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Abstract 

Background:  Rapid development of high-throughput omics technologies generates an increasing interest in 
algorithms for cutoff point identification. Existing cutoff methods and tools identify cutoff points based on an asso-
ciation of continuous variables with another variable, such as phenotype, disease state, or treatment group. These 
approaches are not applicable for descriptive studies in which continuous variables are reported without known 
association with any biologically meaningful variables.

Results:  The most common shape of the ranked distribution of continuous variables in high-throughput descriptive 
studies corresponds to a biphasic curve, where the first phase includes a big number of variables with values slowly 
growing with rank and the second phase includes a smaller number of variables rapidly growing with rank. This study 
describes an easy algorithm to identify the boundary between these phases to be used as a cutoff point.

Discussion:  The major assumption of that approach is that a small number of variables with high values dominate 
the biological system and determine its major processes and functions. This approach was tested on three different 
datasets: human genes and their expression values in the human cerebral cortex, mammalian genes and their values 
of sensitivity to chemical exposures, and human proteins and their expression values in the human heart. In every 
case, the described cutoff identification method produced shortlists of variables (genes, proteins) highly relevant for 
dominant functions/pathways of the analyzed biological systems.

Conclusions:  The described method for cutoff identification may be used to prioritize variables in descriptive 
omics studies for a focused functional analysis, in situations where other methods of dichotomization of data are 
inaccessible.
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Introduction
Descriptive omics represent one particular type of study 
in which a big number of continuous biological variables 
(e.g. genes, proteins, metabolites) are measured in a bio-
logical sample to characterize it rather than to compare 
it with other samples (e.g. treatment groups, disease 

states). Descriptive studies provide background knowl-
edge for future research as they characterize biological 
systems at molecular levels. As such, descriptive omics 
is analogous to the effort of XVIII century biologists in 
building a descriptive fundament for organismal-level 
biology. Today descriptive omics results in many essen-
tial resources of medico-biological research such as 
databases providing quantitative information on genes, 
proteins, sncRNA, metabolites, and other biological 
variables across many organisms, tissues, cell types, and 
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biological liquids. Extraction of biologically meaningful 
information from these resources may be challenging.

One approach is based on an assumption that a small 
number of variables with the highest values of expres-
sion/abundance dominate functions of a biological sys-
tem. For example, it is reasonable to assume, that genes 
with high expression values are more important for the 
normal tissue physiology than these expressions of which 
is close to zero. This approach requires methods of cut-
off point identification to generate shortlists of variables 
for focused analysis.

Several methods of dichotomization were developed 
previously by different research domains as a result of the 
rapid development of high-throughput omics and other 
technologies and approaches in the medico-biological 
domain. For example, a big group of existing methods 
identifies cutoff points based on an association of con-
tinuous variables with other biologically meaningful 
variables. For example, a widely used approach for the 
identification of genes differentially expressed in relation 
to a health condition or treatment utilizes fold-change 
and false-discovery rate adjusted p-value as cutoff crite-
ria. A range of algorithms and online tools was developed 
to categorize variables for decision-making about can-
cer treatments [1–3]. These approaches do not apply to 
descriptive studies in which associations with other bio-
logically meaningful variables are not known.

Another group of methods was developed for image 
segmentation. For example, Otsu’s method was devel-
oped to separate pixels in an image into two classes: 
object and background [4]. Global thresholding algo-
rithms for image segmentation, including Otsu’s, perform 
well only when the distribution of continuous variables is 
close to bimodal (comparable number of pixels for object 
and background and a deep valley between them) [5, 
6]. The most common distribution of continuous vari-
ables in omics descriptive studies is very different from 
bimodal, with a majority of variables having very low lev-
els and a very small number of variables having very high 
values of expression/abundance (see example in Supple-
mental Fig. 1).

Several methods of dichotomization of droplets with 
and without cell RNA based on the content of their 
unique molecular identifier (UMI) were developed 
in a framework of single-cell sequencing technology. 
Although the distribution of UMI in droplets is continu-
ous, methods used for dichotomization are based on the 
presence of 2 classes of droplets (empty and non-empty) 
allowing for the calculation of thresholds based on the 
deviation from UMI prediction for one class or another 
[7, 8]. Although methods of dichotomization of con-
tinuous variables have broad use in different research 

domains, Thus, I was not able to identify any method that 
can be easily applied to descriptive omics data.

