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Abstract 

Background:  Several studies have been performed to study transcriptome profiles after dengue virus infections with 
partly different results. Due to slightly different settings of the individual studies, different genes and enriched gene 
sets are reported in these studies. The main aim of this network meta-analysis was to aggregate a selection of these 
studies to identify genes and gene sets that are more generally associated with dengue virus infection, i.e. with less 
dependence on the individual study settings.

Methods:  We performed network meta-analysis by different approaches using publicly available gene expression 
data of five selected studies from the Gene Expression Omnibus database. The study network includes dengue fever 
(DF), hemorrhagic fever (DHF), shock syndrome (DSS) patients as well as convalescent and healthy control individu-
als. After data merging and missing value imputation, study-specific batch effects were removed. Pairwise differential 
expression analysis and subsequent gene-set enrichment analysis were performed between the five study groups. 
Furthermore, mutual information networks were derived from the top genes of each group comparison, and the 
separability between the three patient groups was studied by machine learning models.

Results:  From the 10 possible pairwise group comparisons in the study network, six genes (IFI27, TPX2, CDT1, DTL, 
KCTD14 and CDCA3) occur with a noticeable frequency among the top listed genes of each comparison. Thus, there 
is an increased evidence that these genes play a general role in dengue virus infections. IFI27 and TPX2 have also 
been highlighted in the context of dengue virus infection by other studies. A few of the identified gene sets from the 
network meta-analysis overlap with findings from the original studies. Mutual information networks yield additional 
genes for which the observed pairwise correlation is different between the patient groups. Machine learning analysis 
shows a moderate separability of samples from the DF, DHF and DSS groups (accuracy about 80%).

Conclusions:  Due to an increased sample size, the network meta-analysis could reveal additional genes which are 
called differentially expressed between the studied groups and that may help to better understand the molecular 
basis of this disease.
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Background
Dengue is a mosquito-borne viral infection mainly dis-
tributed throughout the tropical and sub-tropical areas of 
the globe ([59]; https://​apps.​who.​int/​iris/​handle/​10665/​
44188). Being responsible for around 400 million infec-
tions every year it is the most prevalent arboviral disease 
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of humans [2], and in recent years, its global incidence 
has grown dramatically [12]. Dengue is caused by four 
different dengue virus serotypes (DENV1–4) which are 
transmitted by infected female Aedes aegypti and Ae. 
albopictus mosquitoes [12]. According to the current 
World Health Organisation (WHO) criteria, dengue 
can be classified into (a) dengue with or without warn-
ing signs and (b) severe dengue. The clinical spectrum of 
dengue infections ranges from an unapparent subclinical 
picture to two well defined syndromes historically known 
as dengue fever (DF) and dengue hemorrhagic fever/
dengue shock syndrome (DHF/DSS) [13]. DF is an acute 
self-limited systemic disease characterized by fever, head-
ache, nausea, vomiting, myalgia, arthralgia, rash, and 
leukopenia. Individuals that may develop warning signs 
might present gingival bleeding, lethargy, hepatomegaly, 
thrombocytopenia and ascites and/or pleural effusion 
[59]. Ultimately, during the critical phase of infection the 
clinical picture may progress to a more severe form of 
disease characterized by capillary permeability and organ 
impairment [13]. Although virological and epidemiologi-
cal risk factors contributing to the development of severe 
dengue have been identified, the molecular mecha-
nisms underlying pathogenesis have yet to be character-
ized [13]. Nevertheless, it is noteworthy that for such a 
complex disease in its clinical manifestations the simple 
therapeutic management is highly effective in saving lives 
[60], as early detection of progression to the severe form 
of disease drops fatality rates of severe dengue to below 
1% [35, 60]. The host transcriptional profile may be cor-
related with disease severity [15], hence, the characteri-
zation of the specific transcriptional patterns associated 
with each clinical form of disease could not only help 
anticipating the clinical progression and adequate man-
agement but also extend our knowledge on the molecular 
mechanisms underlying pathogenesis.

Transcriptome expression analyses by means of DNA 
microarrays [46] or next-generation sequencing (NGS) 
technology [32] can help to better understand the patho-
genesis of virus infections as well as the role of genes and 
pathways in host responses [11, 17].

However, transcriptome expression data has a high-
dimensional character, i.e. thousands of genes are stud-
ied in samples of usually small size, especially in cell line 
experiments [27]. Different techniques such as p-value 
correction have been proposed to reduce false positive 
findings [4], but transcriptome expression studies are 
often underpowered, increasing the chance of false nega-
tive results [22]. Therefore, several approaches for meta-
analysis of transcriptome expression studies have been 
considered in order to achieve increased power and thus 
increased scientific evidence of findings [31, 41, 53]. In 
the context of infectious diseases, such methods have for 

example been applied for meta-analysis of transcriptome 
expression data from West Nile virus infected [20] or 
SARS-CoV2 infected samples [28]. Furthermore, meta-
analysis can increase the reproducibility of gene expres-
sion analysis [49], and can increase the generalizability of 
results when data is taken from a variety of sources [10].

