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Abstract 

Background: Shotgun sequencing of cultured microbial isolates/individual eukaryotes (whole-genome sequencing) 
and microbial communities (metagenomics) has become commonplace in biology. Very often, sequenced samples 
encompass organisms spanning multiple domains of life, necessitating increasingly elaborate software for accurate 
taxonomic classification of assembled sequences.

Results: While many software tools for taxonomic classification exist, SprayNPray offers a quick and user-friendly, 
semi-automated approach, allowing users to separate contigs by taxonomy (and other metrics) of interest. Easy 
installation, usage, and intuitive output, which is amenable to visual inspection and/or further computational parsing, 
will reduce barriers for biologists beginning to analyze genomes and metagenomes. This approach can be used for 
broad-level overviews, preliminary analyses, or as a supplement to other taxonomic classification or binning software. 
SprayNPray profiles contigs using multiple metrics, including closest homologs from a user-specified reference data-
base, gene density, read coverage, GC content, tetranucleotide frequency, and codon-usage bias.

Conclusions: The output from this software is designed to allow users to spot-check metagenome-assembled 
genomes, identify, and remove contigs from putative contaminants in isolate assemblies, identify bacteria in eukary-
otic assemblies (and vice-versa), and identify possible horizontal gene transfer events.
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Background
There is particular demand among biologists for taxo-
nomic classification and partitioning of genome and 
metagenome assemblies. In particular, there is a need 
for easy-to-use tools that allow novice users to more 
efficiently begin these analyses without sophisticated 
knowledge of programming languages like Python. Tools 
exist for taxonomic classification and tree-building, 

including those that use sets of specific gene mark-
ers on genomes or metagenome-assembled genomes 
(MAGs) binned from an original assembly (Table  1). 
The partitioning of contigs (i.e. binning) is often car-
ried out independently of taxonomic-classification, and 
takes into account sequence compositional data (GC-
content and tetranucleotide frequency) and read cover-
age; however, open-source software is available that can 
incorporate taxonomic/phylogenetic information to aid 
binning (Table  1). While many tools exist for classifica-
tion of sequenced samples, several barriers exist for nov-
ice users, including the choice of which tools to use, how 
to use them, and the ability to efficiently iterate through 
these tools when analyzing multiple samples.
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Here, we present an open-source bioinformatics tool, 
SprayNPray, that combines taxonomic/phylogenetic 
information with a variety of other metrics for each con-
tig (discussed in detail below), allowing users to manually 
or automatically group contigs based on these metrics. 
This software wraps together several steps, which would 
otherwise require more advanced knowledge of a cod-
ing language to efficiently iterate through, and processes 
the output in a way that allows for easy visual inspection, 
manual curation, and/or further computational parsing. 
It is also organized in a way to allow for identification of 
pathogens, symbionts, and horizontally acquired genes in 
eukaryotic assemblies. The case studies presented below 
demonstrate the software’s versatility and potential use-
fulness to biologists dealing with non-axenic samples.

Implementation
SprayNPray, implemented in Python (version 3), is an 
easy-to-use software that provides a broad overview of 
input contigs by comparing each predicted ORF against 
a user-set reference database (recommended: NCBI’s 
non-redundant [nr] protein database [ftp:// ftp. ncbi. nih. 
gov/ blast/ db/ FASTA]). SprayNPray requires two inputs, 
a FASTA file of contigs (files with extension “.fna”, accord-
ing to NCBI’s naming standards for genome FASTA 
sequences, but also ".fa" and ".fasta" in some cases) and a 
user-defined reference database, preferably NCBI’s non-
redundant (nr) database of proteins. Users also have the 
option of providing a BAM file containing read coverage 

information; in this case, a script from the MetaBAT 
package (jgi_summarize_bam_contig_depths) is used to 
calculate the average read depth per contig [13]. After 
predicting ORFs with Prodigal [19], SprayNPray runs 
DIAMOND v2.0.4.142 [20] to query each ORF against 
the reference database (Fig. 1). Results of this search are 
then grouped and written to a spreadsheet, where each 
row corresponds to a separate contig, followed by the 
taxonomic affiliation of the top DIAMOND hit to each 
ORF on that contig. SprayNPray ultimately writes three 
(optionally, four) output files:

1) In the main output file, SprayNPray provides the fol-
lowing metrics related to the user-supplied contigs:

• Average amino acid identity (AAI) between the 
contig ORFs and closest matches in reference: 
this will provide users with an idea of how closely 
related their sequenced organisms are to what cur-
rently exists in public databases.

