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Mutation analysis of disease causing genes 
in patients with early onset or familial forms 
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Abstract 

Background:  Most dementia disorders have a clear genetic background and a number of disease genes have been 
identified. Mutations in the tau gene (MAPT) lead to frontotemporal dementia (FTD), whereas mutations in the genes 
for the amyloid-β precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inherited 
forms of Alzheimer’s disease (AD).

Even if mutations causing Mendelian forms of these diseases are uncommon, elucidation of the pathogenic effects of 
such mutations have proven important for understanding the pathogenic processes. Here, we performed a screen to 
identify novel pathogenic mutations in known disease genes among patients undergoing dementia investigation.

Results:  Using targeted exome sequencing we have screened all coding exons in eleven known dementia genes 
(PSEN1, PSEN2, APP, MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP and FUS) in 102 patients with AD, FTD, other 
dementia diagnoses or mild cognitive impairment.

We found three AD patients with two previously identified pathogenic mutations in PSEN1 (Pro264Leu and Met-
146Val). In this screen, we also identified the recently reported APP mutation in two siblings with AD. This mutation, 
named the Uppsala mutation, consists of a six amino acid intra-amyloid β deletion.

In addition, we found several potentially pathogenic mutations in PSEN2, FUS, MAPT, GRN and APOE. Finally, APOE ε4 
was prevalent in this patient group with an allele frequency of 54%.

Conclusions:  Among the 102 screened patients, we found two disease causing mutations in PSEN1 and one in APP, 
as well as several potentially pathogenic mutations in other genes related to neurodegenerative disorders. Apart from 
giving important information to the clinical investigation, the identification of disease mutations can contribute to an 
increased understanding of disease mechanisms.

Keywords:  Alzheimer’s disease, Frontotemporal dementia, Neurodegenerative disorders, PSEN1, PSEN2, APP, MAPT, 
APOE, Exome sequencing
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Introduction
Mutations in the genes for the amyloid-β precursor 
protein (APP) and the presenilins (PSEN1 and PSEN2) 
cause early-onset, dominantly inherited forms of Alz-
heimer’s disease (AD), whereas mutations in the MAPT 

Open Access

*Correspondence:  vilmantas.giedraitis@pubcare.uu.se
1 Department of Public Health and Caring Sciences/Geriatrics, Uppsala 
University, Uppsala, Sweden
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-022-08343-9&domain=pdf


Page 2 of 8Pagnon de la Vega et al. BMC Genomics           (2022) 23:99 

gene mainly  lead to frontotemporal dementia (FTD). 
The elucidation of the pathogenic effects of such muta-
tions has proven important for the understanding of 
the respective disease processes.

Alzheimer’s disease is neuropathologically charac-
terized by the formation and extracellular deposition 
of insoluble plaques, consisting of the 38–43 amino 
acid long peptide amyloid-β (Aβ) and intracellular 
neurofibrillary tangles of the tau protein, as well as a 
substantial neuronal loss [1]. According to the amy-
loid cascade hypothesis, AD is initiated by increased 
levels or a changed conformation of Aβ which can 
promote the formation of toxic oligomers and protofi-
brils before the formation of insoluble plaques [2]. We 
have previously identified and characterized two dif-
ferent APP mutations, the Swedish mutation [3] and 
the Arctic mutation [4]. Functional analyses of these 
mutations have significantly increased our under-
standing of the disease pathogenesis. Whereas the 
Swedish mutation results in an increased cleavage by 
β-secretase and thereby elevated levels of all forms 
of Aβ [5, 6], the Arctic mutation leads to a conforma-
tional change of Aβ and increased formation of toxic 
Aβ protofibrils [7]. Moreover, mutations in PSEN1 
and PSEN2 have been shown to increase the genera-
tion of the longer and more aggregation prone form of 
Aβ (Aβ42).

Recently, several new genes causing dementia dis-
orders have been identified. Such discoveries have 
been important to increase our knowledge of the 
aetiology behind these disorders. Most notably, the 
understanding of frontotemporal dementia has been 
further advanced by the identification of disease 
causing mutations in the genes for TAR DNA-bind-
ing protein-43 (TARDBP), progranulin (GRN) and 
C9orf72-SMCR8 complex subunit (C9ORF72) [8–12]. 
Moreover, discoveries of rare variants in the trigger-
ing receptor expressed on myeloid cells 2 (TREM2) 
gene have highlighted the involvement of immuno-
logical and inflammatory pathways in AD pathogen-
esis [13, 14].

