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Abstract 

Background: Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse 
roles in many biological processes including mammary gland development. However, little is known about their roles 
in the bovine lactation process.

Results: To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data 
from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized. Transcriptome data 
from three Kashmiri and three Jersey cattle throughout their lactation stages were utilized for differential expression 
analysis. At each stage (early, mid and late) three samples were taken from each breed. A total of 45 differentially 
expressed lncRNAs were identified between the three stages of lactation. The differentially expressed lncRNAs were 
found co‑expressed with genes involved in the milk synthesis processes such as GPAM, LPL, and ABCG2 indicating 
their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes 
of differentially expressed lncRNAs indicated that 27 and 48 pathways were significantly enriched between the three 
stages of lactation in Kashmiri and Jersey respectively, including mTOR signaling, PI3K‑Akt signaling, and RAP1 signal‑
ing pathways. These pathways are known to play key roles in lactation biology and mammary gland development.

Conclusions: Expression profiles of lncRNAs across different lactation stages in Jersey and Kashmiri cattle provide 
a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate 
understanding of the role of lncRNAs in bovine lactation biology.
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Introduction
The mammary gland is a vital organ for milk synthesis 
and secretion, providing essential nutrients for mamma-
lian offspring and human nourishment. Lactation is the 
maternal physiological response, however, the milk yield 
greatly varies among cattle breeds [1, 2]. The lactation 
process is influenced by genetic, epigenetic, and environ-
mental factors [3]. Elucidating regulatory mechanisms of 
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the lactation process is not only vital for improving milk 
quality and production but also helps in understanding 
other processes related to milk synthesis. Mammary epi-
thelial cells are the factories of milk lipids, proteins, and 
carbohydrates during lactation [4]. The milk-producing 
mammary epithelial cells (MECs) are the functional 
unit of mammary gland, and the proliferation of MECs 
is a key determinant of lactation of mammary gland [5]. 
Various genes and regulatory molecules are expressed at 
different lactation stages, which play crucial roles in the 
regulation of lactation [6–8]. To improve the milk pro-
duction performance in cattle, deeper understanding 
of the molecular biology of lactating mammary glands, 
such as expression and regulatory mechanisms of milk 
related genes, including the regulatory roles of lncRNAs 
is essential.

Previously thought of as junk transcripts and pseudo-
gene remnants, non-coding RNA molecules including 
lncRNA have emerged as essential components of cel-
lular activity, regulating a plethora of functions within 
multicellular organisms [9]. LncRNAs are defined as 
transcripts ≥200 bp in length and without the potential 
to code for a protein. They are often polyadenylated and 
usually exhibit low expression levels and poor sequence 
conservation [10–13]. LncRNAs activate or repress genes 
at multiple levels (i.e., DNA, RNA and proteins) by acting 
as guide, signaling, scaffolding or decoy molecules [14]. 
It has been shown that lncRNAs play important roles in 
certain tissues as well as have species-specific expression 
[15], but some multifunctional lncRNAs have also been 
shown to display broad and conservative expression pro-
files [16, 17]. In mammals, lncRNAs are known to play 
roles in various biological processes including growth, 
reproduction and health [18, 19]. It is also well estab-
lished that lncRNAs are involved in the development of 
the mammary gland and diseases like breast cancer [20–
22]. In bovine, the lncRNA repertoire in several tissues 
including the mammary gland [23–28], milk exosomes 
[29], skeletal muscle/adipose tissues [30, 31] gastrointes-
tinal tract tissues [32, 33] and sperm/testis [34, 35] has 
been characterized. Increasing evidence supports the 
notion that lncRNAs are associated with developmen-
tal, metabolic and immunological regulation, as well as 
adaptations and phenotypic variation of complex traits 
in domestic animals [26, 36, 37]. However, the role of 
lncRNA in the bovine milk production and mammary 
gland processes is less clear.

The overall objective of this study was to systemati-
cally identify the profiles of differentially expressed lncR-
NAs during different stages of lactation in cattle through 
high-throughput RNA sequencing. We hoped that by 
studying the relationship between differentially expressed 
(DE) lncRNAs and milk quality and yield related genes 

(mRNAs), our study would shed light on the complex 
mechanisms underlying the milk production.