• Number of genes normalized to the contig 
length: bacterial and archaeal genomes are typi-
cally gene-dense (~ 1 gene per kbp), compared to 
eukaryotic genomes (0.9 genes per kbp in some 
fungi to ~ 0.01 genes per kbp in plants and ani-
mals). Further, Prodigal is designed for prokaryotic 
ORF prediction, leading to suboptimal eukaryotic 
ORF prediction and subsequent lower gene den-
sity estimates. Thus, users can use coding den-

Table 1 Summary of published software for taxonomic classification and binning

Overall purpose Software Citation

Taxonomic classification and tree-building (using specific markers) CheckM [1]

PhyloSift [2]

GToTree [3]

phyloSkeleton [4]

Taxonomic classification at the contig level Kaiju [5]

Kraken [6]

CLARK [7]

FOCUS [8]

MEGAN [9]

BlobTools [10]

Taxonomic classification at the contig level (using all predicted genes) CAT [11]

Mmseqs2 [12]

Binning with sequence compositional data MetaBAT [13]

MaxBin [14]

Concoct [15]

BinSanity [16]

VizBin [17]

Binning with sequence compositional data and taxonomic information Anvi’o [18]

BlobTools [10]

ftp://ftp.ncbi.nih.gov/blast/db/FASTA
ftp://ftp.ncbi.nih.gov/blast/db/FASTA
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sity to deduce bacterial from eukaryotic contigs 
(Fig. 1).

• GC-content: if the provided contigs have organ-
isms of varying levels of GC content, this will 
allow users to separate sequences based on that 
metric.

• Read coverage: (this metric outputs only if a 
BAM file is provided): read coverage is useful for 
separating sequences if organisms represented 
among the contigs have varying levels of abun-
dance, resulting in different read coverages esti-
mates.

• Contig length: contig length is a useful metric for 
filtering out low-quality contigs, or those too short 
for binning.

• Cluster affiliation: contigs are clustered into puta-
tive bins. Cluster/bin assignments are derived 
from hierarchical clustering of contigs based on 
tetranucleotide frequency and codon usage bias. 
The number of clusters is estimated from the aver-
age number of hmmsearch (v.3.1b2, [21]) hits per 
single-copy gene (using the ‘Universal_Hug_et_al’ 
set of 16 genes available in the GToTree package 
[3]).

2) SprayNPray provides an R-generated word cloud that 
is based on the distribution of the top taxonomic hits 
to genes predicted from the provided contigs (Sup-
plemental Figure 1). When users provide a BAM file 
along with their contigs, the word sizes in the word 
cloud are corrected with read coverage information.

3) SprayNPray provides a file containing the top user-
specified number of hits (default = 100) to each ORF, 
allowing users to assess the taxonomic and functional 
distribution of top homologs to each gene.

4) SprayNPray has the capacity to write FASTA files that 
represent subsets of the provided contigs. This capa-
bility allows users to easily extract contigs belong-
ing to organism(s) of interest (e.g. contaminants, 
pathogens, symbionts, certain genera). Subsets are 
created based on user-specified parameters, includ-
ing: GC-content, coding density, amino acid identity, 
contig length, read coverage, and cluster/bin affilia-
tion. Additionally, users can directly specify a taxo-
nomic group of interest, and SprayNPray will write 
a FASTA file containing only contigs where some 
user-specified percentage (e.g. > 50%) of DIAMOND 
hits are to that specified taxa. In the event that the 
parameters by which FASTA files need to be writ-

Fig. 1 Overall workflow of the SprayNPray pipeline, with the four different uses (contaminant identification, bin validation, symbiont identification, 
and HGT prediction) shown. Horizontal lines in each gray box represent contigs, while the smaller vertical lines perpendicular to the contigs 
represent ORFs



Page 4 of 8Garber et al. BMC Genomics          (2022) 23:202 

ten are unknown prior to running SprayNPray, users 
can re-run the program, with newly specified param-
eters (inferred from visually inspecting the output file 
from a preceding run), with greatly reduced runtime 
by providing the DIAMOND BLAST output file (file 
with extension ".blast") from the previous run.

5) When running SprayNPray on an assembly con-
taining eukaryotic contigs, users can also direct the 
program to specifically look for potential horizon-
tal gene transfers (HGTs) from Bacteria or Archaea 
to Eukaryota. In this case, SprayNPray will write a 
separate output file containing putative HGTs. To 
identify ORFs of possible bacterial or archaeal origin, 
SprayNPray evaluates the taxonomic distribution of 
the top user-specified (default = 100) DIAMOND 
matches for each ORF on each eukaryotic contig, 
and if more than a user-specified percentage (default 
50%) of the hits are to bacterial proteins, that ORF is 
flagged as a potential HGT of bacterial or archaeal 
origin. In order for this part of the software to func-
tion properly, users need to be sure to include a ref-
erence database that encompasses protein sequences 
from all domains of life (e.g. nr).