The development of next generation sequencing tech-
nologies has enabled identification of new mutations in 
previously known as well as in novel disease genes [15]. 
Furthermore, there is growing evidence that mutation 
screening may yield interesting findings also in patients 
with late onset disease forms [16].

In this study we have performed exome sequencing 
of eleven potential disease genes (PSEN1, PSEN2, APP, 
MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP 
and FUS) in patients with AD and other neurodegener-
ative diseases for whom an early disease onset and/or a 
familial pattern of inheritance had been reported.

Results
Three different disease causing mutations and several 
mutations with potential pathogenicity were identified in 
the screened gene regions (Table 1).

We found two pathogenic mutations in the PSEN1 
gene, both of which had been previously reported 
[17–19]. The PSEN1 P264L (rs63750301) mutation was 
detected in two siblings with AD. In the same family, the 
father and another sibling also suffered from the disease, 
although DNA samples were not available from them 
(Fig.  1). The age at onset in this family was reported to 
be 40–50 years. The siblings suffered from global cogni-
tive impairment and early personality changes and both 
displayed a clear hypometabolism in posterior temporo-
parietal cortex on FDG-PET. The other PSEN1 mutation, 
M146V (rs63750306), was identified in an AD patient 
who had presented with slight short term memory dys-
function and spatial disorientation already at about 
30  years of age. At later disease stages the patient suf-
fered from myoclonic epileptic seizures and gait diffi-
culties. A widespread bilateral parietal hypometabolism 
with involvement also of temporal and frontal cortices 
was observed on FDG-PET. Interestingly, no heredity had 
been reported in this family.

In the Aβ coding sequence of the APP gene we iden-
tified the recently reported eighteen base pair deletion, 
which causes a six amino acid deletion in the protein 
sequence. This in frame deletion, named the Uppsala 
mutation, was found in two siblings and a cousin suffer-
ing from an aggressive early onset form of AD. A typical 
pattern of autosomal dominant inheritance and age at 
disease onset of 40–50  years had been reported in ear-
lier generations of the family [20]. We have also analyzed 
more than 500 DNA samples from Swedish AD patients, 
older family members, and older healthy control sub-
jects, without finding any other cases with this mutation. 
Furthermore, we extensively studied clinical and patho-
logical features of this deletion and the data strongly sug-
gest that the Uppsala mutation is the cause of AD in this 
family [20].

In addition to these pathogenic mutations, several 
mutations with potential pathogenicity were identified. 
In one individual with AD and a known family history 
of dementia we found a Ser57 deletion (rs777545405) in 
FUS (Fig. 1). This deletion had been previously reported 
as likely pathogenic in a patient with sporadic amyo-
trophic lateral sclerosis (ALS) [21]. Our patient had expe-
rienced memory problems before the age of 60 years, but 
no typical ALS symptoms had been reported. In addi-
tion, two other deletions in FUS were found in patients 
with behavioral variant FTD (bvFTD) and semantic vari-
ant primary progressive aphasia (svPPA), respectively 
(Table 1).



Page 3 of 8Pagnon de la Vega et al. BMC Genomics           (2022) 23:99 	

Ta
bl

e 
1 

C
lin

ic
al

 c
ha

ra
ct

er
is

tic
s 

of
 p

at
ie

nt
s 

w
ith

 k
no

w
n 

or
 p

ot
en

tia
lly

 p
at

ho
ge

ni
c 

m
ut

at
io

ns

a  P
op

ul
at

io
n 

fr
eq

ue
nc

y 
w

as
 o

bt
ai

ne
d 

fr
om

 g
no

m
A

D
 d

at
ab

as
e,

 e
xc

ep
t f

or
 rs

76
75

64
99

5 
fo

r w
hi

ch
 d

bS
N

P 
w

as
 u

se
d

b  P
ol

yP
he

n-
2 

an
d 

SI
FT

 s
co

re
s 

w
er

e 
ob

ta
in

ed
 u

si
ng

 E
ns

em
bl

 V
ar

ia
nt

 E
ffe

ct
 P

re
di

ct
or

. T
he

se
 s

co
re

s 
ar

e 
us

ed
 to

 p
re

di
ct

 w
he

th
er

 a
m

in
o 

ac
id

 s
ub

st
itu

tio
n 

is
 li

ke
ly

 to
 a

ffe
ct

 p
ro

te
in

 fu
nc

tio
n.