The most common shape of the ranked distribution 
of continuous variables in high-throughput descriptive 
studies corresponds to a biphasic curve (Fig.  1A, D, F), 
where in a first phase a big number of variables have low 
values. These values increase slowly with the rank. In the 
second phase, a relatively small number of variables dem-
onstrate very rapid growth with their rank number. Thus, 
the curve of this distribution has a bending point, which 
delineates the boundary between phases. This boundary 
may be used as a cutoff point to identify these variables, 
which dominate the dataset. However, these curves are 
described by complicated functions, making identifica-
tion of the inflection point a challenging task. The com-
plexity of that task is the likely reason why I was not able 
to identify any study using curve fitting to identify cut-
off points in descriptive –omics. Here I present a simple 
method for the identification of the bending point of the 
curve. This algorithm may be used to identify in an unbi-
ased way variables (genes, proteins, metabolites, etc.) 
that dominate biological system in a descriptive omics 
dataset.

Method description
First, the expression/abundance of all values in the 
ranked dataset are plotted to generate curve A. If we con-
nect the first and the last points of the typical biphasic 
distribution curve (A) of a descriptive omics dataset by 
a straight line (B), together these 2 curves will produce 
a figure resembling a triangle (Fig.  1A, D, F). Then, for 
every xA value of the A curve we can calculate a length 
of a segment that will be perpendicular to the short-cut 
function (C) (Fig. 1A). The longest segment will cross the 
A distribution curve in its bending point.

The B function is a linear function: yB = mBxB + bB. 
Functions perpendicular to B, all have the following 
generic equation: yC = (-1/mB)xC + bC. Given the coor-
dinates of crossing points between A curve and every C 
function are known (xAC = rank number of the variable, 
yAC = value of the variable (expression, concentration, 
abundance, etc.)), bC can be calculated for each such 
crossing point:

Thus, now for every point of the A curve we have an 
equation of a linear function C that is crossing A in that 
point and is perpendicular to the short-cut line B. Now 
we need to identify coordinates of points at which B and 
C functions intersect. Given that coordinates of both 
functions are the same at intersection, we can equate x 
for both functions: (yCB – bB)/mB = (yCB – bC)/(-1/mB). 
From that equation, we can calculate y for intersection:

(1)bC = yAC − (−1/mB)xAC
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Fig. 1  Illustration of the method for cutoff point identification in descriptive high-throughput biological studies. Variable distribution (A, D, F) and 
biological categories enriched in shortlists identified using cutoff points (B, E, G) for the following datasets: genes expressed in the human cerebral 
cortex (A, B), genes sensitive to chemical exposures (D, E), and proteins expressed in the adult human heart (F, G). Figure C illustrates changes in the 
number of shortlisted genes identified by the described cutoff algorithm in relation to the number of genes in the dataset. Number of shortlisted 
genes is shown as percent of the total shortlisted genes identified for a complete dataset (16,353 genes). In graphs (A, D, F), A is a curve of the 
original data distribution, B is a linear shortcut connecting the first and the last points of A, and C is a family of linear functions perpendicular to B. 
Four C functions are shown in figure A. In figures C and D longest segments corresponding C functions are shown. Red vertical lines in figures A, D, 
F correspond to the cutoff points
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As we know y for intersection, we can calculate x for 
intersection as well, using an equation for B:

Now, as we have coordinates for points of the intersec-
tion of each C function with A (xAC,yAC) and coordinates 
for intersection of each C function with B (xCB,yCB) we 
can calculate the length of segments using the Pythago-
rean theorem:

Given that xAC is a rank number of the variable, and 
yAC is a value of the variable let’s substitute xAC with R, 
and yAC with V. Let’s also insert Eqs. 1, 2, and 3 into Eq. 4. 
After simplification, we get the following final equation 
for the calculation of the length of D segments:

The longest segment will cross A curve in the point of 
the curve bending.