Materials and methods
Experimental animals and sampling
The experimental design was the same to that of our ear-
lier study [38], RNA-Sequencing data were download 
from  GSE107366. Briefly, the data from three healthy 
cows of each Kashmiri and Jersey breed in their 2nd/3rd 
parity/lactation were utilized. All animals were of same 
age and milk yield was also same. Animals were main-
tained at the University dairy farm, Mountain Livestock 
Research Institute, Share-Kashmir University of Agri-
cultural Sciences and Technology-Kashmir, India. The 
animals were stall fed individually, offered complete 
feeds based on oats hay (30 parts), sorghum (30 parts) 
and concentrate mixture (40 parts) to meet their nutri-
ent requirements as per ICAR, India (2013). The concen-
trate mixture consisted of maize (20%), wheat bran (25%), 
deoiled rice bran (15%), mustard oilcake (15%), cotton 
seed cake (16%), molasses (5%), mineral mixture (2%), 
salt (1%) and urea (1%). Fresh milk samples (1.5 L/cow) 
were collected in the morning aseptically by hand milk-
ing the four quarters of the cows at 15 (D15), 90 (D90) 
and 250 (D250) days in milk, representing early, mid and 
late lactation stages, respectively. The milk production 
was recorded in kgs. and values are significantly compa-
rable between the animals [38].

Isolation of milk epithelial cells
Milk epithelial cells (MECs) were isolated from freshly 
collected milk following the protocol [4] with some mod-
ifications as reported in our previous study [38]. Briefly, 
milk sample (1.5 L) was aliquoted into 250 ml centrifuge 
tubes, and 100 ml of 4 °C diethylpyrocarbonate (DEPC) 
treated phosphate buffered saline (PBS) added. Samples 
were centrifuged at 2800 x g at 4 °C for 2 min and the 
fat and skimmed milk were removed. The pellet and the 
remaining supernatant fraction (1 ml) were mixed with 
800 μl of DEPC–PBS and transferred into a 2 ml tube. 
After adding 200 μl EDTA (0.5 M pH 8.0, 4 °C), the sam-
ples were centrifuged at 14,000 g for 1 min at 4 °C. The 
supernatant was discarded, and the pellets resuspended 
in 200 μl cold (4 °C) DEPC–PBS. Solutions contain-
ing pellets from the same cow were pulled together and 
the suspension centrifuged at 5100 x g for 5 min at 4 °C. 
Thereafter, the supernatant was discarded, and the pel-
let resuspended in 1.25 ml cold (4 °C) PBS containing 1% 
bovine serum albumin (Sigma, USA). For the separation 
of MEC from other cell types, MEC specific anti-cytoker-
atin peptide 18 antibodies (Clone KS-B17.2, Sigma–
Aldrich, USA) coated beads (Dynabeads Pan Mouse IgG, 
Invitrogen) were used. The Purified MECs were checked 
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for possible contamination with other cell types by quan-
tification of the expression of marker genes for various 
milk somatic cell types as described by Bhat et al. [38].

RNA extraction and library preparation
RNA extraction was accomplished with Trizol Reagent 
(Ambion, USA) according to the manufacturer’s instruc-
tions. Absorbance (A) of RNA samples was measured at 
260 and 280 nm using the spectrophotometer (Thermo 
Scientific, USA). The A260 was used to estimate the RNA 
concentration. Moreover, the quality and integrity were 
assessed with the Agilent 2100 Bioanalyzer (Agilent, 
USA). The RNA integrity number (RIN) value of the sam-
ples used for library preparation was ≥8. IlluminaTruSeq 
Stranded mRNA Sample Prep kit (Illumina, USA) was 
used to generate cDNA libraries from 4μg total RNA 
according to the manufacturer’s recommendations. Poly-
T oligo-attached magnetic beads were used to purify 
poly-A containing mRNA and lncRNAs molecules fol-
lowed by fragmentation into small pieces using divalent 
cations under elevated temperature. First strand cDNA 
was synthesized using reverse transcriptase and random 
primers followed by second strand cDNA synthesis using 
DNA Polymerase I and RNase H. After adenylation of 3′ 
ends of DNA fragments, hybridization was initiated by 
ligating Illumina PE adapter and index. cDNA fragments 
(200 bp) were generated and were selectively enriched to 
construct the final sequencing library using Illumina PCR 
Primer Cocktail. The sequencing was performed at SciG-
enome Lab (Cochin, India) using Illumina Hiseq 2500. 
The data was retrieved from our submitted NCBI SRA 
database (accession ID. SRR6324372/GSE107366).