Results
Case study: simulated metagenome
To demonstrate SprayNPray’s capacity to efficiently and 
accurately summarize contigs, and extract contigs rel-
evant to species/genera/domains of interest, we ran the 
software on a fully controlled dataset consisting of a con-
catenated set of 15 bacterial isolate genomes, 1 archaeal 
isolate genome, 2 phage genomes, and the genome of 
unicellular eukaryote Sphaeroforma arctica (Supple-
mental Table  1). Bacterial isolate genomes included the 
genomes of two closely related species of Shewanella, as 
well as two closely related species of Geobacter. To simu-
late the contig fragmentation that is commonly observed 
in metagenomic assemblies, we manually broke up con-
tigs longer than 1  Mb into 100  kb fragments. Contigs 
from each assembly were then concatenated into a single 
file. This combined file was then used as input to SprayN-
Pray. For 11 of the bacterial genomes and 1 archaeal 
genome, we selected for each individual isolate by set-
ting the ‘-genus’ flag, requiring that more than 50% of 
hits to each contig consist of the selected genus. For the 
two Shewanella and two Geobacter species, we addition-
ally set the ‘-species’ flags, with the same > 50% threshold, 
to specify the exact species of interest. The Bacillus and 
Caulobacter phage contigs were extracted by setting the 
‘-genus’ flags to either ‘Bacillus’ and ‘Caulobacter’, along 
with the ‘--phage’ flag. To extract contigs correspond-
ing to S. arctica, we set the ‘-domain’ flag to ‘Eukaryota’, 

maximum GC-content to 50%, and maximum coding 
density to 0.5 genes per kb; the SprayNPray output file 
from this run (Supplemental File 1) was inspected prior 
to extracting the S. arctica contigs, to confirm that none 
had a GC-content higher than 50%, or coding density 
higher than 0.5 genes per kb.

Results demonstrate that the top taxonomic hits to 
each contig match closely the genome from each contig is 
derived (Supplemental File 1); although, it is worth not-
ing that since many of these isolate genomes represent 
model organisms, they are well-represented in the ref-
erence database used (nr). Analysis of unpublished data 
that represents underrepresented organisms is likely 
to yield results that are more ambiguous (e.g. see  Case 
study:  bin validation). Using SprayNPray’s ‘--fa’ flag, we 
were able to generate 19 FASTA files, each of which con-
tained 100% of the contigs belonging to a single isolate 
genome that was part of the mock community (Supple-
mental Files 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18,  19  and  20). The exact flags and thresholds that 
were used to extract each genome is listed in Supplemen-
tal Table 1.

We used MetaBAT to generate bins from the simulated 
assembly using all five of MetaBAT’s specificity/sensitiv-
ity settings. Overall, MetaBAT performed well in bin-
ning genomes from the simulated metagenome, although 
certain bins appeared contaminated with contigs from 
a closely related (e.g. Class-level) genome (Supplemen-
tal File 21). Moreover, there was no resolution observed 
between the closely-related genomes of Geobacter sul-
furreducens and G. metallireducens, as well as between 
Shewanella oneidensis and S. denitrificans. In other 
words, a single bin was generated for the two Geobacter 
species, and another single bin for the two Shewanella 
species.

Case study: bin validation
SprayNPray was used to profile a subset of metagenome 
bins from the North Pond aquifer [22] using NCBI’s nr 
database (release 200) as reference. Metagenome-assem-
bled genomes (MAGs) from the North Pond aquifer were 
obtained from the FigShare link provided by Tully et al. 
[22]: (https:// figsh are. com/s/ 93916 0bb2d 41560 22558). 
To simulate the SprayNPray run as if it were conducted 
on an unpublished metagenome, we removed top hits 
corresponding to proteins generated from the origi-
nal publication [22]. The results (Supplemental Files 22, 
23, 24  and  25) demonstrate SprayNPray’s capacity to 1) 
provide a rough taxonomic prediction of a genome bin 
and 2) demonstrate that the apparent taxonomic het-
erogeneity of a bin is due not to contaminating contigs, 
but to the low representation of a genome in NCBI’s nr 
database. This deduction is supported by the low average 

https://figshare.com/s/939160bb2d4156022558
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AAI between the ORFs predicted in each contig and 
their closest hits in NCBI’s RefSeq database (Supple-
mental Files 22 and 23). Nonetheless, a subset of genome 
bins with higher similarities (> 85%) to reference pro-
teins recruited a more taxonomically homogenous set 
of homologs from the reference database (Supplemental 
Files 24 and 25), and appear less “contaminated”.