Examples of the method use
Example 1: Identification of genes highly expressed 
in the human cerebral cortex
Data on consensus normalized gene expression values 
in the human cerebral cortex were downloaded from 
The Human Protein Atlas [9]. These values represent 
the maximum normalized expression values for each 
gene in three data sources: The Human Protein Atlas, 
The Genotype-Tissue Expression (GTEx) project [10], 
and FANTOM5 [11]. The whole dataset consisting of 
16,353 genes and their expression values was used in this 
example. The distribution of expression values ranked 
from smallest to largest is shown in Fig. 1, curve A. The 
linear function B connecting the first and the last points 
of the curve A has the following equation: y = 0.0364x – 
0.0364. Thus, mB = 0.0364 and bB = -0.0364. These values 
as well as rank values for every gene (R) and normalized 
expression values for every gene (V) were used in Eq.  5 
to calculate the length of segments D for every gene. The 
longest segment corresponds to the gene ranked 15,778. 
This ranking number corresponds to the cutoff point 
that delineates genes with low and high expression in the 
human cerebral cortex. To test if highly expressed genes 
reflect the essential physiology of the cerebral cortex, 
I submitted the list of top 575 genes determined by the 
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method and ranking 15,779 through 16,353 to Metascape 
[12] and conducted enrichment analysis with default 
settings. The enriched biological categories were highly 
relevant for the nervous tissue physiology and included 
for example “nervous system development”, “chemical 
synaptic transmission”, “cell projection morphogenesis”, 
“cellular ion homeostasis”, and “learning and memory” 
among others (Fig.  1B). These categories were enriched 
with a very high level of significance (-log10(p) > 15). To 
control if any genes expressed in the human cerebral cor-
tex are enriched for essential functions of the cerebral 
cortex, I also submitted to Metascape an equivalent size 
list of genes with non-zero expression values and lowest 
expression ranks. This list was enriched for categories 
non-relevant to brain and nerve tissue, such as “forma-
tion of cornified envelop”, “response to bacterium” and 
“digestion” for example (Supplemental Fig. 2A).

High-throughput methods used today to generate 
descriptive –omics data often produce datasets of 
variable size due to the poor detection of low abun-
dance variables. For example, in RNA-seq, genes with 
very low expression values contribute a small number 
of reads and may be detected or not by chance. To 
explore, if this type of variability may have a signifi-
cant effect on a cutoff point identification I conducted 
a simulation in which the cutoff point was identi-
fied for the whole dataset of cerebral cortex genes 
and then for reduced lists in which genes were step-
wise removed in increments of 1000 starting from the 
genes with lowest levels of expression (Fig.  1C). This 
analysis demonstrated that the removal of up to 25% 
of genes with the lowest expression levels does not 
affect the cutoff point.

Example 2: Identification of genes highly sensitive 
to chemical exposures
In a recent study sensitivities of genes common to 
humans, rats and mice were identified based on an 
overlap of transcriptomic datasets from 2,169 toxi-
cological studies [13]. I use the data from this study 
available through Mendeley Data [14]. The whole 
dataset includes 17,338 genes and their respected 
chemical sensitivity values were used in this exam-
ple. Chemical sensitivity values here correspond 
to the number of individual studies with 1,239 
chemical compounds in which gene expression was 
affected by exposure. Following the same steps as in 
the previous example, I identified the rank number 
15,966 as a cutoff point (Fig.  1D). To test if genes 
sensitive to chemical exposures are associated with 
known pathways of response to toxicity, I submitted 
the list of top 1,373 genes determined by the method 
and ranked 15,967 through 17,338 to Metascape. 
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Identified enriched biological categories included 
many well-recognized pathways of response to 
chemical exposures, stress, and damage, for exam-
ple: “nuclear receptors meta-pathway”, “response 
to toxic substance”, “apoptotic signaling pathway”, 
“response to wounding”, “response to oxygen levels”, 
and “response to oxidative stress” (Fig.  1E). Thus, 
the cutoff used in this example captured essential 
molecular mechanisms involved in the response to 
chemical exposures. These categories were enriched 
with a very high level of significance (-log10(p) > 50). 
Similarly to Example 1, I looked at the enrichment 
of the equivalent-size list of lowest-ranking genes. 
Enriched categories were non-relevant to known 
mechanisms activated in response to chemical expo-
sures (Supplemental Fig. 2B).