While meta-analysis as performed on clinical trials 
is usually done by two-stage approaches, i.e. results of 
individual analyses are merged by means of p-value- or 
effect-size-combination, meta-analysis of transcriptome 
expression data is often also possible in a single stage 
approach after merging the raw data of the involved 
studies. The single stage approach in the latter case is 
possible due to the free availability of high-dimensional 
gene expression data in public repositories such as Gene 
Expression Omnibus (GEO) [9] or ArrayEpress (AE) [6]. 
When merging gene expression data from independent 
studies additional steps for batch effect removal are usu-
ally necessary [14, 25].

In this meta-analysis on gene expression profiles 
from studies on dengue fever, we use the data merging 
approach which also allows to make group comparisons 
that were not performed in the original studies. This is 
obtained by building a network of study groups from the 
original data. We have previously shown that so called 
network meta-analysis on merged data (single-stage anal-
ysis) is highly correlated with network meta-analysis by 
means of two-stage analysis [56]. Network meta-analysis 
has first been presented in the context of clinical tri-
als [45], and has also been used to mine protein expres-
sion databases [57]. Our analysis comprises differential 
expression analysis as well as gene ontology (GO) term 
enrichment analysis. We performed differential expres-
sion analysis once based on the merged data and once 
by a rank-based approach [19] on the results from the 
individual studies. The advantage of the merged data 
approach is an increased power but loses large numbers 
of genes in the merging step. The rank-based approach 
does not profit that much from an increased power but 
does not lose genes.

Using the top genes identified by both approaches, we 
derive mutual information networks to study changes in 
the pairwise correlation between genes, and fit machine 
learning models to the merged data to study the sepa-
rability of different patient groups. Finally, we compare 
our new results with the results reported in the original 
studies.

Results
Database search and building of the study network
In March 2021, searches in the AE and GEO databases 
by the keyword ‘Dengue’ yielded 69 database entries, 31 
of which referred to samples from Homo sapiens. Further 
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selection left 29 datasets generated by either RNA-seq 
of coding RNA or by array-based transcription profil-
ing. Because the samples of the 29 datasets were taken 
from different types of tissues, we manually screened the 
publications linked with the database entries. As result, 
5 datasets remained where dengue fever was studied in 
whole blood samples (Table 1). All 5 datasets were gen-
erated by array-based transcription profiling. A flow 
diagram according to recommendations of the PRISMA 
guidelines for systematic reviews and meta-analyses [38] 
that depicts the selection process is provided as Supple-
mentary Fig. S1. After outlier removal (see next subsec-
tion) 329 individuals remained from all groups.

The resulting study network is illustrated in Fig.  1A, 
and is comprised of five different group: samples of 1) 
healthy control individuals, 2) of patients with dengue 
hemorrhagic fever (DHF), 3) of patients with dengue 
shock syndrome (DSS), 4) of patients with dengue fever 
(DF), and 5) of convalescent individuals. Only in the 
study by Loke et  al. [29] data from all five groups was 
available in the databases. The other studies contributed 
with subsets of these five groups.

The studies by Long et al., Loke et al. and Popper et al. 
involved only children, while the studies by Sun et  al. 
and by Kwissa et al. involved also adolescents and adults. 
The female/male ratio was in general well balanced, indi-
vidual groups in some studies had slightly more males or 
females.

Data merging, missing values imputation and batch effect 
removal
In total, a union of 35.695 genes were involved in all five 
selected studies, with an intersect of only 12.046 that 
were studied in each of the studies (Fig. 1B). Before data 
merging, 9.180 genes which occurred in only one of the 
studies were removed from the data sets. Thus, only 
genes which occurred in at least two studies were con-
sidered for the merged data set which had a final size of 
26.515 genes. The merged data matrix contained approxi-
mately 22% of empty entries which were filled by miss-
ing value imputation. Finally, batch effects, i.e. systematic 

differences between groups, were removed. The merging, 
imputation and batch effect removal steps are illustrated 
in Fig. 2. Note again, that the loss of genes concerns the 
differential expression analysis based on the merged data, 
but not the analyses based on rank aggregation.

Using group specific bag plots on the data projected to 
the space of the first two principal components, 15 out-
liers were detected in total and subsequently removed 
(Fig.  3) leading to a slightly reduced sample size. Four 
outliers were removed from the DHF group, 9 from the 
DF group and 2 from the DSS group (Table 1). Although, 
it is a statistically not recommended procedure to remove 
outliers from a data set just because these observations 
are extreme, we decided for our network meta-analysis 
to remove some outliers for several reasons. When fus-
ing data from multiple independent studies there is a 
higher chance that some individuals may not belong to 
the particular disease group, and in consequence they do 
not fit the model well [43, 44]. Furthermore, it has been 
observed that in data mining single abnormal measure-
ments might dominate the calculation of averages [5], 
which in the case of transcriptomics would lead to wrong 
estimates of the fold changes.