Sequence data quality control, mapping and identification 
of lncRNAs
The raw reads were subjected to quality control using the 
FASTQC program v0.11.9 [39] and cleaned using cuta-
dapt tool version 3.2 [40] and sickle tool [41]. All clean 
reads were mapped to the Bos taurus reference genome 
assembly ARS-UCD1.2 using HISAT2 v2.2.1 [42]. The 
final transcript sets were compared with known genes 
annotated by Ensemble Release 94. Known protein-
coding transcripts and small noncoding RNA tran-
scripts (e.g. sRNAs, tRNA, rRNA, etc.) were removed 
while annotated lncRNA transcripts were retained using 
homologous sequence similarity search with BLAST 
program [43, 44]. Next, the transcripts with length of 
< 200 bp were removed. The remaining transcripts that 
did not overlap with any known annotation, localized in 
intronic, antisense or intergenic regions were assessed 
for their protein coding potential using four independent 
algorithms, CNCI (coding-non-coding index) [45], PLEK 
(predictor of long non-coding RNAs and messenger 

RNAs based on an improved k-mer scheme) [46], CPAT 
(coding potential assessment tool) [47], and Pfam (data-
base providing alignments and hidden Markov models 
for protein domains) [48, 49].

CPAT recognizes coding and noncoding transcripts 
from a large pool of candidates using a logistic regression 
model built with four sequence features: open reading 
frame size, open reading frame coverage, Fickett TEST-
CODE statistics and hexamer usage bias. CPAT coding 
probability score ranges from 0 to 1, and the optimum 
cut-off for protein coding probability varies depending 
on the species being analyzed. In order to extract poten-
tial noncoding transcripts with a high reliability from our 
dataset, we selected a stringent threshold for the CPAT 
probability with a score < 0.02 as ncRNA [12]. The tran-
scripts with a score below the selected thresholds were 
classified to possess an ambiguous coding potential. 
Furthermore, Pfam Scan (v1.3) was employed to iden-
tify occurrences of any known protein family domain 
documented in the Pfam database. CNCI software is 
a signature tool that effectively distinguishes between 
protein-coding and non-coding sequences based on their 
intrinsic sequence composition i.e., by profiling adjoining 
nucleotide triplets. The alignment-free tool, PLEK, uses 
a computational pipeline based on an improved k-mer 
scheme and a support vector machine algorithm to dis-
tinguish lncRNAs from messenger RNAs (mRNAs). This 
tool has > 90% accuracy when compared with other cur-
rently available tools [50].

Differential expression analysis
The expression levels of lncRNAs between any two stages 
of lactation, were measured as fragments per kilobase of 
exon per million fragments mapped (FPKM) using Cuf-
flinks v2.1.1 package [51, 52]. Differentially expressed 
lncRNA was screened based on FDR corrected p-value 
< 0.05 and absolute log2(fold change) > 1.

Expression correlation analysis between lncRNAs 
and genes related to milk quality and yield traits
To identify correlation between DE lncRNA and mRNAs, 
Pearson correlation test was performed to calculate the 
co-expression coefficient between lncRNA expression 
data and mRNAs [53]. Two-way analysis of variance 
(ANOVA) was used to evaluate the statistical significance 
of comparisons within the lactation stages using R pro-
gram v4.0.0. P-values (two-sided) were adjusted for FDR 
due to multiple testing correction [54] and FDR < 0.05 
was defined as statistically significant. A lncRNA-mRNA 
pair was considered co-expressed if it had a significant 
correlation value at FDR < 0.05.
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Target gene prediction and functional analysis
For the identification of lncRNA trans-target genes, 
Spearman correlation was calculated between DE-lncR-
NAs and DE-mRNA using COR.TEST function in R [53]. 
Then interactions of DE-lncRNAs and DE-mRNAs with 
r values ≥0.9 and P < 0.05 were selected as trans-target 
genes. The cis role of lncRNAs was expounded as those 
influencing neighboring target genes [55]. For each DE 
lncRNA, the nearest upstream and downstream (within 
100 kb) protein-coding neighbors were identified as their 
potential cis-regulatory targets. The trans role alludes to 
the impact of lncRNA on mRNA at the expression level. 
The expressed correlations between lncRNAs and cod-
ing genes were calculated using the Pearson method with 
p-value < 0.05. To understand the biological implication 
of the target genes we performed GO and KEGG enrich-
ment analysis utilizing KOBAS server version 3 [56, 57]. 
The GO terms were categorized into biological processes 
(BP), cellular components (CC), and molecular functions 
(MF). GO terms and pathways with a p-value less than 
0.05 were considered as significantly enriched.

