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Abstract

Background: A variety of protocols exist for producing whole genome run-on transcription datasets. However, little
is known about how differences between these protocols affect the signal within the resulting libraries.

Results: Using run-on transcription datasets generated from the same biological system, we show that a variety of
GRO- and PRO-seq preparation methods leave identifiable signatures within each library. Specifically we show that the
library preparation method results in differences in quality control metrics, as well as differences in the signal
distribution at the 5′ end of transcribed regions. These shifts lead to disparities in eRNA identification, but do not
impact analyses aimed at inferring the key regulators involved in changes to transcription.

Conclusions: Run-on sequencing protocol variations result in technical signatures that can be used to identify both
the enrichment and library preparation method of a particular data set. These technical signatures are batch effects
that limit detailed comparisons of pausing ratios and eRNAs identified across protocols. However, these batch effects
have only limited impact on our ability to infer which regulators underlie the observed transcriptional changes.
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Background
The transcriptome dictates much of a cell’s identity and
behavior. As such, tracking how transcription patterns
change in response to a biological perturbation is a
popular approach to understanding molecular regula-
tory mechanisms. In particular, newly transcribed RNAs
provide a readout on the activity and regulation of cel-
lular RNA polymerases. Capturing and mapping these
“nascent” transcripts provides a single base-pair resolu-
tion readout of the positions of all cellular RNA poly-
merases throughout the genome [1–3]. Changes in RNA
polymerase behavior are associated with transcription
factor activity [4–6], with a large portion of transcrip-
tional changes occurring within enhancer regions. These
enhancer RNAs (eRNAs) are unstable and thus not
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generally recovered by steady-state assays such as RNA-
seq, which sample predominantly from the pool of stable
transcripts such as mRNAs [7].
To capture all RNAs arising from cellular RNA poly-

merases, several run-on transcription capture protocols,
such as global run-on sequencing (GRO-seq) and preci-
sion run-on sequencing (PRO-seq), have been developed
[1, 3, 8–10]. These protocols, collectively known as RO-
seq, follow roughly a two step process: first, the run-on
RNA signal must be enriched above the background total
RNA; second, the captured RNA is then converted into
a sequencing-ready cDNA library [1]. For the first step,
run-on protocols share the same basic strategy, namely
they use an enrichable nucleotide as a handle for distin-
guishing nascent RNA from previously produced RNA
(Fig. 1A). Subsequently, sequencing adapters are added
and the sample is reverse transcribed and amplified in
preparation for sequencing. As these steps are somewhat
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Fig. 1 Summary of Run-On Sequencing (RO-seq) data sets. A
Summary diagram indicating enrichment steps for Global Run-On
(GRO-seq, top) and Precision Run-On (PRO-seq, bottom) reactions. B
Summary diagram for library preparation reactions. Blue bars: RNA;
brown bars: cDNA; yellow/green bars: sequencing adapters. Library
preparation enzymes are labeled and represented by blue shapes at
each step

modular, the process of enrichment is often interleaved
with the various steps necessary for library preparation
(Fig. 1B).
Similar to distinct RNA-seq library preparation meth-

ods, processing RNA through different RO-seq protocols
is thought to leave technical artifacts within the library
[11–13]; however, the extent to which these artifacts
influence the resulting analysis has not been thoroughly
explored. In this study, we sought to identify specific

signatures and biases inherent to the protocol (enrich-
ment strategy) and library preparation methods typically
employed in RO-seq methods. For this comparison, we
generated data from HCT116 cells treated for 1 hour
with the p53 activator Nutlin-3a or a DMSO control, a
well studied perturbation [4, 14]. Using these matched
datasets, we find specific and reproducible biases in each
respective dataset that influence both the quality metrics
and 5′ distribution of reads. However, we find that these
protocol and library specific effects do not strongly impact
the inference of which transcription factor is driving the
observed perturbation induced changes in transcription.
These protocol-specific signals could enable an agnostic
detection program to identify the protocols used; such
programs could then be utilized to increase the validity of
online sequence databases.

Results
Quality metrics are influenced by RO-seq transcription
capture protocols
The ultimate goal of run-on protocols is to produce a
dataset that accurately reflects the distribution of actively
transcribing RNA polymerase [1, 15] genome wide. How-
ever, success in this endeavor depends greatly on the
sequencing depth, library complexity, quality of enrich-
ment, and transcription strength of the cell line [16].
To control for cell line differences, we generated run-on
libraries from HCT116 cells using a previously employed
perturbation strategy [4, 14]. Namely, we used global run-
on (GRO) sequencing [1] with a Br-tagged UTP, and pre-
cision run-on (PRO) sequencing [2] with a Biotin to mark
CTP [3] (Fig. 1A) as enrichment protocols. We then com-
bined these enrichment protocols with one of four library
preparation techniques: RNA adapter ligation (LIG) [1],
Circularization (CIRC) [8], Random Priming (RPR) [17],
or Template-Switching Reverse Transcription (TSRT) [9]
(Fig. 1B) after either 1 hr DMSO control or 1 hr treatment
with Nutlin-3a. Nutlin-3a is a molecule which interrupts
p53 inhibition and leads to rapid transcription of down-
stream p53 targets (see Materials and methods). Samples
were subsequently sequenced on an Illumina NextSeq 500
platform (RTA version: 2.4.11, Instrument ID: NB501447)
using a single end strategy (37, 50 or 75 bp lengths) to
variable depths (summarized in Supplemental Table 1, see
Materials and methods).
The first noticeable differences between any two

datasets (even with the same protocol and library prepa-
ration) are depth of sequencing and complexity of the
library. The depth of our samples range from 20 mil-
lion to 170 million reads. We correct for the disparity
in sequencing depth by combining the technical repli-
cates of low-depth samples, and by subsampling deeply
sequenced samples. As such, subsequent comparisons
were performed at equivalent depth (with an average of
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approximately 70 million reads for GRO-LIG, PRO-LIG,
and GRO-CIRC library comparisons, and a minimum of
20 million reads for GRO-RPR library comparisons).
In contrast, library complexity reflects data quality and

cannot be corrected for computationally and ideally would
be similar between library preparations before compari-
son. We use two metrics to assess complexity, the number
of unique reads relative to the depth of the sample and
the number of unique bases covered within the genome
(Supplemental Table 1). While most of our libraries were
comparably complex, we found that our libraries gener-
ated with a random-priming library kit were generally of
lower complexity. The random-priming strategy is rarely
used and thus, it is unclear whether the tendency of
reduced complexity is a consequence of the library prepa-
ration method or a fault of our handling. However, public
random primed datasets [18] exhibited similar 5′ read dis-
tributions to our datasets in spite of the differences in
library complexity (Supplemental Figs. 1, 2, 3, Supplemen-
tal Table 1); therefore, we chose to include these libraries
in our initial analyses to showcase possible technical sig-
natures and potential biases, but refrained from using
GRO-RPR libraries in further comparative analyses.
Notably, some library preparations result in clearly

distinguishable sequence signatures within the acquired
reads. In circularization (CIRC) libraries, regardless of
the enrichment protocol, RNA is polyadenylated before
reverse transcription, and the resulting cDNA is subse-
quently circularized via the enzyme circLigase [8]. As
such, it is common to see many reads with long poly(A)
tails before trimming (Fig. 2A). Additionally, the TSRT
library preparation adds several C nucleotides to the end
of each read [9]. Upon sequencing and adapter trimming,
many read inserts showed an increased incidence of C
nucleotides near the end of the read (Fig. 2A). In our
samples, these sequence signals can effectively distinguish
CIRC and TSRT libraries from the other library prepa-
ration methods. In contrast, LIG and RPR libraries show
similar nucleotide composition across the reads. Like-
wise, GRO and PRO datasets constructed with matched
library preparation methods are not distinguishable from
sequence content signatures alone.
However, principal component analysis (PCA) of the