Overview of results from differential gene expression
In this subsection, we report the results based on the 
merged data set. Additional results for differential expres-
sion analysis based on rank aggregation are reported 
in the subsequent subsection. As expected, the largest 
numbers of differentially expressed genes were found in 
the comparisons of the disease groups versus either the 
group of normal or versus the group of convalescent 
patients (Table 2). Taking only the FDR-adjusted p-values 
as selection criterion, the number varied between several 
hundred up to few thousand genes. The union of genes 
selected in the different group comparisons by an FDR-
threshold of 5% were 7387 genes. For these genes, the 
p-values and log2 fold changes from all 10 pairwise group 
comparisons are provided as Supplementary Tables  T1. 
When applying additionally a moderate threshold of 
+/− 1 for the log2 fold change, the numbers reduced 

Table 1  Selected data sets from NCBI GEO database and available sample sizes per study group, before and after outlier removal

Accession number Healthy Convalescent DHF DF DSS Reference

GSE13052 11 19 Long et al. [30]

GSE25226 4 6 6 20 8 Loke et al. [29]

GSE38246 8 32 53 20 Popper et al. [39]

GSE43777 24 37 40 Sun et al. [48]

GSE51808 9 19 10 18 Kwissa et al. [23]

Total 21 60 85 131 47

Total after outlier removal 21 60 81 122 45
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clearly. In total, a union of 72 genes were found in all 
comparisons when using these strict selection criteria. 
According to these strict criteria (FDR-adjusted p < 0.05 
& log2 fold change > +/− 1), no genes were selected 
when comparing DHF, DSS and DF groups among 
each other, or normal versus convalescent samples. A 

clustered heatmap based on these 72 genes and all 329 
individuals is presented in Supplementary Fig. S2.

For further analyses (such as the mutual informa-
tion networks and classifier training) we used the rank-
ing provided by the FDR-adjusted p-values without the 
log2 fold change as selection criterion. While a p-value 

Fig. 1  A Study network showing the availability and possible comparison of research groups in the five individual studies (labelled by 
GSE-accession numbers) as well as sample sizes per group summed over all studies. B Overlap of genes studied in the five individual studies. In total 
12,046 genes were measured in all five studies
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comprises information about mean, variance and sam-
ple size, the fold change is only constructed using mean 
expression levels. In fact, a gene with a small fold change 
can still be significant if the within-group variances are 

small, while a gene with a large fold change can be non-
significant if within-group variances are large. Therefore, 
significant genes can falsely be excluded by using a too 
strict fold change threshold.

Fig. 2  Unclustered images of transcriptome profiles from the five independent studies, a after data merging, b after missing values imputation by 
means of the k-nearest neighbour approach, and c after batch effect removal

Fig. 3  Left: principal component plot of all study groups, based on batch-effect adjusted data after data fusion. Right: new principal component 
plot after removal of outliers for the purpose of a robust analysis
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Top noticeable genes from differential expression analysis 
of the network meta‑analysis
Among the different lists of top 10 genes from the two 
approaches of network meta-analysis (merged data anal-
ysis and analysis by rank aggregation), six genes occur 
more than three times (Table  3): IFI27 (7x), TPX2 (6x), 
CDT1 (5x), DTL (5x), KCTD14 (5x) and CDCA3 (4x). 
The high frequency of their occurrence among the top 
10 lists provides evidence that these genes could play an 
important role in the context of DENV infections. IFI27, 
TPX2, CDT1 and CDCA3 are particularly known for 
their role in cancer [8, 36, 58, 61], and TPX2 also for its 
role in the context of infectious diseases, in particular 
dengue fever [51].

In order to limit the findings not only to the top 10 
lists, we also analysed the top 20 and top 50 lists. From all 
group comparison, 266 individual genes occur among the 
top 20, where 19 of them occur more than three times. If 
looking at the top 50, 618 individual genes are detected 
in total, where 48 of them occur more than 3 times. The 
additional 48 genes are listed in Supplementary Table T3. 
Still, the six above mentioned genes are those with the 
highest frequency among the top 20 and top 50 lists.

Genes with strong correlation changes in mutual 
information networks
Here, we selectively describe mutual information net-
works with the largest changes between two groups. For 
each pair of study groups, we took the genes listed in 
Table  3, i.e. the top 10 from the merged data approach, 
and the top 10 from the rank aggregation approach. 

The union of these genes then had a size of ≤20 genes. 
The changes in the mutual information networks for 
all group comparisons are provided as Supplementary 
Figs. S3. While the presented Figure depict the changes 
in a mutual information network between two group, the 
group-specific mutual information adjacency matrices 
are presented as Supplementary Tables T4.

In the mutual information network for DF versus DHF 
(Fig. 4) the correlation between LOC288086 and ENPP5 
is strongly lowered in samples from DHF compared to 
the correlation in DF. Vice versa, the correlation between 
LOC153682 and RNF 157-AS1 is increased in DHF com-
pared to DF.

In the network constructed from the comparison of DF 
versus DSS, the correlation of PSMA6 with NELFE and 
with DNAJC15 is stronger in DHF than in DF.

An increased correlation between NELFE and 
DNAJC15 in DSS samples is observed in the network 
constructed from the comparison of DHF versus DSS. 
In this network PSMA6 and NME2 lose their correlation 
in DSS samples compared to their expression in DHF 
samples.

Gene ontology analysis
Table 2 also presents the number of significant GO terms 
from each comparison. Detailed results of the union of 
111 selected GO-term analyses are also provided as Sup-
plementary Tables T2. The most GO-terms were identi-
fied as significantly enriched in the comparisons with the 
normal group or with the group of convalescent patients. 
Again, no significant GO-terms were selected in the 
comparisons between DHF, DSS and DF group.

