[47, 48]. We demonstrate that for the prediction of TALE
target boxes, the consideration of the epigenetic state of
rice plants leads to an improved quality of TALE target
predictions by EpiTALE compared with PrediTALE and
three other previous tools for TALE target prediction. For
many true positive Xoo and Xoc target boxes, EpiTALE
yielded improved prediction ranks of true positive targets
compared with the original PrediTALE variant. Never-
theless, there are still false positive predictions and we
suggest an experimental verification of novel targets.
We perform promoter-wide and genome-wide pre-

dictions and find several predictions common to both
approaches, but we also find target boxes upstream of dif-
ferentially expressed regions in RNA-seq infection studies
that do not overlap with a currently annotated gene.
The use of the epigenetic features is optional for the

user. Depending on the availability of data, only methyla-
tion and/or chromatin accessibility data can be provided
to EpiTALE to improve target prediction. In our study,
the strongest improvement in accuracy was achieved by
considering both epigenetic features in EpiTALE. Our
results suggest that collecting condition-matched WGBS
and DNase-seq/ATAC-seq data may further improve the
quality of computational TALE target predictions. The
EpiTALE suite presented here provides the means neces-
sary to integrate such data into TALE target prediction
and is available from http://jstacs.de/index.php/EpiTALE.
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