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Frameshift and wild‑type proteins are 
often highly similar because the genetic code 
and genomes were optimized for frameshift 
tolerance
Xiaolong Wang1*, Quanjiang Dong2, Gang Chen1, Jianye Zhang1, Yongqiang Liu1 and Yujia Cai1 

Abstract 

Frameshift mutations have been considered of significant importance for the molecular evolution of proteins and 
their coding genes, while frameshift protein sequences encoded in the alternative reading frames of coding genes 
have been considered to be meaningless. However, functional frameshifts have been found widely existing. It was 
puzzling how a frameshift protein kept its structure and functionality while substantial changes occurred in its 
primary amino-acid sequence. This study shows that the similarities among frameshifts and wild types are higher 
than random similarities and are determined at different levels. Frameshift substitutions are more conservative than 
random substitutions in the standard genetic code (SGC). The frameshift substitutions score of SGC ranks in the top 
2.0-3.5% of alternative genetic codes, showing that SGC is nearly optimal for frameshift tolerance. In many genes and 
certain genomes, frameshift-resistant codons and codon pairs appear more frequently than expected, suggesting 
that frameshift tolerance is achieved through not only the optimality of the genetic code but, more importantly, the 
further optimization of a specific gene or genome through the usages of codons/codon pairs, which sheds light on 
the role of frameshift mutations in molecular and genomic evolution.
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Background
The genetic code was deciphered in the early 1960s [1]. 
The standard genetic code (SGC) consists of 64 triplet 
codons, 61 sense codons for the twenty amino acids 
(AAs), and three nonsense codons for stop signals. 
Dozens of alternative genetic codes have been reported 
in all three phylogenetic domains of life [2]. As shown 
in the list of genetic codes (https://​www.​ncbi.​nlm.​nih.​
gov/​Taxon​omy/​Utils/​wprin​tgc.​cgi) maintained by the 
National Center for Biotechnology Information (NCBI), 
all the alternative genetic codes have only one to six 

differences from the standard code. All these natural 
genetic codes share several important properties: (1) the 
genetic code is universal, with only a few variations found 
in some organelles or organisms, such as mitochondrion, 
archaea, yeast, and ciliates [3]; (2) the triplet codons are 
redundant, degenerate, and changes at the third base of 
codons, known as the interchangeable position, are gen-
erally synonymous; (3) in a coding DNA sequence (CDS), 
an insertion or deletion (InDel) causes a frameshift muta-
tion if its size is not a multiple of three.

It has been reported that the natural genetic code was 
optimized for translational error minimization, which 
is being extremely efficient at minimizing the effect of 
point mutation or mistranslation errors and is optimal 
for kinetic energy conservation in polypeptide chains 
[4–7]. Moreover, it was discovered that the SGC resists 
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frameshift errors by increasing the probability that a 
stop signal is encountered upon frameshifting because 
frameshifted codons for abundant amino acids overlap 
with stop codons [8].

A frameshift mutation alters the reading frame of 
a coding gene and may produce frameshift proteins 
(frameshifts). Frameshifts have been considered mostly 
meaningless since they look completely different from 
the wild type and are often interrupted by many stop 
signals. A frameshifted gene yields truncated, non-func-
tional, and potentially cytotoxic peptides [9]. Until the 
end of the last century, frameshift mutations were gen-
erally considered harmful and of little importance to the 
evolution of protein-coding genes. In the first two dec-
ades of this century, however, it was widely found that 
frameshifted genes can sometimes be expressed through 
several special mechanisms, such as translational 
readthrough [10–12], ribosomal frameshifting [13–15], 
reading frame transition [14], and genetic recoding [16]. 
Moreover, frameshifted coding genes can be retained for 
millions of years and enable the acquisition of new func-
tions [17].

Moreover, there have been a handful of cases of func-
tional frameshifts that retain their function. For exam-
ple, Hahn and Lee identified nine frameshift homologs 
between humans and chimpanzees by collecting human 
coding exons bearing InDels compared with the chim-
panzee genome, some of which seem to be functional 
in both species [18]. By blastp searching the protein 
database using specialized scoring matrices designed 
for frameshifts, Claverie identified several functional 
frameshifts in bacteria, yeast, humans, and rats [19]. 
Recently, Huang et  al. [20] showed that frameshift pro-
teins of a bacteria toxin retain the same function. Moreo-
ver, it has also been widely discovered that frameshift 
mutations may lead to functional divergence [17], novel 
genes [21], or overlapping genes in viruses [22], bacteria 
[23], and even humans [24].