Quantitative real time PCR (qRT‑PCR) validation of lncRNAs
To validate the repeatability and reproducibility of the 
RNA-Seq data, quantitative real-time PCR was per-
formed on 10 randomly selected lncRNAs (including 
5 up- and 5 down-regulated) using the same total RNA 
that was used to perform the RNA sequencing. Prim-
ers for qRT-PCR were designed using Primer 5.0 soft-
ware (http:// www. premi erbio soft. com/ prime rdesi gn/) 
and their specificity and complementarity were assessed 
using NCBI BLAST algorithm (Supplementary File  1). 
The complementary DNA (cDNA) was synthesized from 
0.5 μg of total RNA with the Revert Aid First Strand 
cDNA Synthesis Kit (Thermo Scientific, USA). Real-time 
PCR reaction mix was composed of 10 μL SYBR Green 
PCR Master Mix (Roche, Germany), 0.5 μL cDNA, 0.3 μL 
(10 mM) forward and reverse primers and 9.2 μL nucle-
ase free water to a final volume of 20 μL. All aliquots were 
then amplified by 40 cycles of denaturation at 95 °C for 
5 min, annealing at 60 °C for 15 s and extension at 72 °C 
for 15 s. The qRT-PCRs were carried out in triplicates. 
The expression levels of the selected lncRNAs were nor-
malized against two housekeeping genes, GAPDH and 
UXT. The relative quantification of the potential lncRNAs 
was determined using the  2-ΔΔCt method [58].

Results
Sequencing results and quality control
Transcriptome sequencing of 18 cDNA libraries (three at 
each stage of lactation per breed) generated a total of 305, 
321, and 241 million raw reads for Jersey and 248, 237 
and, 302 million raw reads for Kashmiri cattle at early 

(D15), mid (D90) and late (D250) lactation stages, respec-
tively. Out of these, 302 million (D15); 315 million (D90) 
and 217 million (D250) reads for Jersey and 235 million 
(D15); 235 million (D90) and 292 million (D250) reads for 
Kashmiri cattle passed quality control. On average, 95.8% 
raw reads from each library passed the quality check. 
Alignment of reads to the bovine reference genome ARS-
UCD1.2 yielded a mean of 90.1% (Kashmiri) and 90.9% 
(Jersey) unique alignments to the reference genome while 
9.9% (Kashmiri) and 9.1% (Jersey) reads aligned to mul-
tiple positions or did not align at all and were discarded 
(Table 1).

Identification and characterization of lncRNAs in milk 
derived bovine mammary epithelial
To predict lncRNA with greater certainty, four inde-
pendent algorithms, CPAT, CNCI, PFAM and PLEK, 
were used. A total of 549 unique lncRNAs were pre-
dicted by the four independent algorithms (Supplemen-
tary File 2). The transcript length of identified lncRNAs 
ranged from 206 to 15,071) nucleotides, with ~ 44% of 
lncRNAs shorter than 1000 nucleotides (Fig. 1a, Supple-
mentary File  2). Exon number of lncRNAs ranged from 
2 to 43. Most lncRNAs had two exons (57.1%), followed 
by three exons (7.6%) and about 35.3% of lncRNAs had 
more than four exons (Fig. 1b). Characterization accord-
ing to genomic location indicated that most lncRNAs are 
located in intergenic regions (459 lncRNAs), whereas 49, 
13 and 8 lncRNAs are intronic, antisense or sense-over-
lapping lncRNAs, respectively (Fig. 1c).

To determine whether our set of identified lncRNAs 
possesses similar characteristics as mRNA, we compared 
the lncRNA expression data with mRNA expression data 
on the same samples. Results showed that, the lncRNAs 
were generally less expressed as compared to protein-
coding mRNAs (Fig. 1d).

DE lncRNAs between lactation stages in Kashmiri 
and Jersey cattle
A total of 10, 6 and 11 lncRNAs were DE (FDR < 0.05) 
between D15 vs D90, D90 vs D250, and D15 vs D250, 
respectively in Kashmiri cattle (Fig.  2, Supplemen-
tary File  3). Likewise, 7, 16 and 25 lncRNAs were DE 
(FDR < 0.05) between D15 vs D90, D90 vs D250, and 
D15 vs D250, respectively in Jersey cattle (Fig.  2, Sup-
plementary File  3). Furthermore, there were 5 com-
mon lncRNAs [XLOC_013668 (D15 = 466.515; 
D90 = 93.3322; D250 = 32.1239), XLOC_013477(62.1684; 
306.217; 131.523), XLOC_021768(1.8902; 7.13654; 
8.20963), XLOC_000865(1.19188; 2.83428; 
2.91069), XLOC_003635(0.366344; 0.883615; 
0.916974)] and 12 [XLOC_015754(9.73475; 1.73083; 
5.26697), XLOC_009502(0.415893; 0.0868364; 

http://www.premierbiosoft.com/primerdesign/
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0.912991), XLOC_003704(1.3756; 0.300084; 
1.71051), XLOC_026943(19.1323; 38.3812; 
198.936), XLOC_002387(0.707159; 0.492698; 
2.71744), XLOC_002110 (0.0720901;0.336411; 
3.08172), XLOC_005292(0.409118; 0.770406; 
15.3821), XLOC_015932(1.12151; 1.52169; 
7.63437), XLOC_025341(0.0476; 0.08765; 
0.51983), XLOC_020132(96.1583; 28.32; 
11.9587), XLOC_015281(8.484; 1.857; 2.607), 
XLOC_007175(0.04296; 1.4446; 3.41824), showing 
expression in all the 3 comparison groups of Kashmiri 
and Jersey cattle respectively.