 T
he

 S
IF

T 
sc

or
e 

ra
ng

es
 fr

om
 0

.0
 

(d
el

et
er

io
us

) t
o 

1.
0 

(t
ol

er
at

ed
). 

Th
e 

Po
ly

Ph
en

-2
 s

co
re

 ra
ng

es
 fr

om
 0

.0
 (t

ol
er

at
ed

) t
o 

1.
0 

(d
el

et
er

io
us

)

Pa
tie

nt
 N

o
D

ia
gn

os
is

G
en

de
r

O
ns

et
 a

ge
H

er
ed

it
y

Pr
ot

ei
n 

ch
an

ge
 (d

bS
N

P)
A

PO
E

Fu
nc

tio
n

Pa
th

og
en

ic
Po

pu
la

tio
n 

fr
eq

ue
nc

ya
SI

FT
 s

co
re

b
Po

ly
Ph

en
-2

 
sc

or
eb

1
A

D
F

50
Ye

s
PS

EN
1 

P2
64

L 
(rs

63
75

03
01

)
ε3

/ε
4

M
is

se
ns

e
Ye

s
0.

00
00

04
0

0
1

2
A

D
M

42
Ye

s
PS

EN
1 

P2
64

L 
(rs

63
75

03
01

)
ε3

/ε
4

M
is

se
ns

e
Ye

s
0.

00
00

04
0

0
1

3
A

D
M

34
N

o
PS

EN
1 

M
14

6V
 (r

s6
37

50
30

6)
ε3

/ε
3

M
is

se
ns

e
Ye

s
-

0.
01

0.
98

5

4
A

D
M

65
Ye

s
PS

EN
2 

I1
44

L 
(rs

76
47

18
17

2)
ε3

/ε
3

M
is

se
ns

e
U

nk
no

w
n

0.
00

00
08

0
0.

01
0.

25
7

5
bv

FT
D

M
69

Ye
s

PS
EN

2 
A

25
2T

 (r
s1

38
83

62
72

)
ε3

/ε
3

M
is

se
ns

e
U

nk
no

w
n

0.
00

02
3

0.
42

0.
17

2

FU
S 

Δ
22

9-
23

1 
(rs

76
75

64
99

5)
D

el
et

io
n

U
nk

no
w

n
0.

00
02

1
-

-

6
A

D
M

59
Ye

s
FU

S 
Se

r5
7Δ

 (r
s7

77
54

54
05

)
ε4

/ε
4

D
el

et
io

n
U

nk
no

w
n

0.
00

01
7

-
-

7
sv

PP
A

M
64

Ye
s

FU
S 

Δ
16

6-
16

7 
(rs

53
76

05
13

5)
ε4

/ε
4

D
el

et
io

n
U

nk
no

w
n

0.
00

03
0

-
-

8
A

D
F

57
Ye

s
G

RN
 A

32
4V

 (r
s7

58
63

61
28

)
ε3

/ε
3

M
is

se
ns

e
U

nk
no

w
n

0.
00

00
24

0.
21

0.
12

9

9
A

D
M

59
Ye

s
M

A
PT

 V
22

4G
 (r

s1
41

12
04

74
)

ε4
/ε

4
M

is
se

ns
e

U
nk

no
w

n
0.

00
21

0
0.

18
7

10
M

C
I

M
61

Ye
s

M
A

PT
 A

23
9T

 (r
s6

37
50

09
6)

ε3
/ε

4
M

is
se

ns
e

U
nk

no
w

n
0.

00
06

3
0.

27
0.

07
9

11
A

D
M

56
Ye

s
A

PO
E 

R2
69

G
 (r

s2
67

60
66

61
)

ε3
/ε

4
M

is
se

ns
e

U
nk

no
w

n
0.