As is well known, a protein can become dysfunctional 
by changing even one residue, so it is puzzling how a 
frameshift protein can maintain the integrity of its ter-
tiary structure and function while substantial changes 
occur in its primary sequence. Based on ClustalW 
alignments, we have observed high similarities among 
frameshifts and wild-type protein sequences [25]; 
recently, Bartonek et  al. further proved that frameshift-
ing preserves key physicochemical properties of proteins 
[26]. Inspired by their work and peer reviewers’ com-
ments, we realized that our previous similarity calcula-
tions were overestimated due to the gappy alignments. 
ClustalW [27] works well in common protein sequences 
but is not designed for aligning frameshift protein 
sequences. Actually, there is no existing method suitable 

for aligning frameshift protein sequences. Therefore, we 
developed a specialized alignment method for frameshift 
protein sequences (FrameAlign). Using FrameAlign, 
we reanalyzed the data and proved that frameshift and 
wild-type protein sequences are often highly similar. 
Furthermore, we proved that the SGC is nearly optimal 
for frameshift tolerance, and certain genes and genomes 
were further optimized to enhance their tolerance to 
frameshift mutations through biased usage of codons/
codon pairs, which shed light on the role of frameshift 
mutations in molecular and genomic evolution.

Materials and methods
Protein‑coding DNA sequences
All reference coding sequences (CDSs) in ten model 
species, including Escherichia coli, Saccharomyces cer-
evisiae, Arabidopsis thaliana, Caenorhabditis elegans, 
Drosophila melanogaster, Danio rerio, Xenopus tropicalis, 
Mus musculus, Pan troglodytes, and Homo sapiens, were 
retrieved from GenBank Genome Database. Program 
RandomCDSs.java produced ten thousand sets of CDSs, 
each containing three CDSs and each CDS containing 
300 or 500 random sense codons.

Aligning and computing the similarities of wild types 
and frameshifts
For a given CDS, let δij be the pairwise similarities of its 
three translations, i, j = 1, 2, 3, i ≠ j, δij = δji. The average 
similarity among the frameshifts and the wild type is 
defined as the shiftability of protein-coding genes (δ),

Shiftability is a quantitative measurement of frameshift 
tolerability. As frameshifting occurs between any two of 
the three reading frames, δ12, δ13, and δ23 are all consid-
ered in the formula.

Program Similarity.java batch translates CDSs and 
computes the pairwise similarities among the three 
translations, in which CDSs are translated using the SGC 
in the different reading frames of the sense strand, and 
the three different translations are aligned by different 
methods, including ClustalW2, MSA, and FrameAlign. 
To calculate pairwise similarity, a pair of matched AAs in 
a pairwise alignment is considered conserved if their sub-
stitution score is ≥0 in the scoring matrix GON250, i.e., 
gaps and negative scores are considered different. The 
percent of conserved sites gives the pairwise similarity 
between a pair of protein sequences.

Similarity.java has an option to translate internal 
stop codon into AAs using a set of readthrough rules 
(Table  1). Translational readthrough occurs upon the 
suppressor tRNA activity with an anticodon matching 

δ =
1

3
(δ12 + δ13 + δ23)
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a stop codon [12]. Many studies have shown that trans-
lational readthrough occurs in prokaryotes and eukary-
otes, from E. coli to humans, while the readthrough 
rules may vary among different species [28]. In E. coli, 
nonsense suppression tRNAs reported includes amber 
suppressors (supD [29], supE [30], supF [31]), ochre sup-
pressors (supG [32]), and opal suppressors (supU [31], 
su9 [33]). The suppressor tRNAs were summarized as 
a list of readthrough rules. If the user selects the option 
“readthrough”, these rules are adopted to read through 
the stop codons.