Table 2  Numbers of differentially expressed genes identified in the different pairwise group comparisons. Numbers in brackets are 
only based on FDR-adjusted p-values, the other numbers were obtained when using additionally a threshold for the log2 fold change. 
The last columns shows the numbers of significantly enriched GO-terms. Detailed results for each comparison for the union of 7387 
genes and 111 GO terms are provided as Supplementary Tables T1 and T2

Comparison # Differentially expressed 
genes

# Up-regulated # Down-regulated # Significantly 
enriched 
GO-terms

DF versus Normal 4 (582) 4 (421) 0 (161) 16

DHF versus Normal 10 (1378) 9 (957) 1 (421) 4

DSS versus Normal 23 (1921) 22 (1627) 1 (294) 24

Convalescent versus Normal 0 (0) 0 (0) 0 (0) 0

DHF versus DF 0 (23) 0 (0) 0 (23) 0

DSS versus DF 0 (1341) 0 (1180) 0 (161) 0

Convalescent versus DF 36 (2790) 35 (2043) 1 (747) 97

DSS versus DHF 0 (1072) 0 (961) 0 (111) 0

Convalescent versus DHF 51 (3489) 48 (2224) 3 (1265) 0

DSS versus Convalescent 67 (4972) 64 (4054) 3 (918) 35

Union 72 (7387) 68 (5794) 4 (1787) 111
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Table 3  Top 10 of differentially expressed genes from the pairwise comparisons in the study network. The first three columns result 
from the analysis of the merged data set, the last two columns results from the rank-based aggregation of differential expression 
analysis of the individual studies. The latter analysis does not yield p-values or fold changes but a score for each gene

DF versus Normal DHF versus Normal
Gene.ID p logfc Name Score Gene.ID p logfc Name Score

IFI27 2,77E-13 1,94 OAZ2 1,05E−06 IFI27 1,91E-15 2,24 DAPK2 1,78E−06

GRAMD1C 3,81E-12 −0,7 TIGD3 1,09E−06 GRAMD1C 9,42E-12 −0,79 SIL1 2,25E-06

TIGD3 4,95E−12 −0,75 RNF141 1,62E−06 TIGD3 7,63E−08 − 0,66 KCTD14 2,72E− 06

CACNA2D3 5,80E-12 −0,96 TMCC1 1,89E−06 CACNA2D3 1,73E-10 -1,25 BUB1B 3,43E−06

CNTNAP3B 7,67E−10 -0,76 CABIN1 3,81E-06 CNTNAP3B 1,66E-07 -0,75 UBE2S 3,99E-06

STAP2 1,18E-09 0,47 LOC283588 4,16E-06 STAP2 1,58E-05 0,52 RGL2 6,12E-06

KCTD14 4,07E-09 0,99 CNTNAP3 4,34E-06 KCTD14 2,09E−10 0,91 CDC25A 9,55E-06

LOC283588 4,42E-09 -0,59 IFI27 7,72E-06 LOC283588 2,20E-08 -0,62 RNF141 9,55E-06

LINC00877 5,65E-09 -0,5 CD302 9,89E-06 LINC00877 4,02E-09 -0,56 MRPL40 1,04E-05

RNF141 6,49E-09 -0,39 MCM10 1,53E-05 RNF141 2,81E-07 -0,42 DTL 1,27E-05

DSS versus Normal DF versus Convalescent
Gene.ID p logfc Name Score Gene.ID p logfc Name Score

KCTD14 4,75E−13 1,82 C6orf125 2,50E−05 IFI27 6,40E-30 3,07 TPX2 3,50E-10

IFI27 2,60E-12 2,31 MRPL22 0,00014352 DTL 2,73E-25 1,55 CDT1 6,79E−09

BARD1 8,54E-11 0,67 PTGS2 0,00015154 TPX2 3,40E-24 1,47 CDCA3 1,67E−08

MRPS18A 5,21E-10 0,58 CHMP1B 0,00017566 CDT1 5,50E-24 1,17 MKI67 1,40E−07

BIRC5 1,12E−09 1,03 FANCB 0,00018324 CACNA2D3 1,41E-23 -1,12 BAK1 4,05E−07

IFI27L1 1,60E− 09 0,99 HIST1H4K 0,00018324 CDC45 1,22E-22 1,09 KIF2C 4,50E−07

CDCA2 1,74E−09 1,1 LOC286052 0,00019229 CDCA3 1,13E-21 0,95 CDC20 6,62E− 07

CDCA8 2,01E−09 0,97 BARD1 0,00025716 C1QB 2,90E-21 1,25 DTL 8,39E−07

C16orf59 2,15E−09 0,6 IFI6 0,0002668 KIF2C 5,67E-21 0,99 CDC6 1,21E−06

MRPL22 2,48E−09 0,9 LOC285344 0,0002668 CDC20 5,94E-21 1,4 CHAF1A 2,08E−06

DHF versus Convalescent DSS versus Convalescent
Gene.ID p logfc Name Score Gene.ID p logfc Name Score