read counts over all genes tightly clusters based on library
preparation and enrichment protocol, suggesting there
are additional protocol-distinguishing features not evi-
dent in the average nucleotide composition of the dataset
(Fig. 2B). Therefore, we next sought to identify whether
enrichment quality metrics could be used to distinguish
between the protocols. Quality control pipelines offer a
way of quantifying steady-state RNA contamination by
calculating the ratio of reads over exons and introns for
each gene. While the specific value expected for this
ratio depends on how reads are counted, a comparatively

lower exon-intron ratio is indicative of less mRNA con-
tamination [19]. But is this exon-intron ratio influenced
by the choice of protocol? To answer this, we calcu-
lated log-normalized exon-intron ratios for every gene
in each HCT116 control (DMSO) library. On average,
PRO libraries showed a slightly lower amount of mRNA
contamination across all genes relative to GRO libraries,
consistent with the relative strength of the two enrich-
ment strategies (Fig. 2C). Additionally, both CIRC and
LIG libraries showed lower mRNA contamination relative
to RPR libraries (Fig. 2D).
Sequence composition (Fig. 2A) can be utilized to iden-

tify CIRC and TSRT library preparation protocols with
high confidence, while LIG and RPR libraries were more
similar in sequence composition, albeit with some differ-
ences in complexity and quality metrics (Fig. 2D, Sup-
plemental Table 1). However, the differences between
the enrichment protocols (GRO vs PRO) is less readily
apparent from sequence composition or quality metrics
alone (Fig. 2A,C, Supplemental Table 1). Yet, we wondered
whether systematic signals exist within the data that could
distinguish between the protocols. To this end, we applied
a discrete wavelet transform (DWT) approach to the nor-
malized coverage of each library (Fig. 2E). The DWT
decomposes the signal in a region into low frequency
signals (approximation coefficients) that capture consis-
tent RNA polymerase signatures and high frequency sig-
nals (detail coefficients) that contain noise. The noise
component captures both random noise and systematic
noise. Because protocol specific signatures are a system-
atic source of noise, we reasoned that the high frequency
signals may be able to distinguish between the protocols.
To test this hypothesis, we sought to evaluate the DWT

on a set of genes where RNA polymerase signatures are
the least influenced by library depth or complexity. Thus
we identified a set of 294 highly transcribed genes that
also had a low coefficient of variation across our datasets.
Using the PyWavelets package in python, a symlet wavelet
was scanned over the normalized coverage of each gene,
effectively decomposing the signal into the two compo-
nents (see Materials and methods) (Fig. 2E) [20, 21]. Sub-
sequently, we used principal component analysis (PCA) to
cluster the detail coefficients. Overall, 117 genes (39.8%)
separated the protocols (GRO vs PRO) directly on the first
principle component whereas an additional 162 (55.1%)
genes separated the protocols on a different plane within
the PC1 and PC2 space (Fig. 2F, Supplemental Fig. 4, 5).
These results suggested that the data sets contain a read-
ily identifiable protocol signature. To confirm, we built
a simple support vector machine classifier to determine
whether the principle components of the wavelet analy-
sis could be used to identify the protocol directly from the
data (see Materials and methods) (Supplemental Fig. 6).
Using leave-one-out cross validation at the individual gene
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Fig. 2 Quality Control metrics for varying library preparation and enrichment techniques. A Nucleotide distribution of DMSO samples are plotted
indicating the percent nucleotide representation (y-axis) versus the position within each read (x-axis). Library specific signatures are identifiable in
CIRC and TSRT libraries (blue arrows). B Principal-Component Analysis of assorted library preparation and enrichment methods. Each library was
prepped using HCT116 cells treated with either DMSO or Nutlin-3a for 1 hour. Log-normalized density plots of exon/intron ratios for each gene for
each C enrichment method and D library preparation method (GRO-seq samples shown), (GRO-LIG vs PRO-LIG: p < .001; GRO-CIRC vs GRO-LIG: p <
.05; GRO-CIRC vs GRO-RPR: p < .001; GRO-RPR vs GRO-LIG : p < .001, K-S Test, n=1795). Mean indicated by vertical line for each respective
distribution. E Schematic showing the wavelet transformation approach at the UBB locus. F Detail coefficients at UBB locus separates PRO and GRO
libraries on PC1 (Low-biotin PRO-seq samples omitted, see Supplemental Table 1). G SVM classifier results for each tested library
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level, the classifier correctly identified the protocol >70%
of the time (Fig. 2G, Supplemental Fig. 7). Furthermore,
applying a simple majority rules voting scheme to the clas-
sifier results identified the protocol every time (100%),
further confirming that each data set contains identifiable
protocol specific signatures.

Enrichment and library preparation methods significantly
shift 5′ distribution
To better understand the protocol specific signatures
within the data sets, we next examined annotated,
protein-coding genes for systematic differences in their
read distributions. At protein-coding genes, the behavior
of RNA polymerase II is well characterized [22] which
leads to repeatable patterns of read distribution through-
out the gene (Fig. 3A). Therefore, we sought to determine
whether the protocol (GRO vs PRO) led to systematic
differences in the detected 5′ initiation region or the
elongation region. Counts across gene body regions sug-
gested that elongation regions correlated well between
protocol and library preparation differences (Supplemen-
tal Fig. 8, see also Materials and methods); therefore, we
subsequently focused our attention on the 5′ regions of
genes.
To assess the differences in the 5′ distribution across

protocols, we examined the read distribution of GRO
and PRO libraries prepped from DMSO-treated HCT116
cells, with an otherwise similar library preparation pro-
tocol (LIG). Metagenes revealed a shift in coverage near
many transcription start sites (TSS) in PRO libraries that
is not present in GRO libraries (Fig. 3B, Supplemental
Fig. 9). GRO and PRO libraries differ in the nucleotide
analog used to enrich for nascent RNA. In GRO-seq,
bromouridine-triphosphate is used to mark newly tran-
scribing RNAs which can then be detected by anti-BrdU
antibodies. In contrast, PRO-seq uses Biotin-NTPs which
also terminate transcription upon their incorporation into
the nascent RNA. Streptavidin then efficiently isolates
newly transcribed RNAs. The original PRO-seq strategy
marked all four nucleotides to maximize precision [1], but
for cost efficiency, subsequent efforts only marked a single
nucleotide [3]. Notably, both the efficiency of pull down
and the termination of transcription results in PRO-seq
giving a more precise readout on the position of RNA
polymerases relative to GRO-seq [2]. However, at the 5′
end this precision also results in short unmappable reads,
leading to gaps in coverage near the TSSs [3]. In an
attempt to mitigate these 5′ read coverage gaps, subse-
quent variations in the PRO-seq protocol include a ratio
of Biotin-NTP/NTP to the run-on mixture [3].
We theorized that the shift in the 5′ region observed

in our PRO libraries arose from early incorporation of
Biotin-NTP near the TSS which leads to short, truncated
reads that are not well mapped. As such, we reasoned that

generating new libraries with a different ratio of Biotin-
NTP/NTP in the initial run-on mixture would result in
more reads captured around the 5′ end (Supplemental
Fig. 10). Metagenes indeed show a smaller shift with
lowered Biotin-NTP concentration, although GRO-LIG
libraries continued to show more signal in these regions
than any PRO library.
To ensure that our findings generalize to other data