00
03

6
0

0.
53

3

12
A

D
M

44
Ye

s
A

PP
 Δ

69
0-

69
5

ε3
/ε

3
D

el
et

io
n

Ye
s

-
-

-

13
A

D
M

40
Ye

s
A

PP
 Δ

69
0-

69
5

ε3
/ε

3
D

el
et

io
n

Ye
s

-
-

-



Page 4 of 8Pagnon de la Vega et al. BMC Genomics           (2022) 23:99 

In PSEN2, the A252T mutation (rs138836272) was 
identified in a patient with the behavioral variant of FTD 
(bvFTD), also carrying the Δ229-231 deletion in FUS 
(Fig.  1 and Table  1). The PSEN2 A252T mutation had 
been previously reported in African healthy controls [22] 
and its pathogenicity is thus unclear. In addition, PSEN2 
I144L (rs764718172), which has not been reported in any 
previous studies, was found in an AD patient with a fam-
ily history of disease (Fig. 1).

Since APOE was included in our next generation 
sequencing analysis, we examined all APOE exons for 
possible mutations. In one patient with early onset 
AD we identified the R269G (rs267606661) mutation. 

This APOE mutation had previously been reported as 
a likely cause of autosomal dominant hypercholester-
olemia [23].

Moreover, three rare genetic variants with potential 
pathogenicity were found in MAPT and GRN (Fig. 1 and 
Table 1), whereas no variants that are likely to be patho-
genic could be identified in TARDBP, CHMP2B and VCP.

Analyses of conventional APOE alleles in the total sam-
ple set showed an ε4 allele frequency of 54%. Of the 102 
patients, 32 were homozygous for ε4 and 45 had the ε3ε4 
genotype. When only including the 77 AD cases in the 
analysis, a slightly higher APOE ε4 allele frequency was 
observed (57%) (Table 2).

Fig. 1  Pedigrees of the families in which mutations were identified. The analyzed cases are indicated by numbers. Each pedigee is labeled by 
diagnosis and the nature of the mutation(s) identified. Filled symbols are affected family members. Slashed symbols are used for individuals known 
to be deceased. The numbers refer to the screened patients, corresponding to Table 1

Table 2  Description of the study population

a In this group one patient had vascular dementia and one unspecified dementia
b Most patients with MCI had a known heredity for AD

Disease Number of patients, 
n

Known heredity, 
n (%)

Females, n (%) Age at onset, 
mean (range)

Alzheimer’s disease 77 70 (90.9) 36 (46.8) 60.8 (34–76)

Behavioral variant of frontotemporal dementia 7 7 (100) 2 (28.6) 59.1 (47–69)

Other types of frontotemporal dementia 4 3 (75) 1 (25) 60.8 (54–71)

Semantic variant primary progressive aphasia 5 4 (80) 2 (40) 58,2 (49–64)

Other dementia related diagnosesa 2 1 (50.0) 0 (0) 65.0 (55–75)

Mild cognitive impairmentb 7 7 (100) 4 (57.1) 59.4 (55–65)
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We also included TREM2 in our analyses, since several 
studies have recently reported that rare variants in this 
gene could confer an increased AD risk similar to APOE 
ε4 [13, 24]. We found that eight AD and two patients with 
mild cognitive impairment (MCI) were carriers of the 
TREM2 R62H allele (rs143332484), which gives an allele 
frequency of 4.9%. This is significantly higher than what 
has been previously reported in European populations 
[25]. Interestingly, also the two AD patients with the 
Uppsala mutation were found to carry the TREM2 R62H 
allele.

Discussion
In this study, we have screened 102 patients with AD 
or FTD from our Memory clinic and identified several 
pathogenic mutations causing AD. We also found two 
PSEN1 mutations, P264L and M146V. Both of these 
mutations have been previously described as pathogenic, 
causing autosomal dominantly inherited disease forms 
[17–19]. The approximate onset age of PSEN1 P264L 
patients had been reported at 45  years, which corre-
sponds well to the onset ages of our patients. Despite the 
fact that all individuals with this mutation get demen-
tia at an early age, there is an interindividual variation 
of symptoms. In the study by Martikainen et al., one of 
the three patients carrying this mutation displayed spas-
tic paraparesis, whereas the other two patients presented 
with parkinsonism. With respect to neuropathology, all 
three cases exhibited abundant cotton wool plaques in 
the brain at autopsy [18].