Example 3: Identification of proteins highly expressed 
in the adult human heart
Data on protein expression (at gene level) in the adult 
human heart were downloaded from The Human 
Proteome Map portal [15]. These data are based on 
LC–MS/MS utilizing high resolution and high accu-
racy Fourier transform mass spectrometry. All mass 
spectrometry data including precursors and HCD-
derived fragments were acquired on the Orbitrap mass 
analyzers in the high-high mode. The whole dataset 
including 17,294 unique gene names and expression 
values of corresponding proteins was used in this 
example. Expression values were calculated as follows: 
spectral counts per gene per experiment were first 
summed from all peptides mapped to each gene. Total 
acquired tandem mass spectra were used to normal-
ize between experiments and then spectral counts per 
gene were averaged across multiple experiments per 
tissue. Following the same steps as in previous exam-
ples, I identified the rank number 17,086 as a cutoff 
point (Fig. 1F). To test if proteins shortlisted using my 
approach reflect the essential physiology of the heart, I 
submitted the list of top 209 genes, determined by the 
method and ranking 17,087 through 17,294 to Metas-
cape. Top enriched biological categories were highly 
relevant for heart physiology and function. These cat-
egories includ for example “muscle system process”, 
“oxidation–reduction process” “actin filament-based 
process”, “smooth muscle contraction” and other 
(Fig.  1G). Thus, the cutoff used in this example cap-
tured essential molecular mechanisms that dominate 
heart physiology. These categories were enriched with 
a very high level of significance (-log10(p) > 10). Bio-
logical categories enriched in the shortlist of the low-
est ranking proteins were non-relevant to known adult 
heart physiology (Supplemental Fig. 2C).

Discussion and conclusions
In this study, I describe a simple and reproducible 
approach for the cutoff identification in descriptive high-
throughput studies, which method is entirely based on 
the analysis of the shape of the curve of the data distri-
bution. The major assumption of that approach is that a 
small number of variables with high values dominate the 
biological system and determine its major processes and 
functions. Thus, the described method for cutoff identi-
fication may be used following a visual inspection of the 
shape of the curve to confirm its biphasic nature to pri-
oritize variables for more detailed functional analysis, 
in situations where other methods of dichotomization of 
data are inaccessible. As such the method should be used 
with a complete list of variables without prior application 
of other cutoff approaches.

Three different datasets analyzed here as examples 
demonstrate that the described cutoff identification 
method produces shortlists of variables highly relevant 
for dominant functions/pathways of the analyzed bio-
logical systems. The shortlist of highly expressed genes in 
the human cerebral cortex was highly enriched for cat-
egories related to synaptic transmission, nervous system 
development, and even higher functions, such as learning 
and memory. The shortlist of genes sensitive to chemical 
exposures was enriched for biological categories involved 
in response to stress and damage. Finally, the shortlist of 
proteins expressed highly in the human heart was signifi-
cantly enriched for biological categories relevant to mus-
cle architecture, contractions, and contraction regulation.

I should note here, that some applications may require 
more or less stringent criteria for the cutoff. In these situ-
ations, the described approach may still be useful as it 
allows to identify the point where the curve of values dis-
tribution changes most rapidly. Using this reproducibly 
identifiable point one may further select criteria with dif-
ferent percent of stringency relative to it. In other words, 
the cutoff point identified as described here may pro-
vide some meaningful reference value. Similarly using of 
p-value and fold change as cutoff points in omics studies 
are selected arbitrarily by researchers, but they represent 
meaningful indicators of the data structure and provide 
reproducibility of the data analysis.

The results of the use of the described dichotomization 
approach should be interpreted cautiously. For exam-
ple, the fact that some gene was found in the short-list 
of highly expressed genes in a tissue does not necessar-
ily mean that this gene is highly tissue-specific. In fact, 
many “housekeeping” genes are highly expressed in the 
majority of cell types [15], as they are major players of 
biological processes common to different cells and tis-
sues. It is also likely that some genes with a normally 
low level of expression may still be important players of 
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highly tissue-specific processes. Overall, dichotomization 
of continuous variables should be done with caution, as it 
is always associated with the cost of losing some impor-
tant information [16]. Thus, in each specific situation 
of the use of the suggested dichotomization approach a 
biological relevance of the approach should be taken into 
consideration.
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