sets, we next examined publicly available datasets. While
these data sets likely have larger batch effects arising from
their preparation in distinct laboratories and cell types,
we reasoned that the overall trend in 5′ end patterns
should still be noticeable, albeit subject to more variance.
GRO and PRO libraries obtained from other labs showed
that the peak of PRO-seq libraries was noticeably further
downstream than their GRO-seq counterparts; however,
this comparison (using a consistent mapping and anal-
ysis strategy, see Materials and methods) uncovered a
broad range of peak positions (from +40 bps to +250 bps)
with seemingly no linear relationship between the Biotin-
NTP/NTP ratio and peak position (Fig. 3B, Supplemental
Figs. 10, 11, 12).
Therefore, we reasoned that there must be further

underlying protocol influences on the 5′ read distribution.
Differences in size selection, read fragmentation, and gene
filtering criteria were all hypothesized to influence the dis-
tribution. To evaluate these criteria, we took an in silico
approach and simulated reads arising near a TSS from
each protocol configuration (see Materials and methods).
Briefly, positions of potential polymerase occupancy were
sampled from a simulated gene, including both initiation
and elongation regions. For each polymerase position,
we extended the hypothetical RNA based on the gene
template downstream of the polymerase position, with
the designated probability of incorporating a Biotin-NTP
and halting extension. The subsequent read was then fil-
tered by size selection and plotted to generate simulated
metagene traces (Supplemental Fig. 13). Using these simu-
lations, we found that the 5′ peak position was influenced
by both the Biotin-NTP run-on ratio and the size selection
criteria.
To validate our in silico findings, we returned to the data

and examined the distribution of short reads (less than 30
bps) relative to transcription start sites. We reasoned that
short fragments would consist of a combination of TSS
associated fragments truncated by Biotin-NTP incorpo-
ration and small fragments arising from sample handling,
which should be randomly distributed throughout the
genome. Hence the ratio of short reads near TSS rela-
tive to all short reads should be indicative of the ratio
of labeled and unlabeled NTPs used in the run-on reac-
tion. Indeed, the short read ratio does shift along the
Biotin-NTP ratio, but not as a monotonically increasing
function (Supplemental Fig. 14). Consistent with our sim-
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Fig. 3 Analysis of gene transcription start sites among different protocols and library preparations. A Genome viewer screenshot of 5′ end
distribution among various library preparation and enrichment methods. Negative read depth represents reads found on the minus strand. B
Metagenes constructed from GRO-seq (orange) and PRO-seq (blue) libraries (Ligation based library preparation, HCT116, DMSO 1hr). Genes shorter
than 2000 bp were removed, genes with significant signal 2 kb upstream (>1% of upstream bases covered), and genes with low coverage (TPM <
.01) were removed (n=2527). Vertical line indicates TSS annotated in RefSeq database. Distance from TSS is in bp, read depth was normalized by
counts-per-million (CPM). C Pausing index calculations for top 500 most transcribed genes in GRO-seq and PRO-seq libraries, presented with
Pearson (left) and Spearman (right) correlations (red line: y=x, black line: best fit). Pausing region is defined as -50 bp to 250 bp from annotated TSS
(See Materials and methods). DMetagenes constructed from GRO-seq Ligation (blue), and Circularization-based (green) libraries (HCT116, DMSO 1
hr). Genes shorter than 2000 bp, genes with significant signal 1 kb upstream (>1% of upstream bases covered), and genes with low coverage (TPM <
.01) were removed (n=2527). Vertical line indicates TSS annotated in RefSeq database. Distance from TSS is in bp, read depth was normalized by
counts-per-million (CPM). E Pausing index calculations for Circularization and Ligation based libraries (GRO-seq, HCT116, DMSO 1 hr), graphed as in
(C)
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ulations, intermediate Biotin-NTP/NTP ratios returned
the highest fraction of mappable TSS associated short
reads. Our results indicate that several library prepara-
tion elements, such as size selection, Biotin-NTP run-on
ratios, and mappability strongly influence the 5′ distribu-
tion. Importantly, this work also suggests that the ideal
run-on scenario is a balance between producing reads that
are long enough to escape size selection and map effec-
tively, yet remain short enough to accurately report on the
position of RNA polymerase.
We next reasoned that the observed differences in the

detected 5′ read distribution at genes would commensu-
rately affect the pausing index (PI), measured as the ratio
of reads in the initiation region relative to the gene body
[23]. We defined the initiation region as 50 bp upstream
from the annotated TSS to 250 bp downstream of the TSS;
gene body regions were defined as 251 bp downstream
of the TSS to the annotated cleavage site. Using these
regions, we calculated the PI for the longest isoform of
each gene in both libraries. Consistent with our findings
above, PI for individual genes were reasonably consis-
tent across replicates (Supplemental Fig. 15) but showed
significant disparities between GRO and PRO libraries
(Fig. 3C, R = 0.59, p < 2.2e-16). Spearman rank correla-
tions for PI in both libraries were marginally higher (R =
0.73, p < 2.2e-16). These overall trends were also observed
within PI distributions when we extended this analysis to
publicly available data (Supplemental Fig. 12).While the
PI is known to depend on the method used to define
the paused region [15, 24], we found that the trends
across protocols remained consistent even with different
pause windows and read counting software (Supplemental
Fig. 16).
Next, we evaluated the effects of library preparation on

the 5′ end. To accomplish this, we constructed metagene
summaries of our GRO-CIRC and GRO-LIG libraries
(Fig 3D). CIRC and LIG libraries showed a similar dis-
tribution near the 5′ end. When GRO-RPR libraries were
compared to GRO-LIG and GRO-CIRC libraries, how-
ever, GRO-RPR libraries show a shift in coverage that
leaves a significant gap near the annotated start site (Sup-
plemental Fig. 2). While it is unknown what leads to this
shift, we theorize that random priming has a length bias
that is a contributing factor (i.e. the longer a RNA is the
more likely a primer is to anneal to it).
Additionally, we found that the pause ratio is sensitive to

which method is used to prepare the RNA. We compared
pause index calculations for GRO-CIRC and GRO-LIG
libraries. We found that, for each gene, pause indices
tended to be larger for GRO-CIRC libraries compared to
GRO-LIG libraries (Fig. 3E, R = 0.57, p < 2.2e-16). To assay
whether this shift was systematic, we also computed the
Spearman rank-correlation for these indices. Rank corre-
lation between GRO-LIG and GRO-CIRC libraries was

stronger than Pearson correlation; however, there were
still many genes that showed disparate rankings across our
datasets (Fig. 3E, R = 0.77, p < 2.2e-16).