The PSEN1 M146V mutation usually causes early 
onset AD with an onset age at about 40 years [26]. Two 
mutation-carrying patients from a previously described 
large Swedish/Finnish family showed global cortical 
glucose hypometabolism, which was further accentu-
ated over time. Brain examination revealed considerably 
higher numbers of neuritic plaques and neurofibrillary 
tangles in all examined brain regions, as compared to 
sporadic AD patients. Similar to our patient, epileptic 
seizures were observed in both patients described in this 
study [27].

The recently reported deletion in APP, resulting in a six 
amino acid shorter version of the Aβ peptide, is to our 
knowledge the first dominantly inherited form of AD 
caused by a large deletion in Aβ [20]. Previously, only 
a single amino acid deletion within the Aβ sequence 
has been reported in a Japanese family. This APP muta-
tion was described to have a recessive mode of inherit-
ance and seems to cause disease due to an increased 
oligomerization and higher resistance to proteolytic 
degradation of Aβ [28]. As recently described, the Upp-
sala APP mutation causes increased Aβ generation by 
altering α-secretase and β-secretase cleavages of APP. 

Furthermore, the Uppsala Aβ mutant adopts unique pol-
ymorphs that accelerate the formation of fibrils and their 
deposition into amyloid plaques [20].

The Ser57 deletion in FUS and the R269G mutation 
in APOE have been previously reported, although clini-
cal data from patients and data about functional conse-
quences of these mutations are still limited. Nevertheless, 
the clinical presentation of the reported cases seems to 
be very different from our patients [21, 23].

Several other mutations identified in our study have 
been previously reported in genetic analyses of AD and 
other dementia disorders. The MAPT A239T variant was 
described in an FTD patient carrying pathogenic dele-
tion in GRN gene [29]. The MAPT V224G was reported 
in several studies and found in both AD patients and con-
trols [16, 30]. The PSEN2 A252T mutation, affecting an 
amino acid residue that is conserved between PSEN1 and 
PSEN2, was found in two controls from the Mandenka 
and Yoruba samples [22]. Nevertheless, only very few 
individuals with these mutations have been reported and 
further analyses are necessary in order to examine their 
possible pathogenic role.

The APOE ε4 allele is the strongest risk factor for late 
onset AD [31]. In the general Caucasian population 
APOE ε4 frequency is around 10–15% whereas in AD a 
frequency of 25–35% is usually reported [32, 33]. Thus 
the high APOE ε4 frequency of over 50% in the patients 
included in our study, confirms that APOE is of impor-
tance also in familial dementia [34–36]. Much more 
surprising was that the frequency of the TREM2 R62H 
allele was as high as 4.9%, whereas the allele frequency 
reported in dbSNP for this variant was just about 1% in 
most European and American populations. In the first 
study investigating a potential association of TREM2 
R62H to AD, this polymorphism was not associated with 
disease [14]. However, in another study of 85 133 sub-
jects, a strongly significant association between AD and 
TREM2 R62H was found, although the allele frequency 
was low (1.4% in AD cases and 0.9% in controls) [25].

In this study we used a sequence enrichment technol-
ogy together with next generation sequencing in order 
to screen target genes. An advantage of this method 
is its cost efficiency combined with the high quality of 
sequencing data. The main limitation of the technique is 
that only already known disease genes can be analyzed. 
Another limitation is that it cannot be used to analyze 
the structural variants, like deletions and insertions, 
and repetitive sequences like the hexanucleotide repeat 
expansions in C9ORF72 causing FTD [11, 12]. Further-
more, a number of genes associated with increased sus-
ceptibility for AD have been identified [37, 38]. Variations 
in several of these genes, such as CR1, SORL1, BACE1, 
ABCA7, could also predispose for familial early onset 
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form of the disease [39, 40]. Some of the families included 
in our study have rather complex patterns of inheritance 
(Fig. 1) and we can therefore not exclude that combina-
tion of variants in several genes can be disease causative. 
Nevertheless, PSEN1, PSEN2 and APP mutations are the 
main causes of autosomal-dominant early-onset AD, 
whereas mutations in MAPT and GRN account for a sig-
nificant part of genetic FTD [41–43].