IFI27 1,30E-26 3,37 TPX2 2,54E−09 CDT1 1,18E-20 1,33 TPX2 0,00011887

TPX2 1,50E-22 1,58 CDCA3 8,31E−09 TPX2 8,68E-20 1,63 OLIG1 0,00037903

CDT1 6,40E-21 1,14 DTL 1,26E-07 OLIG1 6,12E-19 -1,63 MRPS18A 0,00139727

CDCA3 6,60E-21 1,11 UHRF1 1,92E-07 MRPL22 6,19E-19 0,99 IFI27 0,00220204

CACNA2D3 9,60E-21 -1,42 CDC20 3,30E-07 IFI27 3,02E-18 3,44 NDUFA11 0,00220204

DTL 2,10E-20 1,53 KIF20A 3,56E-07 CDCA8 3,09E-18 1,19 DAD1 0,00440286

TK1 2,99E-20 1,24 CDKN3 5,49E-07 MRPS18A 8,69E-18 0,65 KCTD14 0,00440286

KIF2C 7,06E-19 1,08 CHEK1 7,57E-07 BARD1 3,70E-17 0,67 GLUL 0,00660247

MKI67 1,20E-18 1,22 CDT1 8,36E-07 CDCA2 6,90E-17 1,27 PTGDR2 0,00660247

CENPA 1,98E-18 0,84 RRM2 9,09E-07 TK1 7,06E-17 1,37 PSMB6 0,00774382

DHF versus DF DSS versus DF
Gene.ID p logfc Name Score Gene.ID p logfc Name Score

ENPP5 3,22E-09 -0,46 PSKH2 3,94E-05 DNAJC15 7,73E-13 0,62 TRIP12 5,01E-05

NFE2L3 2,42E-07 -0,31 TRHR 4,57E-05 NME2 1,32E-12 0,43 DEFA4 0,0001334

ZNF675 3,75E-07 -0,3 CAMK2D 0,00013036 NELFE 4,72E-12 0,23 DNAJA1 0,0001334

RNF157-AS1 5,04E-07 -0,27 BTK 0,00019786 UQCRH 1,89E-11 0,5 LOC440474 0,00017441

LOC286087 6,10E-07 -0,52 TNF 0,00023865 PSMA6 5,85E-11 0,39 LOC283788 0,00019623

LOC158402 2,05E-06 -0,24 LOC153682 0,00024774 MDP1 6,15E-11 0,31 THBS1 0,00025415

CAMK2D 7,87E-06 -0,21 GAGE1 0,00028387 TMED7 7,01E-11 0,42 MKI67IP 0,0002668

LOC100128288 1,15E-05 -0,18 FIBCD1 0,00031375 SYVN1 8,75E-11 0,44 ROM1 0,0002668

SLC25A53 1,34E-05 -0,19 TRIM6 0,00032563 MTHFD1L 1,51E-10 0,44 FZD1 0,00029963

VPS41 1,54E-05 -0,19 LRP12 0,00035899 PSMA3 4,10E-10 0,52 PPFIBP2 0,00040019

DSS versus DHF Convalescent versus Normal
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Among the significant GO terms are the general infec-
tion related terms such as “defense response to virus” 
(GO:0051607), “viral process” (GO:0016032) and “innate 
immune response” (GO:0045087). The latter two GO 
terms were also mentioned by the contributing study 
of Sun et al. [48]. Other overlapping GO terms with the 
results of Sun et  al. are “mitotic spindle organization” 
(GO:0007052), “cell division” (GO:0051301), “mitotic 
spindle organization” (GO:0007052), “regulation of trans-
lation” (GO:0006417).

Among GO terms identified in the study by Loke et al. 
[29] was “nucleic acid binding” (GO:0003676). Our GO 
enrichment analysis identified the more specific terms 
“DNA binding” (GO:0003677) and “RNA binding” 
(GO:0005524) which are subcategories of “nucleic acid 
binding”.

Separability of different dengue manifestations 
by transcriptome signatures
Genes were ranked in each pairwise comparison between 
DF, DHF and DSS by their p-values. Classifier models 
were trained using unions of genes from each of the three 
ordered gene lists. Thus, if for example the top 10 genes 
of each of the three ranking lists were taken their union 
was ≤ 30 genes (note, that due to overlaps between three 
sets, the size of their union can be smaller than the sum 
of the individual sizes). At maximum, the 500 top ranked 
genes from each pairwise comparison were involved as 
predictors in each model. Due to overlaps, the maximum 
size of a classifier was given by 1203 genes (instead of 
3*500 = 1500 genes). The final number of genes in each 
model is displayed on the x-axis at the bottom of Fig. 5. 
As can be seen, there, all classifier models yielded an 
accuracy bigger than 33.3% which would be achieved by 
a random classifier for three subtypes. The best perfor-
mance was achieved by the support vector machine with 
which an accuracy of nearly 80% was obtained when 

taking approximately 250 genes as signature. Linear dis-
criminant analysis yielded an accuracy of about 75%, 
however with 750 genes. Finally, nearest shrunken cen-
troids yielded a nearly constant accuracy of about 67%, 
independently of how many genes were incorporated.

Looking at the individual groups, the DF group has 
the highest sensitivity. I.e., 117 out of 122 (96%) of DF 
patients were correctly classified by the support vec-
tor machine (with 250 genes) within cross vaidation as 
DF patients, while 1 DF patients was wrongly classified 
as DHF patients and 4 wrongly as DSS patient. The sen-
sitivity of DHF was 60%, i.e. 49 out of 81 DHF patients 
were correctly classified while 31 DHF patients were 
classified as DF patients and 1 as DSS patient. Finally, 
29 out of 45 (64%) of DSS patients were correctly clas-
sified the remaining 16 wrongly as DF patients. Thus, 
DHF and DSS patients tend to be wrongly classified as 
DF patients, and in consequence DF has a low positive 
predictive value. In cross validation, only 117 out of 164 
(71%) patients classified as DF, where truly DF patients. 
In contrast, positive predictive values of DHF and DSS 
were 98% (49/50) and 85% (29/34), respectively. The indi-
vidual curves of sensitivity, specificity, positive and nega-
tive predictive values versus the size of a classifier are 
provided as Supplementary Figs. S4.