Changing library enrichment methods shifts intergenic
read distributions and active enhancer detection
The bidirectional transcription typical of RNA poly-
merase initiation regions at the 5′ end of genes is also
present at enhancers [25], albeit typically at much lower
transcription levels. Therefore, we asked whether the pat-
terns of enhancer transcription varied across protocols or
library preparations. As a first pass inquiry that avoids
reliance on enhancer annotations, we first compare the
fraction of reads recovered from RefSeq annotated gene
regions to reads recovered in intergenic regions for each
data set. To ensure more statistical rigor, we included sev-
eral publicly available datasets of different cell lines, along
with six libraries we previously generated from MCF10A
cells prepped with PRO-TSRT (See Supplemental Table
1). When comparing GRO and PRO libraries (irrespec-
tive of cell type or library preparation method), we found
that GRO libraries showed significantly more reads over
gene regions compared to PRO libraries (Fig. 4A, p < .01,
See Materials and methods). Conversely, we found no sig-
nificant differences when comparing library preparation
methods (Fig. 4B).
The disparity in the gene-to-intergenic reads ratio in

GRO and PRO libraries suggest their respective enrich-
ment strategies may capture signal in unannotated regions
at different rates. In particular, we were curious whether
the capture of eRNAs would be affected by the choice of
protocol. To investigate this possibility, we first examined
annotated enhancers in the HCT116 cell line acquired
from the FANTOM database (converted to hg38 coor-
dinates using the online UCSC tool liftOver) [26]. The
level of transcription between these enhancers was largely
consistent between our datasets (Supplemental Fig. 17).
However, FANTOM annotated enhancers represent the
comparatively stable enhancer transcripts arising from
Cap Analysis Gene Expression (CAGE) data [27].
Therefore, we next sought to identify enhancers directly

from the data using their characteristic bidirectional tran-
scription signal [28]. Two algorithms have been devel-
oped to identify transcribed regulatory elements based
on their bidirectional signal, dREG [29] and Tfit [30].
We employed both methods to annotate sites of bidirec-
tional transcription in our GRO-CIRC, GRO-LIG, and
PRO-LIG libraries. Strikingly, the identified regions varied
substantially across protocol and library preparation for
both algorithms (Supplemental Fig. 18). We hypothesized
that these differences may be exaggerated by the sequenc-
ing depth, as eRNAs are lowly transcribed and therefore
these regions are only consistently detectable at high
sequencing depth. To this end, we combined replicates for
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Fig. 4 Analysis of enhancer elements in multiple datasets. A, B Number of reads counted over RefSeq annotated gene regions divided by the
number of reads counted over intergenic (unannotated) regions, for each dataset analyzed. The datasets represented here are all those listed in
Supplemental Table 1, including public datasets. Datasets were first analyzed by enrichment method (GRO-seq (n=23) vs. PRO-seq (n=21), p < .01),
then by library preparation method (LIG (n=17) vs CIRC (n=10) vs TSRT (n=10) vs RPR (n=7), p > .05). We note that the RPR boxplot includes 3 of our
lower quality datasets; however, we chose to include them here owing to the scarcity of RPR datasets in the RO-seq database. These are otherwise
excluded from further analysis. C Example section representing disparate representation of reads from our in-house datasets over an enhancer, even
at high depths. D, E Scatterplots representing reads over Tfit (enhancer) calls (calls combined by MuMerge, counts normalized by TPM). FMA plot of
calls found in (D). Red dots are significant (p < .05). G, HMetagenes of significant hits found in (F). Vertical line indicates the approximated center of
the bidirectional transcripts as determined by Tfit. Distance from the center of the bidirectional is in bp, read depth was normalized by
counts-per-million (CPM). G Calls that were differentially captured in GRO-LIG (n=1350). Background signal on the plus strand is indicated by the
blue trendline, while background signal on the minus strand is indicated by the red trendline. H Calls that were differentially captured in PRO-LIG
(n=3050), with the background signal depicted as in panel G
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PRO-LIG libraries to an effective depth of approximately
200 million reads, and replicates of GRO-CIRC libraries
to an effective depth of approximately 300 million reads.
Transcribed regions identified in these combined libraries
remained inconsistent; while many strong enhancers were
called in both of these two deep data sets, other regions
were exclusively found in only one (Fig. 4C, Supplemental
Fig. 19).
This suggested the existence of transcribed regions

whose signal is strongly dependent on the underlying
experimental protocol. To confirm this possibility, we
next sought to identify the set of transcribed regions
with apparent differential transcription across protocols
or library preparations. To compare enrichment proto-
cols, we combined Tfit regions from PRO-LIG and GRO-
LIG libraries (Fig. 4D, Supplemental Fig. 17, see Materials
and methods), while library preparation methods were
compared by combining Tfit regions from GRO-LIG and
GRO-CIRC libraries (Fig. 4E). In every case, regions were
combined using muMerge [6] and differential read sig-
nal was assessed with DESeq1 analysis (Fig. 4F). We
then constructed metagenes from set of regions with dif-
ferential signal (Fig. 4G, H, Supplemental Fig. 20) and
observed strong bidirectional signal in only one of the
two datasets, while the other dataset showed signal only
slightly above background. Manual inspection confirmed
that these transcribed regions were only effectively cap-
tured by one library, even at high depths (Fig. 4C).

Biological response to p53 activation is preserved across
run-on transcription capture protocols
The protocol-specific nature of both pausing ratios and
eRNA recovery led to concerns about whether the choice
of experimental preparation influences commonly con-
ducted downstream analyses, such as identifying which
genes respond to a perturbation [4] and which transcrip-
tion factors drive those changes [5, 6, 31, 32]. As such, we
used the competitive MDM2 inhibitor Nutlin-3a, which
has a known, specific, robust transcription response in
human cells induced by the subsequent activation of the
transcription factor p53 [4, 14, 33].
First, we sought to determine the reproducibility

of detecting differential gene transcription within our
libraries. The precise identity of which genes respond to
1 hour of p53 activation is expected to vary across pro-
tocols and library preparations – as similar batch effects
have been observed for RNA-seq libraries [34]. Thus, we
focused specifically on whether the core p53 response
program, i.e. the known targets of p53, was captured effi-
ciently in each dataset. To this end we utilize the Gene Set
Enrichment Analysis (GSEA) - Preranked [35, 36] tool on
ranked, signed p-values obtained from DESeq2 [37] (See
Materials and methods). Additionally, we expected that
a substantial amount of variation between two libraries

generated from different protocols would arise from the
gene initiation region (Fig. 3). To confirm this, we sub-
sequently examined two distinct methods of calculat-
ing differential gene transcription: the commonly used
elongation-region-only approach and the full annotated
gene region (Fig. 5A). Across all libraries and count-
ing methods, the p53 pathway was the top hit in the
GSEA-Prerankedmodule (FDR q-val < 0.001, Fig. 5B, Sup-
plemental Fig. 21), suggesting that each protocol, library
preparation and counting method was capable of detect-
ing the underlying biological perturbation in spite of
technical signals introduced by protocol differences.
Next, we compared the correlation of the ranks of the

genes in the Hallmark p53 pathway used by GSEA. We
found that the majority of enriched genes were common
between each of the libraries (58.3% in GRO-LIG vs GRO-
CIRC, 57.1% in GRO-LIG vs PRO-LIG) (Fig. 22B,C, Sup-
plemental Fig. 22). However, there remained several genes
that were only enriched in one of libraries. When only the
elongation region was considered, the overlap improved
(68.3% in GRO-LIG vs GRO-CIRC, 58.9% in GRO-LIG
vs PRO-LIG), consistent with the 5′ initiation regions
being the most variable portion of the gene between pro-
tocols. These results add further support to the most
common method of assessing differential transcription
from run-on sequencing protocols, namely excluding the
5′ initiation regions [38–41].
The second typical use of run-on sequencing data is to

infer which regulators are driving observed patterns of
differential transcription [5, 25, 29]. Alterations in tran-
scription factor activity can be detected by changes in the
locations and levels of sites of bidirectional transcription
[5, 6] (Fig. 5D), the majority of which reside at enhancers
[28]. Therefore we next sought to determine whether the
alterations observed in eRNA detection (Fig. 4) impacted
TF activity inference [6].
To this end, we used the Transcription Factor Enrich-

ment Analysis (TFEA) tool to evaluate which transcrip-
tion factor motifs are enriched at transcription initia-
tion sites with altered transcription levels in response
to Nutlin-3a [6]. In all cases, TFEA correctly identifies
the p53 family (TP53, TP63, and TP73) as significantly
upregulated, independent of the protocol and library prep
used to generate the dataset (Fig. 5E and F, Supplemental
Fig. 23). Upon closer inspection, 94.59% of p53-responsive
enhancers responded similarly across protocols, but 5.41%
of p53-responsive enhancers were unique to a particular
protocol (Supplemental Fig. 24, 25).