Case study: contaminant identification in cultured isolates
SprayNPray can be used to identify putative contami-
nants in isolate assemblies. This software was used to 
remove contaminating Serratia marcescens contigs from 
a genome assembly of Pseudomonas aeruginosa, isolated 
from clinical specimens following an IRB-approved pro-
tocol (STUDY19100149) at the University of Pittsburgh 
[23]. Specimens were streaked onto Pseudomonas Iso-
lation agar (PIA), a Pseudomonas-selective media on 
which Serratia marcescens and some other species can 
also grow, and incubated at 37˚C for 48 h. Single colonies 
were stored as a 30% glycerol stock at -80˚C. Genomic 
DNA was extracted using a QIAgen DNeasy kit (Qiagen, 
Hilden, Germany) and sequenced on an Illumina Next-
Seq 500. Reads were assembled using SPAdes v3.11.0 [24] 
and contigs smaller than 1kbp were removed.

Visual inspection of SprayNPray’s output revealed 
the presence of contigs from multiple species (Sup-
plemental Files 26, 27  and  28). Running SprayNPray 
on these assemblies with the ‘-genus’ flag set to ‘Pseu-
domonas’  created new FASTA files with only sequences 
corresponding to the Pseudomonas aeruginosa (Supple-
mental Files 29, 30 and 31). In this run, we set the ‘-perc’ 
flag to 50%, meaning that if more than 50% of the genes 
on each contig recruited a Pseudomonas-related gene as 
a top hit, then they would be classified as Pseudomonas, 
and written to a separate FASTA file, while contigs that 
did not meet this criteria were automatically written to 
a second FASTA file that contained contaminating con-
tigs, which were affiliated with Serratia (Supplemental 
Files 32, 33  and  34). Subsequent analysis with CheckM 
v1.1.1 [1] confirmed the lack of contamination in the 
FASTA files written by SprayNPray (Supplemental File 
35), while the completeness score for the newly written, 
clean Pseudomonas assemblies remained > 99%, indicat-
ing that none of the Pseudomonas-sequences were likely 
removed. It is worth noting, however, that CheckM uses 
a set of marker genes for completeness estimation. Thus, 
this completion metric is based solely on those contigs 
that encode the marker genes. Nonetheless, the file con-
taining  Pseudomonas classified sequences is similar in 
size to the expected size of Pseudomonas aeruginosa, so 
we expect that all or most of the contigs were correctly 
identified. In any case, assessment of genome quality and 
completeness is not part of SprayNPray’s pipeline and it 

is up to the user to assess their genome assemblies and 
metagenome bins.

We also used MetaBAT to generate bins from the con-
taminated Pseudomonas assemblies. MetaBAT generally 
performed well in creating bins containing Pseudomonas 
contigs. While the MetaBAT-generated Pseudomonas 
bins contained the majority of the contigs that are affili-
ated with Pseudomonas taxonomically (in terms of the 
number of contigs, as well as the total combined length of 
contigs), within these bins, we also identified contigs that 
are taxonomically affiliated with Serratia, the contami-
nant in these assemblies. Moreover, on all five sensitivity/
specificity settings, one of the Pseudomonas assemblies 
was consistently split into two different bins.

Case study: symbiont identification
SprayNPray can be used to extract bacterial symbi-
ont contigs from an assembly that contains DNA from 
a variety of sources and domains of life. As an example, 
SprayNPray was run on an assembly of Maconellicoccus 
hirsutus (GCA_003261595; [25], the hibiscus mealybug, 
which contains two bacterial endosymbionts [26]. In this 
assembly, the majority of DNA is from the host insect. 
Visual inspection of the initial output of this assembly 
(Supplemental File 37) allowed for the identification of 
metrics (e.g. GC-content, top taxonomic hits, gene den-
sity) with which the software was re-run to generate two 
additional FASTA files, each corresponding to an individ-
ual endosymbiont (Supplemental Files 38 and 39).