FrameAlign: aligning of frameshifts and wild‑type protein 
sequences
A wild-type protein-coding sequence consisting of n tri-
plet codons is written as,

where Bk ∈{A, G, U, C}; i = 1… n; k =  1…3n. Each pair 
of neighboring codons are separated by a bar to show 
the native reading frame. Its encoded wild-type protein 
sequence (WT), consisting of n amino acids, can be writ-
ten as,

where AB3i−2B3i−1B3i
 ∈{A, C, D, E, F, G, H, I, K, L, M, N, P, 

Q, R, S, T, V, W, Y}, represents the amino acid encoded 
by the ith codon (B3i-2B3i-1B3i). If a frameshift is caused by 
deleting or inserting one or two bases in the start codon, 
there are only four cases:

(1)	 Delete one (− 1): B2B3B4| B5B6B7| … | B3i-1B3iB3i + 1 

|B3i + 2B3i + 3B3i + 4| …
(2)	 Delete two (− 2): B3B4B5| B6B7B8| … | B3iB3i + 1B3i + 2 

|B3i + 3B3i + 4B3i + 5| …
(3)	 Insert one (+ 1): B0B1B2| B3B4B5| B6B7B8| … | B3i-

3B3i-2B3i-1| B3iB3i + 1B3i + 2| …
(4)	 Insert two (+ 2): B− 1B0B1| B2B3B4| B5B6B7| … | B3i-

4B3i-3B3i-2| B3i-1B3iB3i + 1| …

B1B2B3 | B4B5B6 | B7B8B9 | · · · | B3i-2B3i-1B3i|B3i+1B3i+2B3i+3| · · · | B3n-2B3n-1B3n

WT : AB1B2B3
AB4B5B6

...AB3i−2B3i−1B3i
AB3i+1B3i+2B3i+3

...AB3n−5B3n−4B3n−3
AB3n−2B3n−1B3n

If a frameshift mutation occurs at any location 
between the first and the ith codon, the (i + 1)th codon 
(B3i + 1B3i + 2B3i + 3) has only two possible changes:

(1)	 Forward frameshifting (FF): AB3i+2B3i+3B3i+4

(2)	 Reverse frameshifting (RF): AB3iB3i+1B3i+2
 

This continues for each codon downstream, resulting in 
two frameshifts, denoted as FF and RF,

The last codon of FF or RF shown in square brackets 
is incomplete and was deleted in the computation pro-
cess. The ith codon of the frameshifts (B3i + 2B3i + 3B3i + 4 
for FF or B3iB3i + 1B3i + 2 for RF) has two bases overlap-
ping with the (i + 1)th codon of WT (B3i + 1B3i + 2B3i + 3); 
the encoded amino acids ( AB3i+2B3i+3B3i+4

, AB3iB3i+1B3i+2
 , 

and  AB3i+1B3i+2B3i+3
 ) are likely similar to each other 

because similar codons encode amino acids with 
related physicochemical properties [4]. Except for 
the interchangeable codons, amino acids with simi-
lar physicochemical properties are located in close 
proximity to each other in the codon table, and the 
coding codons usually differ by only one base sub-
stitution, e.g., hydrophobic amino acids are usually 
coded by codons with thymine (T) in the second 

position and hydrophilic amino acids by those with 
adenine (A) in this position [4].

Moreover, we noticed that shifted codons also often 
encode similar amino acids, e.g., aac (N) and act (T) are 
both small amino acids, while gtt (V) and ttg (L) are both 

aliphatic (with the shared bases underlined), and the cor-
responding amino acid substitution scores are positive 
(see The genetic code was optimized for frameshift toler-
ance section for the detailed analyses of shifted codons). 
Compared with the wild-type CDS, the frameshifted 
CDS consists of shifted codons successively throughout 
the whole sequence, so the encoded amino acid sequence 
(i.e., the frameshift translation) is also likely to be similar 
to the wild-type translation.