Discussion
We used multiple protocols and library preparations on
HCT116 cells exposed to Nutlin-3a and determined that
these experimental choices influence the signal of run-on
sequencing libraries in systematic and often predictable
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Fig. 5 TFEA and DESeq2 analyses of library preparation methods. A Cartoon schematic demonstrating uncorrected (RefSeq Annotation) and 5′
corrected counting methods. B GSEA gene rank comparison of HALLMARK_P53 Gene set. Overlap is shown as genes that enrich in both datasets,
genes that enrich in only one dataset, and genes that do not enrich in either dataset (Left: Uncorrected annotation, hypergeometric test
p-value=4.32e-15; Right: Corrected annotation, hypergeometric test p-value=9.03e-22). C Scatterplot of comparative gene ranks for all p53 genes.
Points in green indicate significant enrichment, as in (B). (Red line: y=x trendline, black line:line of best fit). D Representation of nascent transcription
data set. Bidirectional transcripts occur at active enhancer sites and gene start sites. Enhancer transcription co-occurs with upregulated gene
transcription, indicating transcription factor activation. E TFEA results for GRO-LIG (Left) and GRO-CIRC (Right). p53 family (p53, p63, p73) highlighted
by red dots
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ways. The shape of the characteristic gene initiation peak
is strongly influenced by the underlying protocol, while
the signal at gene elongation regions remain largely con-
sistent across protocols. Likewise, the recovery of many
intergenic regions was protocol specific, even when at
high sequencing depths. Despite these differences, the
ability to detect p53 activation was unaffected by the
choice of enrichment or library preparation protocol.
Promoter proximal pausing is a pervasive feature of

RNA polymerase II activity [15]. Pausing is often quanti-
fied through calculations of the pausing index, the ratio
of reads within the initiation region relative to the elon-
gation region. While PI values are known to depend on
the choices of windows used to define these regions [15],
our work demonstrates that they also depend on the
underlying protocol even when the details of the PI index
calculation are held constant. Furthermore, genes some-
times appear to have an additional pause site downstream
of the annotated TSS (Fig. 3E) [42]. However, we have
found that these second pause sites are protocol depen-
dent; as changes in the library preparation method shift
or ablate the signal of this second peak. While more work
is necessary to fully characterize how protocol choices
influence the precise location of the 5′ peak, it is clear
that care must be taken when comparing 5′ distributions
across experiments, as batch effects strongly influence this
region.
Given the uniform activity of RNA polymerase II [43],

the 5′ end protocol specific patterns we observed at genes
should also impact enhancer associated transcripts. The
most highly transcribed eRNAs (e.g. those annotated by
FANTOM) are detected equally well by each protocol, but
many eRNAs are lowly transcribed. Indeed, we observe
that some enhancers with relatively high read coverage
in one library are not detectable using a different pro-
tocol. We were surprised that increased depth did not
resolve many of these protocol specific eRNAs. The vari-
ability in eRNA detection has likely hampered efforts to
answer an outstanding question in the field; namely, how
many eRNAs exist throughout the genome? Combining
results from many different protocols and cell types may
help alleviate this issue. This disparity in eRNA signal
raises an intriguing question: which aspects of the proto-
cols and resulting libraries contribute to the difference in
eRNA capture rates? The slightly higher exon to intron
ratio (Fig. 2D) of GRO-seq suggests this protocol contains
a higher level of contaminating mRNA [44], consistent
with Br-UTP antibody enrichment being a less efficient
pull down method than Biotin-streptavidin enrichment.
This bias also explains why GRO-seq has a higher gene
to intergenic ratio compared to PRO-seq (Fig. 4A). These
features may lead to some lowly transcribed eRNAs being
more readily detectable with PRO-seq. In contrast, the
use of Biotin halts polymerase elongation in PRO-seq,

giving it a higher precision on RNA polymerase position
[2]. However, this also results in short, unmappable frag-
ments near the 5′ end of transcripts, which may limit
the ability of PRO-seq to capture some shorter eRNAs.
This phenomenon would explain why certain eRNAs are
only captured in GRO-seq. Likewise, other factors prob-
ably contribute to the recovery of eRNAs [45], including
sequence composition and biological variability.
Despite the observed protocol specific differences, our

downstream analysis was consistent in detecting the
underlying p53 perturbation. At genes, it is customary to
exclude the initiation peak from differential gene tran-
scription analysis [38–41], and our work indicates this
is a wise choice, as counting reads only over elongation
regions gave more consistent results across the proto-
cols. Yet even when using only elongation regions, pro-
tocol specific batch effects determine which exact genes
appear to respond, a problem also seen with RNA-seq
[12, 46]. Likewise, detection of enhancer associated RNAs
showed similar protocol specific batch effects. Impor-
tantly, despite the specifics of individual genes (and
eRNAs) being not fully consistent, the large scale conclu-
sion (p53 is activated by Nutlin-3a) remained consistent.
Thus nascent transcription remains a powerful approach
for understanding the immediate responses to perturba-
tions including compounds and drug activity [5, 6, 40, 47].

Conclusion
Protocol and platform differences have long been rec-
ognized as batch effect variables that introduce non-
trivial experiment specific signals within high throughput
sequencing data [48, 49]. Numerous efforts have focused
on correcting batch effects, but it is always difficult to
do so without some loss of biological signal [50, 51]. On
the other hand, the distinct signals we detect raise an
intriguing possibility that protocol and library preparation
information can be inferred directly from the data itself.
The noise component of the data can reliably differenti-
ate between GRO- and PRO-seq datasets with remarkable
accuracy, while sequence and quality signatures can often
identify the library preparation methods used to prepare
the dataset. Thus an automatic detection approach could
be built to confirm or correct experimental information
within the short read archive, at least for run-on assays
[52]. Regardless, knowing the experimental details and
managing associated batch effects is necessary when com-
paring in-house data to previously published data sets.

Materials andmethods
Cell culture conditions
HCT116(ATCC cell line CCL-247, see [4]) and
MCF10A(ATCC cell line CRL-10317 with aWTp53 inser-
tion at p53 locus, see [53] for full information) cells were
cultured in DMEM media supplemented with 10% FBS,
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100 units/mL penicillin and 100 μg/mL streptomycin, at
37°C with 5% CO2. Cells were grown to a confluency of
60–70% in 15 cm culture dishes before passaging. Cells
were passaged twice before harvesting, using PBS to wash
and 0.05% w/v trypsin to detach the cells from the plate.
Cells were aspirated and treated with media containing
10 μMNutlin-3a (or DMSO) for 1 hour before harvest.