Functional prediction of the roles of differentially 
expressed lncRNAs
To explore the functional role of DE lncRNAs, we iden-
tified their cis and trans target genes. A total of 459 (84 
in Jersey and 375 in Kashmiri) potential cis and 8877 
(6798 in Jersey and 2079 in Kashmiri) trans target genes 
were identified for 48 (in Jersey) and 27 (in Kashmiri) DE 
lncRNAs. To obtain an insight into the plausible associ-
ated functions of lncRNAs at different stages of lactation, 
the potential target genes of DE lncRNAs in three com-
parisons (D15 vs. D90, D90 vs. D250, and D15 vs. D250) 
were subjected to GO and pathway enrichment analy-
ses. In Kashmiri cattle, target mRNAs of DE lncRNAs 
were enriched in 499 GO terms. Among them, 252 were 
categorized as biological processes (BP), 63 molecular 

functions (MF), and 184 cellular component (CC) terms. 
Whereas in Jersey cattle, 507 enriched GO terms were 
found. Among them, 245 were BP, 64 were MF and 198 
were CC. The top three BP GO terms for Kashmiri cattle 
for each pair of comparison groups are regulation of lipid 
transport, metabolic process, and cholesterol homeostasis 
(D15 vs D90); cellular macromolecule metabolic process, 
lipid homeostasis and intracellular protein trans-mem-
brane transport (D90 vs D250); and regulation of cellular 
metabolic process, secretion by cell and response to stress 
(D15 vs D250) (Supplementary Files 4 and 5). Whereas in 
Jersey cattle top enriched BP terms are response to lipid, 
DNA biosynthetic process, and fatty acid homeostasis 
between D15 vs D90. Regulation of macromolecule bio-
synthetic process, vesicle targeting, and RNA processing 
are enriched terms in D90 vs D250. Golgi vesicle trans-
port, regulation of cholesterol transport and regulation 
of immune system process are found enriched between 
D15 vs D250. Interestingly, several BP terms related to 
lactation, including regulation of gastrulation, fatty acid 
homeostasis, regulation of cholesterol transport and golgi 
vesicle transport were identified.

Results of pathways analysis indicated that 10, 11, and 
19 pathways were significantly enriched in Jersey cattle 
for D15 vs D90, D15 vs D250 and D90 vs D250 compari-
sons, respectively (Supplementary Files  4 and 5). Simi-
larly, 10, 6 and 10 pathways were significantly enriched in 
Kashmiri cattle for D15 vs D90, D15 vs D250 and D90 vs 

Table 1 Read alignment summary

Sample No. Total reads QC passed reads QC Passed %age Aligned reads Aligned 
Read %age