In conclusion, in our screen of 102 AD, FTD and MCI 
patients with early onset and/or signs of heredity we 
found two previously described PSEN1 mutations, the 
recently described Uppsala APP deletion and a number 
of other potentially pathogenic mutations. Screening 
for mutations in known and putative disease suscepti-
bility genes can aid in the clinical diagnosis of dementia 
patients. Moreover, such screening could enable us to 
discover additional disease mechanisms that can be tar-
geted by novel therapeutic strategies.

Methods
Selection of patients and controls
A selection of 102 patients who attended the Memory 
clinic at Uppsala University Hospital during 2006–2019 
were recruited to the study. The included patients had 
been diagnosed with either AD, FTD, another dementia 
disorder or mild cognitive impairment. Moreover, they 
had displayed a disease onset before 65 years of age and/
or had reported at least one first degree relative diag-
nosed with a dementia disorder. The diagnoses were 
based on established criteria including analysis of cer-
ebrospinal fluid biomarkers of AD in most cases [44–48]. 
The patient information is summarized in Table 2. Avail-
able pedigrees for patients with identified mutations are 
presented in the Fig. 1. The pedigree for the patients with 
the Uppsala mutation was recently published [20].

Gene selection
Nine genes with known pathogenic mutations causing 
familial early onset dementia diseases were included in 
the analyses (APP, PSEN1, PSEN2, MAPT, GRN, TAR-
DBP, CHMP2B, VCP and FUS). In addition, we analyzed 
TREM2 in which rare variants have been associated with 
an increased risk of AD [14, 25]. We also included APOE 
in order to determine the ε2-4 genotypes. The gene infor-
mation is summarized in Table 3.

Targeted exome sequencing
Genomic DNA from the whole-blood samples was 
extracted by a commercially available kit (Chemagen, Ger-
many) at the Karolinska institute biobank or by QIAamp 
DNA Blood Maxi Kit (Qiagen, Germany). All selected 
exons, including at least 25 nucleotides surrounding the 
exonic regions, were amplified either using Agilent Sure-
Select custom design kit or Life Technologies AmpliSeq 
sequence enrichment method. The amplified DNA was 
analyzed by Illumina MiSeq or Life Technologies IonTor-
rent sequencing, respectively. The average target coverage 
was over 97% for both methods. Targeted exome sequenc-
ing was performed at the Uppsala Genome Center using 
standardized protocols provided by the manufacturer.

Bioinformatics
Sequenced gene regions were aligned to the human refer-
ence genome (assembly hg19). Sequence variations were 
visualized using Integrated Genome Viewer [49]. Annota-
tion of single nucleotide polymorphisms (SNPs) and small 
insertions or deletions was performed using Ensembl Vari-
ant Effect Predictor (http://​grch37.​ensem​bl.​org/), NCBI 
SNP database dbSNP (https://​www.​ncbi.​nlm.​nih.​gov/​snp/), 
Genome Aggregation Database gnomAD (https://​gnomad.​
broad​insti​tute.​org/) and Alzheimer’s disease mutation 
database (https://​www.​alzfo​rum.​org/​mutat​ions).

Table 3  Gene list

Gene name Gene symbol Chromosome Associated disease

Presenilin 2 PSEN2 chr01 AD, FTD

TDP-43, TAR DNA binding protein TARDBP chr01 FTD, ALS

Charged multivesicular body protein 2B CHMP2B chr03 FTD, AD

Triggering receptor expressed on myeloid cells 2 TREM2 chr06 AD

Valosin containing protein VCP chr09 ALS, FTD

Presenilin 1 PSEN1 chr14 AD, FTD

FUS RNA binding protein FUS chr16 FTD, ALS

Granulin GRN chr17 FTD

Microtubule-associated protein tau MAPT chr17 AD, FTD

Apolipoprotein E APOE chr19 AD

Amyloid-β precursor protein APP chr21 AD

http://grch37.ensembl.org/
https://www.ncbi.nlm.nih.gov/snp/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.alzforum.org/mutations
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