Nuclei isolation
Post-treatment, cells were placed on ice and washed three
times with ice-cold PBS. Cells were incubated on ice in
10 mL ice-cold Lysis Buffer (10 mM Tris-HCl pH 7.5,
2 mM MgCl2, 3 mM CaCl2, 0.5% IGEPAL, 10% Glyc-
erol, 2 U/mL SUPERase-IN, brought to volume with 0.1%
DEPC DI-water, filtered before use) for 10 minutes. Cells
were scraped and collected into 50 mL Falcon tubes, and
centrifuged with a fixed-angle rotor at 1000 x g for 10
minutes at 4°C. Cells were resuspended with Lysis buffer
with a wide-opening P1000 tip, and washed twice with
10 mL Lysis buffer (centrifuged at 1000 x g for 5 minutes
at 4°C). After the second Lysis buffer wash, the samples
were resuspendedwith 1mL Freezing Buffer (50mMTris-
HCl pH 8.3, 5 mM MgCl2, 40% Glycerol, 0.1 mM EDTA
pH 8.0, brought to volume with 0.1% DEPC DI-water, fil-
tered before use). Nuclei were centrifuged at 1000 x g for
5 minutes at 4°C, and resuspended with 500 μL Freezing
Buffer. Nuclei were then centrifuged for 2 minutes at 2000
x g, 4°C, and resuspended in 110 μL Freezing Buffer. 10
μL was retained for counting nuclei, while the remaining
sample was snap-frozen in liquid nitrogen and stored at
-80°C until use.

GRO-seq and library preparation methods
Ligation (LIG)
Run-on reactions were performed as in [1]. In brief,
ice-cold isolated nuclei (100 μL) were added to 37°C 100
μL reaction buffer (Final Concentration: 5 mM Tris-Cl
pH 8.0, 2.5 mM MgCl2, 0.5 mM DTT, 150 mM KCl, 10
units of SUPERase In, 0.5% sarkosyl, 500 μM rATP, rGTP,
and Br-UTP, 2 μM rCTP). The reaction was allowed to
proceed for 5 min at 37°C, followed by the addition of 23
μL of 10X DNAseI buffer, and 10 μL RNase free DNase I
(Promega). RNA was extracted twice with Trizol, washed
once with chloroform, and precipitated with 3 volumes
of ice-cold ethanol and 1-2 μL GlycoBlue. The pellet was
washed in 75% ethanol before resuspending in 20 μL of
DEPC-treated water. Libraries were prepared as in [1].
In brief, nascent RNA was extracted and fragmented by
base hydrolysis in 0.2 N NaOH on ice for 10–12 min,
and neutralized by adding a 1× volume of 1 M Tris-HCl
pH 6.8. Fragmented nascent RNA was purified using
Anti-BrdU beads and ligated with reverse 3′ RNA adaptor
(/5Phos/GAUCGUCGGACUGUAGAACUCUGAAC/3
InvdT/), and BrdU-labeled products were enriched

by a second round of Anti-BrdU bead binding and
extraction. For 5′ end repair, the RNA products were
treated with tobacco acid pyrophosphatase (Epicenter)
and T4 polynucleotide kinase (NEB). 5′ repaired RNA
was ligated to reverse 5′ RNA adaptor (5′ UGGAAUU-
CUCGGGUGCCAAGG) before being purified by a final
round of Anti-BrdU bead binding and extraction. RNA
was reverse transcribed using 25 pmol of RP1 primer
(5′AATGATACGGCGACCACCGAGATCTACACGTTC
AGAGTTCTACAGTCCGA). The product was amplified
15 ±3 cycles and products >150 bp (insert > 70 bp) were
size selected with 1X AMPure XP beads (Beckman)
before being sequenced.

Randompriming (RPR)
Run-on reactions were performed as in [1]. In brief, ice-
cold isolated nuclei (100 μL) were added to 37°C 100 μL
reaction buffer (10mM Tris-Cl pH 8.0, 5 mM MgCl2, 1
mM DTT, 300 mM KCl, 20 units of SUPERase In, 1%
sarkosyl, 500 μM ATP, GTP, and Br-UTP, 2 μM CTP).
The reaction was allowed to proceed for 5 min at 30°C,
followed by the addition of 23 μL of 10X DNAseI buffer,
and 10 μL RNase free DNase I (Promega). RNA was
extracted twice with Trizol, washed once with chloroform,
and precipitated with 3 volumes of ice-cold ethanol and
1-2 μL GlycoBlue. The pellet was washed in 75% ethanol
before resuspending in 20 μL of DEPC-treated water.
Libraries were prepared based on the NEBNext Ultra
II Directional Library Preparation Kit. In brief, nascent
RNA was extracted and fragmented by base hydrolysis
in 0.2 N NaOH on ice for 10–12 min, and neutralized
by adding a 1× volume of 1 M Tris-HCl pH 6.8. Frag-
mented nascent RNA was purified using Anti-BrdU beads
(Santa Cruz Biotech, Santa Cruz, CA) 3 times. Samples
were reverse-transcribed using random hexamers, and
sequencing adapters added by PCR. The product was
amplified 15 ±3 cycles and products >150 bp (insert >
70 bp) were size selected with 1X AMPure XP beads
(Beckman) before being sequenced.

PRO-seq and library preparation methods
Ligation (LIG)
Run-on reactions were adapted from [3]. In brief, ice-cold
isolated nuclei (100 μL) were added to 37°C 100 μL
reaction buffer (Final Concentration: 5 mM Tris-Cl pH
8.0, 2.5 mM MgCl2, 0.5 mM DTT, 150 mM KCl, 10 units
of SUPERase In, 0.5% sarkosyl, 125 μM rATP, 125 μM
rGTP, 125 μM rUTP, 25 μM biotin-11-CTP (additionally,
two libraries generated with 25 μM biotin-11-CTP, 250
μM rCTP, see Supplemental Table 1). The reaction was
allowed to proceed for 5 min at 37°C. RNA was extracted
twice with Trizol, washed once with chloroform, and
precipitated with 3 volumes of ice-cold ethanol and 1-2
μL GlycoBlue. The pellet was washed in 75% ethanol
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before resuspending in 20 μL of DEPC-treated water.
Nascent RNA was extracted and fragmented by base
hydrolysis in 0.2 N NaOH on ice for 10–12 min, and
neutralized by adding a 1× volume of 1 M Tris-HCl pH
6.8. Fragmented nascent RNA was purified using strep-
tavidin beads and ligated with reverse 3′ RNA adaptor
(/5Phos/GAUCGUCGGACUGUAGAACUCUGAAC/3I-
nvdT/), and biotin-labeled products were enriched
by a second round of streptavidin bead binding and
extraction. For 5′ end repair, the RNA products were
treated with tobacco acid pyrophosphatase (Epicenter)
and T4 polynucleotide kinase (NEB). 5′ repaired RNA
was ligated to reverse 5′ RNA adaptor (5′ UGGAAUU-
CUCGGGUGCCAAGG) before being purified by a final
round of streptavidin bead binding and extraction. RNA
was reverse transcribed using 25 pmol of RP1 primer
(5′AATGATACGGCGACCACCGAGATCTACACGTTC
AGAGTTCTACAGTCCGA). The product was amplified
15 ±3 cycles and products >150 bp (insert > 70 bp) were
size selected with 1X AMPure XP beads (Beckman)
before being sequenced.