Unaligned Reads Unaligned 
Reads 
%age

JERSEY‑390‑1 96,249,540 94,744,250 98.44% 85,869,238 90.63% 8,875,012 9.37%

JERSEY − 390‑2 92,517,372 91,969,506 99.41% 84,113,665 91.46% 7,855,841 8.54%

JERSEY −390‑3 116,401,530 115,758,078 99.45% 106,605,825 92.09% 9,152,253 7.91%

JERSEY − 447‑1 91,214,046 89,570,316 98.20% 79,097,456 88.31% 10,472,860 11.69%

JERSEY −477‑2 93,235,128 89,955,200 96.48% 81,828,632 90.97% 8,126,568 9.03%

JERSEY −477‑3 136,828,434 135,768,664 99.23% 125,418,364 92.38% 10,350,300 7.62%

JERSEY −90‑1 90,605,106 76,773,936 84.73% 69,093,481 90.00% 7,680,455 10.00%

JERSEY 90‑2 73,121,688 69,887,565 95.57% 63,996,224 91.57% 5,891,341 9.20%

JERSEY −90‑3 77,649,922 70,905,710 91.31% 65,212,246 91.97% 5,693,464 8.03%

KASHMIRI‑BL1‑1 82,462,774 72,319,896 87.70% 62,308,532 86.16% 10,011,364 13.84%

KASHMIRI ‑BL1‑2 73,887,336 73,339,212 99.26% 67,574,186 92.14% 5,765,026 7.86%

KASHMIRI ‑BL‑1‑3 92,098,428 89,792,054 97.49% 84,924,806 94.58% 4,867,248 5.42%

KASHMIRI ‑ML2‑1 81,811,960 71,855,586 87.83% 59,079,820 82.22% 12,775,766 17.78%

KASHMIRI ‑ML2‑2 68,425,836 66,722,732 97.51% 59,373,810 88.99% 7,348,922 11.01%

KASHMIRI ‑ML‑2‑3 87,720,824 86,711,472 98.85% 80,073,868 92.35% 6,637,604 7.65%

KASHMIRI ‑SL3‑1 104,571,152 102,595,298 98.11% 90,594,073 88.30% 12,001,225 11.70%

KASHMIRI ‑SL3‑2 76,974,734 76,313,042 99.14% 70,145,228 91.92% 6,167,814 8.08%

KASHMIRI ‑SL‑3‑3 120,888,074 113,697,196 94.05% 105,425,162 92.72% 8,272,034 7.28%
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D250 comparisons, respectively. Homologous recombina-
tion, sphingolipid metabolism and DNA replication; met-
abolic pathways, carbon metabolism and biosynthesis of 
amino acids; DNA replication, mismatch repair and TLR 
signaling pathway were the top pathways for D15 vs D90, 
D15 vs D250 and D90 vs D250 comparison groups in Jer-
sey cattle. While mTOR signaling pathway, WNT signal-
ing pathway and PI3K-Akt signaling pathway; collecting 
duct acid secretion, fanconi anemia pathway, N-Glycan 
biosynthesis and adherens junction were the top enriched 
pathways for D15 vs D90, D15 vs D250 and D90 vs D250 
comparison groups in Kashmiri cattle.

Expression correlation network of lncRNAs with candidate 
genes related to milk quality and yield traits in Jersey 
and Kashmiri cattle
To further explore the potential regulatory mechanism 
of the DE lncRNAs, their relationship with protein-
coding genes with roles in milk quality and yield traits 
was explored through correlation analysis. The results 
of lncRNA and coding genes correlation analysis are 
shown in Supplementary File  6. 3768 (Jersey) and 4048 
(Kashmiri) significant correlations (FDR < 0.05) were 
found between lncRNAs and their potential target 
mRNAs. Furthermore, 360 significant correlations were 
found between DE lncRNAs and 46 candidate genes for 
milk quality and yield traits (179 and 189 in Jersey and 
Kashmiri cattle, respectively) (Fig.  3). Among the 179 
correlations in Jersey, 104 were positive and 65 were 
negative correlations while of the 189 correlations found 
in Kashmiri cattle, 117 were negative and 72 were posi-
tive correlations. Interestingly, we found that 13 lncR-
NAs correlated with LALBA in Jersey cattle while no 
lncRNA correlated with this gene in Kashmiri. In addi-
tion, XLOC_011777 correlated positively with GPAM 
and ABCG2 genes in Jersey while the correlation of 
XLOC_011777 was negative with both genes in Kashmiri 
cattle. Interestingly, the 5 commonly expressing lncRNAs 
in Kashmiri cattle were showing correlation with UGCG, 
VLDLR, SREBF1, PPARG, SGPL1 where as the 12 com-
monly expressing lncRNAs were showing expression 
correlation with GPAM, ABCG2, SCAP, FASN, SPTLC1, 
UGCG, BDH1, LALBA, SLC2A8, LPL, CSNK1, NOS2, 
and MFGE8. All these genes are promising candidate 
genes and central for milk protein and fat synthesis regu-
lation hence the yield.

Fig. 1 Features of lncRNAs compared with protein coding genes 
(mRNAs). A Length distribution of lncRNAs compared with mRNAs. 
B Exon number distribution of lncRNA transcripts compared with 
mRNAs. C Classification of identified lncRNAs on the basis of genomic 
location and orientation. D Comparison of average expression values 
of lncRNAs and mRNAs
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Fig. 2 Significantly differentially expressed lncRNAs between D15 vs D90, D15 vs D250 and D90 vs D250 in Kashmiri and Jersey cattle

Fig. 3 LncRNAs and milk quality and yield related genes co‑expression network. The green triangles represent differentially expressed lncRNAs 
while pink spheres represent candidate genes for milk quality and yield traits. Red lines represent positive correlations while black dotted lines 
represent negative correlations
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Verification of lncRNA expression profiles using qRT‑PCR
To confirm the RNA-Seq data, the expression of 10 ran-
domly selected lncRNAs (5 up- and 5 down-regulated) 
was examined by qRT-PCR. The expression patterns of 
lncRNAs showed a similar trend between the methods 
of RNA-Seq and qRT-PCR (Fig.  4). Pearson correlation 
coefficient between RNA-Seq data and qRT-PCR data 
was 0.97, indicating that the RNA-Seq data was highly 
correlated with that of the qRT-PCR.