Discussion
Methodical issues and reproducibility of findings 
from contributing studies
Performing meta-analyses of multiple independent 
studies has several benefits, foremost the increased 
power for statistical analysis. This is of special impor-
tance for high-throughput data where thousands of 
statistical tests bear the risk of false positive and false 
negative conclusions. In addition, the special char-
acter of a network meta-analysis facilitates indirect 
group comparisons that have not been performed in 

Table 3  (continued)

Gene.ID p logfc Name Score Gene.ID p logfc Name Score

NME2 1,52E-11 0,41 CARD9 0,0001334 LOC442209 3,91E-06 -0,41 NCLN 0,00012672

PSMB2 1,52E-11 0,45 IFT80 0,0002668 SIGLECP3 5,39E-06 -0,48 KCNE3 0,00013053

KCTD14 3,38E-11 0,91 TMEM174 0,0002668 GOLGA8B 3,92E-05 -0,33 NFKBIE 0,00017469

NELFE 3,51E-11 0,21 BTLA 0,00040019 C8orf71 5,25E-05 0,28 ZNF20 0,00025344

PSME2 2,95E-10 0,3 LOC144742 0,00040019 LOC391766 5,84E-05 -0,34 ZNF586 0,00025344

C4A 8,16E-10 -0,44 BCL6 0,00053358 RPL26 6,11E-05 -0,49 KLHL7 0,0002853

PSMA6 9,14E-10 0,37 GDPD5 0,00053358 ANKRD30B 6,91E-05 -0,34 EIF5B 0,00038015

APOBEC3H 1,86E-09 0,36 RASSF4 0,00066697 LOC391040 7,23E-05 0,29 SNAI3 0,00038015

DNAJC15 4,16E-09 0,56 CD68 0,00080035 LOC283070 8,04E-05 -0,36 RUNX3 0,0004266

PSMA3 4,77E-09 0,48 LOC441309 0,00080035 LOC122423 0,00012596 0,32 SUSD1 0,00045673
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the individual studies. In the case of this work, each 
group comparison in the study network was directly 
performed by at least two of the individual studies. 
However, by using the data of all studies a particular 
group comparison can be supported by data from other 
studies. E.g., the comparison between DSS and conva-
lescent individuals was only carried out in two studies 

originally. In the network meta-analysis by means of 
the merged data, all five studies contribute to this par-
ticular comparison.

Here, we have used two approaches for network meta-
analysis, one based on the merged data and one rank-
based approach. The advantages and disadvantages of 
either approach were given in the introduction. Besides, 

Fig. 4  Mutual information networks based on top genes from each comparison between the three groups of patients, as identified from the 
network meta-analysis. Considering a comparison A versus B, blue edges indicate an increased correlation in samples from A compared to 
the correlation observed in B, while red edges indicate a stronger correlation in B compared to that in A. The thicker an edge, the stronger the 
observed correlation. Networks from the remaining seven comparisons are provided as Supplementary Material
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network meta-analysis can be performed using p-val-
ues, estimates of fold changes and their variances from 
the original data. Then, a new set of p-values and fold 
changes can be calculated by a graph theoretical frame-
work [45]. While this framework avoids the problem of 
batch effect removal, inconsistencies within the network 
can occur. The chance of inconsistencies is of course 
increased in high-dimensional settings, where a network 
has to be built for each single gene.

Having different study settings or patient charac-
teristics in the individual studies can be regarded as 
either an additional source for false conclusions, but 
also as an argument for producing results that are 
more generalizable. Here, different age groups contrib-
uted in the five original studies. Thus, one can argue 
that the genes we identified are more generally related 

to DENV infections, and do not depend on particular 
age groups.

When performing meta-analyses of high-dimensional 
data with the purpose of gene selection, there will be 
gains and losses in the new gene lists compared to 
those produced in the original studies. We don’t want 
to claim that the findings of the individual studies were 
false positive, just because there was little overlap with 
our new results. Besides the reason of different patient 
characteristics and sampling time points, the process of 
data merging and processing and the increased power 
can lead to different results. Also the perfect matching 
of gene lists by different aliases of gene names is still 
a problem for meta-analyses, not on the data level but 
on the text level of published manuscripts. Difficulties 
for meta-analysis also arise by incomplete or hetero-
geneously reporting of results in the original studies. 

Fig. 5  Accuracy and 95%-confidence bands in dependence of the number of genes involved in the classifier models for separating the dengue 
subtypes DF, DHF and DSS. The x-axis on the top represents the number of top ranked differentially expressed genes from each pairwise group 
comparison that contribute to each classifier. Due to the overlap of genes selected from each pairwise comparison, the final size of the signature 
(x-axis at the bottom) is smaller than 3 times the number given at the top. SVM = support vector machine; LDA = linear discriminant analysis; 
NSC = nearest shrunken centroids



Page 11 of 15Winter et al. BMC Genomics          (2022) 23:165 	

Therefore, we tend to interpret our new findings rather 
as false negatives in the original studies, and suggest to 
incorporate the newly identified genes in the research 
on dengue infections.