Template-switch reverse transcription (TSRT)
Template-Switch Reverse Transcription protocol (also
known as uPRO), was adapted from [9]. Nuclei were
incubated in the nuclear run-on reaction condition (5
mM Tris-HCl pH 8.0, 2.5 mM MgCl2, 0.5 mM DTT, 150
mM KCl, 0.5% Sarkosyl, 0.4 units / l of SUPERase-In)
along with biotin-NTPs and rNTPs (125 μM rATP, 125
μM rGTP, 125 μM rUTP, and 25 μM biotin-11-CTP)
for 5 min at 37°C. Run-On RNA was extracted using
TRIzol, and fragmented with 0.2 N NaOH for 10-12
min on ice. Fragmented RNA was neutralized with 1
M Tris-HCl pH 6.8, and buffer exchanged by pass-
ing through P-30 columns (Biorad). 3′ RNA adaptor
(/5Phos/GAUCGUCGGACUGUAGAACUCUGAAC/3
InvdT/) is ligated at 5 μM concentration for 1 hour
at room temperature using T4 RNA ligase (NEB), and
nascent RNA was enriched twice with streptavidin beads.
Extracted RNA was converted to cDNA using template
switch reverse transcription with 1 μM RP1-short RT
primer (5′ GTTCAGAGTTCTACAGTCCGA), 3.75 M
RTP-Template Switch Oligo (5′ GCCTTGGCACCCGA-
GAATTCCArGrGrG), 1x Template Switch Enzyme and
Buffer (NEB) at 42°C for 30 min. Resulting product was
size selected with AMPure XP beads, and the cDNA was
PCR amplified using primers compatible with Illumina
Small RNA sequencing (TruSeq Small RNA primers RP1
and RPIn).

Trimming, mapping, visualization, quality control
Resulting FASTQ files were trimmed and mapped to the
GRCh38/hg38 reference genome and prepared for anal-
ysis and visualization through our in-house pipeline. In

short, resulting FASTQ read files were first trimmed using
bbduk (v38.05) to remove adapter sequences, as well as
short or low quality reads. Reads were mapped with
HISAT2 (v2.1.0), and resulting SAM files converted to
BAM files using Samtools (v1.8). Reads with a mapping
quality less than 5 were removed, which consequently also
removed multi-mapping reads. BedGraph files were gen-
erated using Bedtools (v2.25.0), and converted to TDF
files for visualization using IGVtools (v2.3.75). Quality
metrics were generated with FastQC (v0.11.8), Preseq
(v2.0.3), RSeQC (v3.0.0), with figures generated through
MultiQC (v1.6). For further version information and spe-
cific input information, see NextFlow pipeline found at
https://github.com/Dowell-Lab/Nascent-Flow.git.

Exon/Intron ratio
RefSeq annotations were used to define exonic and
intronic boundaries for each gene. The first exon of each
gene was excluded (to avoid the initiation peak signal)
in each calculation. To reduce the effect of noise, genes
with low signal (RPKM < 1) were excluded from these cal-
culations. Reads were counted using featureCounts from
the R-Subread package (v1.6.0). Exonic and intronic reads
were summed and normalized by RPKM, and a ratio for
each gene is calculated. These ratios were log-normalized
and the median ratio calculated for each set of libraries
analyzed.

Discrete wavelet transform
Samples with high coverage were used for this analy-
sis. This included samples from the GRO-LIG, PRO-LIG,
GRO-CIRC and PRO-TSRT libraries. The coverage over
a gene transcript was normalized to 0-1 scale as show
below:

ci = xi − min(x)
max(x) − min(x)

Where x = (xi, ..., xn) represents read counts over a
genomic location n, and ci is the normalized coverage
per genomic location. As we sought to identify proto-
col influences independent of biological gene variability,
we limited our analysis to ubiquitously transcribed genes
with low coefficient of variation (CV) across all samples.
Thus, a total of 294 genes with a CV less than 0.55 and
average transcripts per million (TPM) greater than 150
were selected. Using the PyWavelet (version 1.0.3) API in
python (version 3.6.3), the symlet 5 mother wavelet was
scanned across the 294 genes, returning wavelet coeffi-
cients (approximation coefficient and detail coefficients)
(Fig. 2E) [20, 21, 54]. After the first pass of wavelet trans-
form, the detail coefficients were used as input for princi-
pal component analysis (PCA) using scikit-learn (version
0.20.2) [55]. So, for each gene and each sample, PC1 and

https://github.com/Dowell-Lab/Nascent-Flow.git
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PC2 values were returned. Genes were split into categories
based on whether the protocols could be split on PC1 and
PC2 or whether the gene could not separate the proto-
cols in PC space. The above process was then repeated
for a larger set of 669 genes (CV less than 0.85 and aver-
age TPM greater than 100). Plots were generated with
matplotlib (version 3.3.4), ggplot2 (version 3.3.3) and cow-
plot (version 1.1.1) [56–58]. Code for the DWT analysis
can be found on github (https://github.com/Dowell-Lab/
Protocol-Comparisons).

Support vector machine
Principal component analysis values (from PC1 and PC2)
derived from the wavelet transform analysis pipeline were
used as input to a support vector machine (SVM). In
order to verify the performance of the classification, the
leave-one-out cross validation (LOOCV) criteria was used
(Supplemental Fig. 6). A linear kernel was chosen for the
SVM using the e1071 (version 1.7-4) package in R (R ver-
sion 3.6.0) [59, 60]. The folds for the LOOCVwere created
with the caret package (version 6.0-86) in R (version 3.6.0)
and accuracy for each fold and gene was calculated [61].
A total of 18 folds were created, where each of the 18
samples was held out one at a time as the test sample
in the SVM, while the remaining samples were used as a
training set. This was done for all the genes analysed and
the evaluation determined the number of genes accurately
predicting the protocol for each of the 18 samples. Plots
were made using ggplot2 (version 3.3.3) and cowplot (ver-
sion 1.1.1) [57, 58]. The jupyter notebook for the SVM
LOOCV analysis can be found on github (https://github.
com/Dowell-Lab/Protocol-Comparisons).

Pause index calculations
Refseq annotations were used as the basis for pause index
calculations. Counts were generated either from bedtools
multicov (v2.28.0). The paused region was defined as -
50 bp to 250 bp from the annotated TSS [23], and the
elongation region was defined as 251 bp from the TSS
to the annotated PolyA site. Reads from the same strand
as the annotated gene were counted for the paused and
elongation region, and calculated the index as follows:

pausing index(pi) = ReadCount(Pausing Region)/L1
ReadCount (Gene Body) /L2

Where L1 is the length of the pausing region (300 bp)
and L2 is the length of the elongation region, measured
from 251 bp past the TSS to the annotated cleavage site
found in RefSeq. Only pause index values from a gene’s
longest isoformwere considered. Genes shorter than 2000
bp were removed.
The above analysis was repeated using featureCounts

(v1.6.2) in the R-Subread package (v1.6.0), where the

paused region was defined as -20 to +80 from the anno-
tated TSS, and the elongation region as +81 from the TSS
to -1000 from the annotated PolyA site. Genes shorter
than 2000 bp were filtered out. These results are available
in Supplemental Fig. 16.

Simulation of reads near transcription start sites
We generated 2000 base gene template with equal pro-
portions of A, C, G, and T. Using these templates, we
then simulated RNA polymerase activity similar to a pre-
viously established mathematical framework [30]. Briefly,
the model assumes a position for reads to start (the tran-
scription start site) and a polymerase distribution around
the TSS determined by a normal distribution.We sampled
10,000 initiation polymerases and 5,000 elongating poly-
merases randomly. Each polymerase was then allowed
to run-on with a random change to terminate transcrip-
tion based on the sequence identity and biotin-NTP/NTP
ratio specified. Transcript lengths, e.g. reads, were then
determined using the difference between the TSS and
the termninated location of the polymerase. To mimic
Ampure bead size selection, reads were then subjected to
a size selection cutoff determined by an exponential distri-
bution proportional to their length, resulting in an average
cutoff of approximately 25 bases. The resulting read pool
was subsequently used to generate metaplots of our syn-
thetic template (Python v. 3.6.3, Numpy v.1.15.4, Pandas v.
0.23.4. Jupyter Notebook available at https://github.com/
Dowell-Lab/Protocol-Comparisons).