Discussion
Progressively, studies are unraveling the roles of non-
coding RNA molecules in biological processes, but their 
roles are still classical in the area. The mammary epithe-
lial cells are the primary cells involved in synthesis and 
secretion of milk and proteins in it. Lactation process 
is influenced by various molecule, including lncRNAs. 
Until now, very little is known about the bovine lncRNA 
transcriptome in mammary epithelial cells. In this study, 
we conducted a preliminary investigation of lncRNA 
expression profiles in mammary epithelial cells of Jersey 
and Kashmiri cows to assess the potential of lncRNAs 
as regulators of milk quality and yield during the three 
stages of lactation curve. Consequently, the present work 
provides an important resource of lncRNA repertoire in 
mammary epithelial cells for future studies.

The identification and characterization of lncRNAs, 
particularly in the mammary gland, is limited compared 
with lncRNAs in humans and other model organisms 
[59–61]. In bovine mammary gland, the main focus has 

been on genes and miRNAs rather than on lncRNAs 
[62–64]. Identification of breed-specific, milk related 
lncRNAs along with their expression pattern during the 
different stages of lactation could provide an insight into 
their contribution to the inter-breed variation in milk 
yield and could be targeted to increase the milk yield and 
consequently improve the profitability of the farm system 
in future. In addition, knowledge of these special genetic 
elements between breeds shall be useful to develop accu-
rate genomic prediction equations that can operate effec-
tively across breeds. In the present study, we identified 
549 putative lncRNAs with high confidence across three 
lactation stages in two bovine breeds with differing milk 
production ability. We classified predicted lncRNAs into 
categories based on their genomic location to under-
stand their functional spectrum as the relative position 
between a lncRNA and its neighboring protein-coding 
genes is a key determinant of their regulatory relation-
ship [65]. To our knowledge, this is the first report to 
systematically identify lncRNAs from RNA-seq data dur-
ing different stages of the bovine lactation. The identified 
lncRNAs have fewer exons, shorter transcript lengths, 
and lower expression levels in comparison with known 
protein-coding transcripts, which are in agreement with 
earlier report [66].

In total 27 and 48 lncRNAs were differentially 
expressed in pairwise comparisons in Kashmiri and 
Jersey, respectively. These lncRNAs may have specific 
biological roles in bovine mammary gland during the lac-
tation cycle. As it has been demonstrated that lncRNAs 
are key players in tissue physiology and organogenesis 

Fig. 4 Real time quantitative PCR (qPCR) validation of high throughput sequencing data (RAN‑Seq). Validation of 10 randomly selected significantly 
differentially expressed lncRNAs. The y‑axis represents the log2 fold change of lncRNA expression; x‑axis shows the lncRNA IDs. Blue and Red bars 
depict the RNA‑Seq and qPCR results, respectively



Page 9 of 12Mumtaz et al. BMC Genomics          (2022) 23:176  

[27, 67–70]. We also identified 5 and 12 DE-lncRNAs 
expressing in all the 3 lactation stages of Kashmiri and 
Jersey cattle respectively. These DE-lncRNAs were corre-
lated with a network of genes essential for coordinating 
milk synthesis and secretion. Compared with Kashmiri 
cattle, the mammary tissue transcriptome of Jersey cat-
tle had a completely different rank of expressing lncRNAs 
in terms of abundance. Recently, a study on the bovine 
mammary gland identified 36 lincRNAs (long intergenic 
ncRNAs) located in milk related quantitative trait loci 
(QTL), suggesting their association with milk quality 
and production [28]. Another study characterized lncR-
NAs in mammary gland tissues of cows at mid lactation 
and identified lncRNAs with potential roles in mam-
mary gland functions [27]. The identification of lncRNAs 
associated with the development of mammary gland and 
lactation will contribute in selecting decisions to further 
improve productivity and healthy breeding policies of 
cattle.

It is well established that an array of genes is involved, 
directly or indirectly with growth and development of the 
mammary gland as well as initiation and maintenance 
of the lactation cycle [71, 72]. LncRNAs can regulate 
the expression of their neighboring genes (known as in 
cis) as well as distant genes (known as in trans) [73]. In 
this study, bioinformatics analysis of putative lncRNAs 
target genes suggest roles in pathways such as MAPK, 
PI3K-Akt, NF-kappa B, mTOR, T cell receptor signaling, 
Hedgehog (SHH) signaling pathway, Glucagon signal-
ing pathway, AMPK signaling pathway, Insulin signaling 
pathway, and Toll-like receptor signaling pathways. Key 
roles for these pathways in mammary gland develop-
ment and lactation have been reported [74–77]. The 
SHH signaling is an essential pathway and is involved in 
mammary gland development [78]. Moreover, the Gluca-
gon regulates the mammary gland development and 
lactation through activating GPCR [79]. AMPK plays an 
essential role in cellular energy sensing [80] and mTOR 
activation [81]. This signaling pathway is found involved 
in regulating the effect of glucose supply and utilization 
in the lactating mammary gland [82]. Insulin signaling 
pathway is an important regulator of milk synthesis and 
secretion in the lactating animals [83]. Also, lncRNAs 
like XLOC_011777, XLOC_019584, XLOC_011194, and 
XLOC_003497, were found to interact with some lacta-
tion-related candidate genes like LALBA, LPL, GPAM, 
SREB1 and LIPIN1 genes. These genes have an impor-
tant role in the biosynthesis of milk fat, protein, and lac-
tose [84, 85]. In human, cow and mouse lactation cycles, 
LALBA expression levels were found to be similar to that 
of other milk protein genes (146, 68 and 96% expression 
relative to β-casein) and levels of expression of both these 
milk protein genes increased dramatically with onset of 