Reproducibility of findings from contributing studies
To further evaluate how the findings of the individual 
studies are in line with the findings of the network 
meta-analysis, we looked at the most important genes 
reported by these studies. In particular, we first com-
pared our findings with individual genes highlighted 
in the manuscripts of the different publications. Loke 
et al. [29] mentioned 1525 genes in total that were dif-
ferentially expressed between samples from DF, DHF 
and DSS individuals. Among these, the authors high-
lighted LTBR, PRAM1, CD14. None of these was found 
among the differentially expressed genes between the 
three patient classes in the network meta-analysis.

Among genes highlighted by Popper et  al. [39] were 
Zinc finger genes, PLSCR1, ISG15, TBK1, TRIM25, 
H1F0, H3.3B, H2AFX, TOMM70A, c18orf22, WARS2, 
GLYCTK, GTPBP5, LYRM4, MTUS1, BCKDHB, 
ENOSF1, and SAMM50, ISG15, ISG20, OAS2, IFI27, 
STAT1 and STAT2, but only IFI27 was among the 
noticeable genes in the network meta-analysis.

Above, we already mentioned the signature reported 
by Sun et  al. [48] included CACNA2D3 which was 
also found among the top genes in the network meta-
analysis. Besides, their signature included reported 
LOC286087, SLC4A4, PSPH, MYOM2, CD244, 
SMAD5, where LOC286087 was also identified among 
the top genes in the network meta-analysis.

Kwissa et  al. [23] highlighted CD16, CXCL-
10,,CCL-2, CCL-4, IL1RN, IL-10, CCL11, IL-6, IL-8, 
CD206 (MMR), CD115 (M-CSFR), MCP-1 (CCL-
2), IP-10 (CXCL-10), IL-6, IL-8, and IL-10, APRIL 
(TNFSF13) and BAFF, however, none of these were 
among the top genes of the network meta-analysis.

Besides genes highlighted in their manuscripts, 
Long et  al. [30] present a supplementary list of top 
100 selected genes (ranked by fold changes), Loke 
et  al. [29] also present three supplementary lists of 
top 100 selected genes from the comparisons between 
DF, DHF and DSS groups, Popper et  al. [39] present 
a supplementary list of about 300 genes from the dif-
ferent group comparisons, and Sun et  al. [48] present 
two signatures (in total 142 genes) they identified from 
classifier analyses. Kwissa et  al. [23] did not present 
additional tables. The overlap between these additional 
lists from the original studies and the union of the top 
50 lists from the network meta-analysis are given in 
Supplementary Fig.  S5. The overlap of reported genes 

among all of these reported lists was zero, even the 
overlap among all individual studies, showing a large 
heterogeneity of findings and little robustness. Never-
theless, some genes occurred as overlap between pairs, 
triplets and quadruplets of lists.

Biological implications
As one of the mentioned six genes, and as a general 
noticeable player in infectious diseases, the function 
of IFI27 as part of the innate immune response in con-
nection with viral diseases has also been reported in 
diverse organisms, including mice [24] and chicken 
[26]. Also in humans, the protein level increased after 
virus infection. Therefore, IFI27 expression was dis-
cussed as biomarker for viral infections [50]. This 
elevated expression is caused by various members of 
the flavivirus family. It has been associated with Zika, 
West Nile and dengue viruses infection [1, 40, 55]. Dur-
ing DENV infection, IFI27 is not only differentially 
expressed but further negatively correlated with the 
severity of the disease [37].

Except for DTL, the other five genes have been 
reported to distinguish between DSS and convalescent 
individuals by Long et al. [30] whose data also contribute 
to this meta-analysis. DTL itself has been shown to play 
role in oncogenic virus pathogenesis.

One gene that occurs only three times among the top 
10 lists, CACNA2D3 has been reported by the contrib-
uting study of Sun et al. [48] as member of a molecular 
signature to distinguish between DHF and DF individu-
als. Besides, these mentioned genes have rarely been 
reported by the studies of the other contributing data 
sets, and could therefore be new candidates for further 
research on DENV infections.

The longitudinal characterization of the host tran-
scriptome over time enables the assessment of the 
dynamic nature of the transcriptional profiles dur-
ing the onset of the clinical disease upon DENV infec-
tion [48]. In line with this longitudinal study, others 
reported specific association of the transcript abun-
dance pattern with the time course of disease [23, 39]. 
Generally, genes associated with innate immune sens-
ing and pro-inflammatory responses to viral infec-
tion, in particular those encoding type I IFN-related 
proteins, cytokine/chemokine-mediated signaling and 
complement activity coincide with high viremia during 
the initial clinical disease phase [23, 48]. On the other 
hand, in a later phase of illness, genes associated with 
pathways involved in mitotic cell metabolic processes, 
translational control of protein biosynthesis and B cell 
differentiation are more prominent [29, 48]. In fact, the 
host transcriptional profile during DENV infections has 
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been associated with the clinical manifestation/disease 
severity [29, 30, 39], time of sampling/day of illness [23, 
48], viral load [23] and serological evidence of previous 
DENV exposure [39]. However, different studies favor 
certain features over others. For instance, in the study 
carried out by Kwissa and colleagues the transcriptional 
profile was not able to discriminate DF from DHF and 
was rather associated with the viral load than the clini-
cal manifestation [23]. On the contrary, the differential 
transcriptome signatures observed between individu-
als with DF and DHF sampled on the same day after 
onset of disease suggests an association with the clini-
cal manifestation rather than time of sampling [30]. Dif-
ferentially expressed genes associated with a specific 
clinical manifestation were also described elsewhere, 
namely expression of mitochondrial ribosomal proteins 
was associated with DSS and genes encoding neutro-
phil-derived anti-microbial peptides were associated 
with DHF [29]. Remarkably, it is consistent that genes 
related with innate and adaptive immunity, such as 
IFN-mediated responses and antigen presentation and 
T cell priming respectively are down-regulated in indi-
viduals that develop severe dengue compared to those 
with uncomplicated disease [23, 39, 48]. Of particu-
lar importance in the context of severe dengue patho-
genesis is the presumption that transcriptional events 
associated with capillary permeability and consequent 
hypovolemic shock may take place before cardiovascu-
lar collapse [30] which would have important prognos-
tic potential.