Short read ratio comparison
All reads greater than 30bp were filtered out of PRO-
seq libraries to analyze the location of short reads
within the genome. Each library was first assigned
an Unlabeled/Labeled NTP ratio based on the run-
on reaction concentrations of biotin-NTP relative to
unlabeled NTPs reported by the authors for each
dataset. GRO samples SRR14355674, SRR14355673,
SRR14355662, SRR14355655 were included as a reference
point. All PRO-seq libraries indicated in Supplemental
Table 1 were considered for this analysis. Public samples
SRR8033049, SRR8033050, SRR8033051, SRR8033052,
SRR8033053, SRR8033054, SRR8033055, SRR8033056,
SRR8033057, SRR8033058, SRR6205688, SRR6205689,
SRR4041365, SRR4041366, SRR4041367, SRR4041368,
SRR4041369, SRR4041370, SRR4041371, SRR4041372,
SRR4041373, SRR5364303, and SRR5364304 were also
included in this analysis, but were excluded from Supple-
mental Table 1 as they were not part of other analyses
within this study.
Reads within 20 bp of the RefSeq TSS were consid-

ered to be near the TSS; we then calculated the ratio of
these reads relative to all small reads found throughout
the genome. The resulting ratio was plotted relative to

https://github.com/Dowell-Lab/Protocol-Comparisons
https://github.com/Dowell-Lab/Protocol-Comparisons
https://github.com/Dowell-Lab/Protocol-Comparisons
https://github.com/Dowell-Lab/Protocol-Comparisons
https://github.com/Dowell-Lab/Protocol-Comparisons
https://github.com/Dowell-Lab/Protocol-Comparisons
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the run-on reaction NTP ratio using R (version 3.6.3).
Plots were made using ggplot2 (version 3.3.3) and cowplot
(version 1.1.1) [57, 58].

Gene/Intergenic reads ratio calculation
Genic and intergenic regions were determined by Ref-
Seq (hg38, release number 109, downloaded August 14,
2019 fromUCSC genome browser) annotation. Genic and
intergenic read proportions were calculated by RSeQC
(v3.0.0) read_distribution.py. Genic regions were defined
as those overlapping a RefSeq annotation, including
introns and untranslated regions. Intergenic regions were
calculated as the remainder of reads notmapping to a gene
region. The reads ratio of genic and intergenic regions can
be found for each sample in Supplemental Table 1.

Tfit
Tfit was used to identify regions of bidirectional transcrip-
tion in each of our run-on sequencing libraries. Resultant
BedGraph files from our samples were used as the input
for the –bedgraph flag of the Tfit prelim module. The
resultant preliminary region file was used as the –segment
flag input for the Tfit model module, resulting in the
final bidirectional calls used for analysis (see also https://
github.com/Dowell-Lab/Tfit.git). Calls between replicates
and treatments were combined using muMerge, gener-
ating a set of combined calls for each set of condi-
tions (GRO-LIG, PRO-LIG, and GRO-CIRC). To compare
library preparation methods, the above GRO-CIRC and
GRO-LIG sets were combined together through bedtools
merge (v2.28.0). Likewise, to compare enrichment meth-
ods, PRO-LIG and GRO-LIG sets were combined via
bedtools merge (v2.28.0).

dREG
We used dREG to identify regions of bidirectional tran-
scription in each of our run-on sequencing libraries.
Resultant BAM files from our samples were first con-
verted to BigWig files compatible with dREG (see https://
github.com/Danko-Lab/RunOnBamToBigWig.git). Using
the online dREG portal, these files were used to generate
dREG calls for bidirectional regions (https://django.dreg.
scigap.org). Calls between replicates and treatments were
combined using muMerge, generating a set of combined
calls for each set of conditions (GRO-LIG, PRO-LIG, and
GRO-CIRC). For comparative analyses between any of
these sets, each set combined by muMerge was concate-
nated and used as the input for bedtools merge (v2.28.0),
generating a consensus set of regions for those two sets.

Differential transcription analysis
Differential transcription was performed using the
DESeq2 (v1.26.0) R package (R version 3.6.3). DESeq2 no
longer allows differential calls without replicates; thus,

when comparing libraries where treatments and repli-
cates were combined, the DESeq (v. 1.38.0) R package
was used instead. Gene counts were generated using fea-
tureCounts (v1.6.2) from the R Subread package (v1.6.0),
counting over the entire gene body from RefSeq Annota-
tions (release number 109, downloaded August 14, 2019
from UCSC genome browser). For featureCounts, BED6
region files were converted to SAF format with the fol-
lowing command: awk -F "\t" -v OFS="\t" ’print{$4, $1,
$2, $3, $6}’ region.bed > region.saf. Only the highest tran-
scribed isoform of each gene was considered. Counts
over Tfit, dREG, or FANTOM calls were generated with
featureCounts.

GSEA
DESeq2 gene results were ranked based on -log(P-
value)/sign(Fold-Change). These ranked lists were used
as the input for GSEA-preranked module (v4.1.0). The
Hallmark v7.4 gene sets were used as the input database.
Results were generated using 1000 permutations. Gene
symbols were not collapsed.

TFEA
Resulting Tfit bidirectional calls were used as the input for
TFEA for each experiment (summarized in Supplemental
Table 1). Calls were combined usingmuMerge. Transcrip-
tion factor motifs were identified using FIMO (MEME
Suite v5.1.1), using full humanHOCOMOCO (version 11)
motifs.
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Supplemental Figure 6 Schematic for the Support Vector Machine (SVM)
leave one out cross validation (LOOCV) analysis. Eighteen nascent RNA
sequencing samples were used as input. Given a gene, each of the samples
was selected as a test sample and the other samples as training set, the
SVM classification was evaluated. Based on this criteria, a majority of the
genes (>75%) accurately classified the protocol for the n=18 samples.
Supplemental Figure 7 Support vector machine results for 294 highly
transcribed genes as well as a larger 669 set.
Supplemental Figure 8 Scatterplot matrix of elongation region TPM for
highly transcribed genes.
Supplemental Figure 9 Heatmap showing the ratio of reads in pause
regions between pairs of libraries.
Supplemental Figure 11 Heatmap showing the ratio of reads in pause
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Supplemental Figure 10Metagenes for PRO-LIG libaries with varied
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Supplemental Figure 12Metagenes and pause index comparison in
publicly available K562 data.
Supplemental Figure 13 Short reads obtained from different run-on
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Supplemental Figure 14 Ratio of small reads near TSS versus all short
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Supplemental Figure 15 Scatterplot matrix of counts within the pause
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Supplemental Figure 16 Pause index and rank correlation of GRO-CIRC
and PRO-LIG libraries.
Supplemental Figure 17 Comparison of signal in FANTOM enhancer
annotations.
Supplemental Figure 18 Upset plots of Tfit and dREG called regions
across library preparations.
Supplemental Figure 19 Example of an enhancer that is differentially
recovered by different protocols.
Supplemental Figure 20Metagene summary of enhancers differentially
detected between GRO-LIG and GRO-CIRC libraries.
Supplemental Figure 21 GSEA enrichment plots for GRO-LIG, PRO-LIG
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Supplemental Figure 22 Overlap of GSEA specified p53 genes in
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Supplemental Figure 25 Rank differential of GRO-LIG and PRO-LIG
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