lactation [86]. During lactation lipoprotein lipase (LPL) 
is elevated in mammary tissue and depressed in adipose 
tissue to redirect lipids for incorporation into milk fat 
[87]. While activation of SREB1, together with THRSP 
and ESRRA  via the concomitant decrease in progesterone 
concentration and increase prolactin signaling, is most 
likely central for milk lipid synthesis regulation in the 
human mammary gland [88].

Comprehensive analysis of lncRNAs and mRNAs expres-
sion profiles gives a better understanding of the biological 
functions of DE lncRNAs. Therefore, we performed cor-
relation analysis of the DE lncRNAs and protein coding 
genes, and identified significant correlations between the 
transcripts in both breeds. Narrowing down the analysis 
to candidate genes related to milk quality and yield traits, 
we found that 34 lncRNAs correlated with candidate genes 
for milk quality and yield traits suggesting potential roles 
in lactation. Interestingly, most of the lncRNAs correlated 
positively with candidate genes related to milk quality and 
yield traits in Jersey compared to Kashmiri cattle where 
they were mostly negatively correlated, which could be one 
of the mechanisms responsible for the differential milking 
performance between the two breeds. Importantly, some 
of the described lncRNAs might target mRNAs, which 
have important roles in the mammary gland throughout 
the lactation cycle. For example, lncRNA XLOC_002110 is 
expressed at D90 (peak lactation) stage in Jersey only and 
shows correlation with SLC2A8 gene. SLC2A8 is a mem-
ber of the transporter superfamily with predominant roles 
in the active transport of glucose across the plasma mem-
brane [89]. Higher expression of SLC2A8 has been reported 
during mid-lactation (D90) in Jersey cows (high yielding) 
[39], suggesting important roles during the peak stage of 
lactation. Glucose uptake by mammary epithelial cells is 
an important step in milk synthesis during lactation, and 
hence directly influences the milk yield [90]. Therefore, 
XLOC_002110 might be involved in the lactation process 
through regulation of the expression of SLC2A8. Based on 
these results, it is clear that target genes of the putative lncR-
NAs like XLOC_002110, XLOC_019584, XLOC_011194, 
XLOC_005773 and XLOC_003497 could be involved in 
bovine mammary gland development and their roles need 
to be confirmed. Based on our results and data from recent 
studies, lncRNAs as core regulatory elements have signifi-
cant roles in the physiology of the lactation cycle and in the 
development of the mammary gland in cattle.

Conclusion
In this study, 549 putative lncRNA transcripts were found 
at three stages of lactation in Jersey and Kashmiri cattle 
breeds. A total of 27 and 48 lncRNAs were DE between 
at least one comparison pair in Kashmiri and Jersey 
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cattle, respectively. Target genes of DE lncRNAs were 
enriched in pathways (MAPK, PI3K-Akt, NF-kappa B, 
mTOR, T cell receptor signaling and Toll-like receptor 
signaling pathways) with roles in lactation and mam-
mary gland development. Expression correlation analysis 
reveals that lncRNAs like XLOC_002110, XLOC_019584, 
XLOC_011194, XLOC_005773 and XLOC_003497 might 
be important regulators of candidate genes for milk qual-
ity and yield traits in cattle. Compared to Kashmiri cat-
tle a strong correlation between DE lncRNAs and milk 
candidate genes was found in Jersey, which could explain 
the differences in milking performance between the two 
breeds. This study mapped the expression profiles of 
lncRNAs across lactation stages and their relationships 
with candidate genes related to milk quality and yield 
traits in Jersey and Kashmiri cattle. This study therefore 
provides a valuable resource for the study of lncRNA roles 
in lactation biology. However, better understanding of the 
molecular mechanisms involving lncRNA functions in 
milk synthesis of the animals is of prime importance.
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