However, as shown in the following schematic expres-
sions, WT, FF, and RF can only be aligned correctly in 
three pairwise alignments, but not in a multiple sequence 
alignment. Therefore, common aligners are not suit-
able for aligning frameshifts. This frameshift alignment 

FF ∶ AB2B3B4
AB5B6B7

…AB3i-1B3i B3i+1
AB3i+2B3i+3B3i+4

…AB3n-7B3n-6B3n-5
AB3n-4B3n-3B3n-2

[

B3n-1B3n

]

RF ∶ AB3B4B5
AB6B7B8

…AB3i-3B3i-2B3i-1
AB3i B3i+1B3i+2

…AB3n-6B3n-5B3n-4
AB3n-3B3n-2B3n-1

[

B3n

]

Table 1  The readthrough rules derived from natural suppressor 
tRNAs for nonsense mutations

Site tRNA (AA) Codon

supD Ser (S) UAG​

supE Gln (Q) UAG​

supF Tyr (Y) UAG​

supG Lys (K) UAA​

supU Trp (W) UGA​
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method and these pairwise alignments are referred to as 
FrameAlign.

	 (1).	 WTvs.FF: insert one gap at the end of FF.

	 (2).	 WTvs.RF: insert one gap at the beginning of RF.

	 (3).	 FFvs.RF: no gaps are needed.

Computational analysis of frameshift codon substitutions
According to whether the encoded AA is changed or not, 
codon substitutions have been classified into synony-
mous substitutions (SSs) and nonsynonymous substitu-
tions (NSSs). Based on the above analysis in FrameAlign: 
aligning of frameshifts and wild-type protein sequences 
section, we further classified codon substitutions into 
three subtypes:

(1)	 Random substitutions (RCSs) are produced by ran-
domly changing all three bases of the codons; there 
are 64 × 64 = 4096 possible RCSs.

(2)	 Interchangeable substitutions (ICSs) are produced 
by randomly changing only the third position of the 
codons; there are 64 × 4 = 256 possible ICSs.

(3)	 Frameshift substitutions (FCSs) are produced 
by forward or reverse shifting. Each codon has 
four forward and four reverse FCSs, and there are 
64 × 8 = 512 possible FCSs.

In most cases, all three bases in the frameshifted codon 
are changed compared with the original codon, except for 
triplet monomers (such as aaa, ggg). The AA substitution 
scores of FCSs and RCSs are defined as frameshift sub-
stitution scores (FSSs) and random substitution scores 
(RSSs), respectively. The sum FSS of all possible FCSs is 
considered a measure of the frameshift tolerability of the 
genetic code. Program ShiftCodons.java computes the 
substitution scores for each type of codon substitutions 

FF : AB2B3B4
AB5B6B7

. . .AB3i−1B3i B3i+1
AB3i+2B3i+3B3i+4

. . .AB3n−7B3n−6B3n−5
AB3n−4B3n−3B3n−2

RF : AB3B4B5
AB6B7B8

. . .AB3iB3i+1B3i+2
AB3i+3B3i+4B3i+5

. . .AB3n−6B3n−5B3n−4
AB3n−3B3n−2B3n−1

using a scoring matrix, BLOSSUM62 [34], PAM250 [35, 
36], or GON250 [37].

Computational analysis of alternative codon tables
RandomCodes.java generates random codon tables by 
swapping AAs assigned to the sense codons and keep-
ing all degenerative codons synonymous (Freeland and 
Hurst [7]). One million random codon tables were sam-
pled from all possible (20! = 2.43290201 × 1018) genetic 
codes randomly using a random-number-based sam-
pling algorithm, in which the probability of an AA being 
swapped is proportional to its proportion in the code 
table. The sampling was repeated 100 times indepen-
dently. AlternativeCodes.java gives all (13824) possible 
compatible codon tables by permuting the nucleotide 
in each codon position independently (Itzkovitz and 
Alon [8]). Each compatible code has the same number 
of codons per amino acid and the same impact of mis-
read errors as the SGC. The sum FSSs for each random 
or compatible genetic code was computed and compared 
to the SGC.

Analysis of codon pairs and their frameshift substitution scores
FrameshiftCodonPair.java computes the FSSs for all pos-
sible codon pairs. For a given codon pair, B1B2B3|B4B5B6, 
its encoded AA pair is AB1B2B3AB4B5B6

 . There are 400 
different AA pairs, 64 × 64 = 4096 different codon pairs. 
Similarly, the codon pair and its encoded AAs have only 
two types of changes in frameshifting:

(1)	 Forward frameshifting: AB0B1B2
AB3B4B5

(2)	 Reverse frameshifting: AB2B3B4
AB5B6B7
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where B0 and B7 each have four choices. There are 
4096 × 8 = 32,768 different codon pair frameshift sub-
stitutions (CPFSs). For each CPFSs, AB1B2B3

AB4B5B6
  was 

compared with shifted codon pairs to obtain their FSSs.