Case study: HGT identification
SprayNPray can be used to search eukaryotic contigs for 
genes that may have been horizontally/laterally obtained 
from bacteria via HGT. To showcase this functionality, we 
ran SprayNPray on an assembly of the citrus mealybug, 
Planococcus citri (de la Filia et al., [27], obtained from the 
MealyBugBase download server (https:// downl oad. mealy 
bug. org/ v1/ Plano coccus_ citri_ Pcitri. v1/ fasta/ dna/), and 
available for download here: https:// doi. org/ 10. 6084/ m9. 
figsh are. 19184 357  (Supplemental Files 40  and  41). This 
organism is known to encode multiple HGTs from bac-
teria on its nuclear genome [28]. A total of 519 putative 
HGTs were identified (Supplemental File 44), including 
those previously confirmed by Husnik et  al., [28] (e.g. 
murACDEF, bioABD, dapF, ddl), as well as those that 
were reported but not confirmed (e.g. numerous AAA 
[ATPases Associated with diverse cellular Activities]-
family ATPases of diverse origins, ankyrin repeat pro-
teins with close homology to Wolbachia spp., and type III 
effectors) [28]. We note, however, that extreme caution 
should be taken in interpreting candidate HGTs,which 
should be validated by exploring the genomic context of 

https://download.mealybug.org/v1/Planococcus_citri_Pcitri.v1/fasta/dna/
https://download.mealybug.org/v1/Planococcus_citri_Pcitri.v1/fasta/dna/
https://doi.org/10.6084/m9.figshare.19184357
https://doi.org/10.6084/m9.figshare.19184357
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each putative gene that is thought to have been horizon-
tally acquired.

Conclusions
Here, we present SprayNPray, a bioinformatics software 
designed to aid in the taxonomic analysis of diverse 
(meta)genomic datasets. The appeal of this software is 
its ease-of-use and straightforward output that is ame-
nable to visual inspection and/or computational pars-
ing. We designed this versatile software to lower barriers 
for those with limited experience in bioinformatics and 
programming.

Availability and requirements
Project Name: SprayNPray.

Project home page: https:// github. com/ Arkad iy- Gar-
ber/ Spray NPray

Operating system(s): Linux/MacOS.
Programming language: Python.
Other requirements: Python3, DIAMOND, Prodigal, 

MetaBAT.
License: GNU General Public License v3.0
Any restrictions to use by non-academics: No further 

restrictions to use beyond license.

Abbreviations
GC content: Guanine cytosine content, represented as a percentage of total 
base pairs; MAGs: Metagenome-assembled genomes; ORF: Open reading 
frame; NCBI: National Center for Biotechnology Information; nr: NCBI’s non-
redundant protein database; BAM: Binary alignment map (file type); AAI: Aver-
age amino acid identity; kb/kbp: Kilobase-pair; BLAST: Basic local alignment 
search tool; HGT: Horizontal gene transfer.
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Additional file 34: Supplemental File 32. FASTA file generated by 
SprayNPray, representing a subset of contigs from the contaminated Pseu-
domonas P32_36 assembly that do not match Pseudomonas aeruginosa.

Additional file 35: Supplemental File 33. FASTA file generated by 
SprayNPray, representing a subset of contigs from the contaminated Pseu-
domonas P32_108 assembly that do not match Pseudomonas aeruginosa.

Additional file 36: Supplemental File 34. FASTA file generated by 
SprayNPray, representing a subset of contigs from the contaminated Pseu-
domonas P41_119 assembly that do not match Pseudomonas aeruginosa.

Additional file 37: Supplemental File 35. CheckM completeness and 
contamination scores for the FASTA files generated with SprayNPray after 
a run on the contaminated Pseudomonas assemblies.

Additional file 38: Supplemental File 36. MetaBAT results after a run on 
contaminated Pseudomonas assemblies.

Additional file 39: Supplemental File 37. SprayNPray output file after a 
run on an assembly of the mealybug Maconellicoccus hirsutus.

Additional file 40: Supplemental File 38. FASTA file generated by 
SprayNPray, representing a subset of contigs from an assembly of the 
mealybug Maconellicoccus hirsutus that match the symbiont Ca. Tremblaya 
princeps.

Additional file 41: Supplemental File 39. FASTA file generated by 
SprayNPray, representing a subset of contigs from an assembly of the 
mealybug Maconellicoccus hirsutus that match the symbiont Ca. Doolittlea 
endobia.

Additional file 42: Supplemental File 40. SprayNPray output file after a 
run on an assembly of the mealybug Planococcus citri.

Additional file 43: Supplemental File 41. SprayNPray output file after a 
run on an assembly of the mealybug Planococcus citri, with the -lvl flag set 
to Domain.

Additional file 44: Supplemental File 42. Candidate HGTs identified in 
the assembly of the mealybug Planococcus citri. Output file created with 
SprayNPray when the --hgt flag was included in the command.
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