Conclusions
The meta-analysis of host genome-wide transcript 
expression profiles can be particularly valuable in the 
identification of candidate genes that may be used as bio-
markers, supporting prognostic capacity and adequate 
clinical management in the context of DENV infection. 
Compared to the findings of the original studies, the 
findings of this meta-analysis may be more robust due 
to increased sample sizes in the individual groups. Nev-
ertheless, we don’t argue that the new findings should 
replace the old once but rather complement. I.e., we 
assume that newly identified genes from the meta-anal-
ysis should be treated as false negatives in the original 
studies. As network meta-analyses have been very rarely 
performed on transcriptomics data, our study has also 
revealed methodical challenges and can provide ideas for 
methodical improvement.

Methods
Database search and study selection
Both repositories, AE and GEO, were queried using 
the search terms “Dengue”. For selection of studies, we 

followed the reporting criteria of the PRISMA statement 
[34] where possible. Inclusion criteria for the final selec-
tion were that samples of whole blood where taken from 
human individuals. We defined no selection exclusion 
criteria regarding age, gender or social or pathological 
variables.

Data fusion and preparation for network meta‑analysis
After determining a union of 35.695 genes that were in 
total regarded in the five studies a merged data set was 
built. After removing 9.180 genes that were solely pre-
sent in only one of the studies, 26.515 genes remained 
for analysis. The k-nearest neighbour averaging method 
[54], implemented in the R-package ‘impute’, was used 
to impute missing values in the merged data set, i.e. for 
genes that were only present in two, three or four stud-
ies. Next, study specific batch effects were removed 
using the ComBat methods from the R-package ‘sva’ 
which implements the model of Johnson et al. [16]. This 
model accounts for study specific additive and multi-
plicative effects. In order to obtain more homogeneous 
study groups, outliers were removed using the bagplot 
approach on the principal components [21].

Differential gene expression, mutual information networks 
gene ontology analysis
Pairwise group comparisons using the merged data set 
were performed with the R-package ‘limma’ to identify 
differentially expressed genes [47]. Resulting p-values 
were adjusted using the method of Benjamini and Hoch-
berg to control for a false discovery rate of 5% [4]. In addi-
tion, confidence intervals for the log fold change were 
calculated [18]. In addition to the analysis of the merged 
data set, rank-based analysis based on the differential 
expression analysis of the individual data sets was per-
formed using the R-packages ‘RobustRankAggreg’ [19].

The union of top10 genes from the merged-data-
approach and the rank-based approach were subjected 
to analysis by mutual information networks with the 
R-package ‘minet’ [33], which themselves, were built on 
the merged data. Thus, each mutual information network 
was comprised by ≤20 genes. First mutual information net-
works of the selected genes were determined for each of the 
five study groups individually. For each network, the ‘minet’ 
function generates an adjacency matrix which stores the 
mutual information between each pair of genes in this net-
work, normalized to values of the interval [0, 1]. In contrast 
to linear correlation, mutual information reflects more gen-
erally the difference between the joint distribution of two 
genes to the product of their marginal distributions. We 
visualized the results by overlapping the networks for each 
pair of study groups, so that changes in inter-gene-correla-
tion between two study groups can be seen. In particular, 
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the difference between the two adjacency matrices from 
two study groups was taken as basis of each network plot. 
Thus, gains and losses in the size of mutual information 
between two genes can be illustrated in the plots. The 
R-package ‘Rgraphviz’ was used to plot the networks.

Genes were annotated with gene ontology (GO) terms, 
and enrichment of GO terms among the differentially 
expressed genes was assessed by Fisher’s exact test [3]. 
GO annotations were taken from the UniProt database 
(www.​unipr​ot.​org).

Training and evaluation of classifiers to separate different 
manifestations of dengue fever
Linear discriminant analysis [42], support vector machines 
[7] and nearest shrunken centroids [52] were used to train 
classifier models to study the separability of DF, DHF and 
DFF samples based on their expression profiles. Default 
settings of the R-packages ‘MASS’, ‘e1071’ and ‘pamr’ 
were used to fit the classifiers to the training data. As only 
hyperparameter, the number of genes involved in each 
transcriptome signature was additionally studied. Genes 
were selected from the lists of differentially expressed 
genes from all three pairwise comparisons between the 
three subtypes, and ranked by their raw p-values. Leave-
one-out-cross validation was used to assess the accuracy of 
correct classification, as well as sensitivity, specificity and 
positive and negative predictive values.
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