Computational analysis of the usage of codon and codon 
pairs
The number of occurrences was counted for each 
codon/codon pair for each genome. The observed and 
expected frequencies were calculated using the Gut-
man and Hatfield method for each codon or codon pair, 
resulting in a list of 64 codons and 4096 codon pairs, 
each with an expected (E) and observed (O) number of 
occurrences, frequency, together with a value for the χ2 
statistics. A codon or codon pair was identified as over-
represented if O > E (or under-represented if O < E), 
and the average FSSs were calculated for each genome 
weighted by their codon or codon pair usages.

Results and analysis
Wild‑type and frameshift translations are often highly 
similar
Usually, a frameshift refers to an organism that has a 
frameshift mutation, i.e., having a protein-coding gene 
with an altered reading frame compared to the wild 
type; sometimes, it also refers to a putative protein 
sequence artificially translated from an alternative read-
ing frame of a CDS, e.g., the second and third trans-
lations of zebrafish vegfaa (Fig.  1A). As described in 
FrameAlign: aligning of frameshifts and wild-type pro-
tein sequences section, when the CDSs are translated in 
the three different reading frames of the sense strand, 
each of them produces a set of three frame translations 
(WT, FF, and RF). In order to distinguish the two dif-
ferent implications of the term frameshift, hereafter, we 
refer to the two frameshifted protein sequences (FF and 
RF) as frameshift translations. Frameshift translations 
usually do not exist in nature, and they have been con-
sidered mostly meaningless since they look like random 
sequences.

In this section, three groups of CDSs were translated, 
the translations were aligned, and their similarities were 
calculated:

	(1).	 All available reference CDSs (real CDSs) for ten 
model species were translated, each producing a 
set of real frame translations (WT, FF, and RF). 
Each set of them was aligned using ClustalW and 
FrameAlign, and their similarities were calcu-
lated as real frame similarities.

	 (2).	 Ten thousand random CDSs were translated, 
each producing a set of random frame transla-
tions (WT, FF, and RF). Each set of them was 
aligned using ClustalW, MSA, and FrameAlign, 
and their similarities were calculated as random 
frame similarities.

	(3).	 Ten thousand sets of CDSs (each containing 
three random CDSs) were translated in the native 
frame of the sense strand, each producing a set of 
random native translations; each set of them was 
aligned using ClustalW, MSA, and FrameAlign, 
and their similarities were calculated as random 
similarities.

When the frame translations were aligned using 
ClustalW, the estimated (hereafter est) means of real and 
random frame similarities are respectively 0.456 ± 0.033 
and 0.452 ± 0.013 (Table  2 and S1a). But, on average, 
ClustalW placed 49.57 and 80.11 gaps in the real and 
random frame translations, respectively. Besides, the est. 
mean random similarity is comparable to the est. mean 
random frame similarity, but on average, 137.05 gaps are 
placed in the random native translations, indicating that 
these similarity calculations might be overestimated due 
to the alignment artifacts caused by inserting excessive 
gaps.

To sidestep the effect of aligners, MSA was used to 
obtain the optimal alignments [38]. Unfortunately, MSA 
cannot be applied to align protein sequences > 500 AAs 
because of the memory requirements, so that it can-
not be applied to many real genes. So, only the random 
frame/native translations were aligned using MSA. From 
these MSAs, the est. mean random frame similarity is 
0.410 ± 0.055, but the est. mean random similarity is 
also as high as 0.412 ± 0.055 (Table 2 and S1a). Besides, 
on average, MSA placed as many as 108.3 and 109.5 gaps 
in the random frame and random native translations, 
respectively, suggesting that the false similarity estimates 

Fig. 1  Different alignments of the three translations of zebrafish vegfaa. A The wild-type and frameshift translations of zebrafish vegfaa; B 
The ClustalW alignment of the three translations; C FrameAlign of the first and the second translations; D FrameAlign of the first and the third 
translations; E FrameAlign of the second and the third translations. F The color scheme of GeneDoc, which is used in (B-E) to color the amino acids 
by their physicochemical properties. CDS: coding sequence; F1: the first translation (wild type); F2: the second translation (+ 1 frameshift); F3: the 
third translation (+ 2 frameshift); F2R: F2 readthrough; F3R: F3 readthrough

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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caused by gappy alignments cannot be avoided by using 
an optimal alignment algorithm.

As described in FrameAlign: aligning of frameshifts and 
wild-type protein sequences section, frame translations 
cannot be aligned correctly in a multiple sequence align-
ment but only in pairwise alignments. When the random 
frame or native translations are aligned using FrameA-
lign, only one gap is inserted into each frameshift transla-
tion, and no gaps are inserted into the native translations. 
From FrameAlign, the est. mean random similarity and 
est. mean random frame similarity is 0.383 ± 0.018 and 

0.394 ± 0.016 (Table  3), respectively. Their difference is 
small but statistically extremely significant (t-test P-value 
≈ 0). As well, the overall average of the real frame simi-
larities is 0.450 ± 0.030 (Table  3), much higher than the 
est. means of random similarities or random frame simi-
larities (t-test P-value ≈ 0), indicating that the real frame 
translations are more similar to each other than the ran-
dom frame translations, which cannot be revealed by 
the similarity calculations from the ClustalW or MSA 
alignments. Although the confidence intervals for some 
of the comparisons overlap, the differences for all six 

Table 2  The similarities of proteins and their frameshifts (aligned by ClustalW or MSA)

Type Species Number of 
CDSs

Average Similarity Num of Gaps

 δ12 δ13 δ23 δ MAX MIN

Real CDSs 
(ClustalW)

H. sapiens 71,853 0.474 ± 0.039 0.454 ± 0.046 0.433 ± 0.043 0.464 ± 0.033 0.890 0.271 53.3

P. troglodytes 15,781 0.473 ± 0.04 0.452 ± 0.047 0.431 ± 0.042 0.463 ± 0.034 0.657 0.309 48.9

M. musculus 27,208 0.469 ± 0.038 0.448 ± 0.046 0.43 ± 0.041 0.459 ± 0.033 0.739 0.286 52.5

X. tropicalis 7706 0.477 ± 0.038 0.455 ± 0.044 0.439 ± 0.042 0.466 ± 0.032 0.638 0.320 36.8

D. rerio 14,151 0.465 ± 0.036 0.443 ± 0.043 0.433 ± 0.038 0.454 ± 0.032 0.658 0.332 51.4

D. melanogaster 23,936 0.455 ± 0.039 0.432 ± 0.045 0.426 ± 0.039 0.444 ± 0.033 0.702 0.250 69.4

C. elegans 29,227 0.475 ± 0.037 0.444 ± 0.042 0.441 ± 0.042 0.459 ± 0.032 0.750 0.261 50.4

A. thaliana 35,378 0.468 ± 0.038 0.439 ± 0.042 0.436 ± 0.043 0.453 ± 0.032 0.828 0.217 47.6

S. cerevisiae 5889 0.482 ± 0.043 0.451 ± 0.042 0.463 ± 0.047 0.467 ± 0.035 0.692 0.259 39.7

E.coli 4140 0.441 ± 0.039 0.415 ± 0.043 0.408 ± 0.042 0.428 ± 0.032 0.614 0.280 45.6

Average 235,269 0.468 ± 0.039 0.443 ± 0.044 0.434 ± 0.042 0.456 ± 0.033 0.890a 0.217a 49.6

Random CDSs 
(ClustalW)

Three frames 100000 × 3 0.475 ± 0.019 0.428 ± 0.020 0.427 ± 0.020 0.452 ± 0.013 0.512 0.391 80.1

Three random 
CDSs

100000 × 3 0.476 ± 0.019 0.429 ± 0.020 0.428 ± 0.020 0.452 ± 0.013 0.520 0.388 137.1

Random CDSs 
(MSA)

Three frames 100000 × 3 0.409 ± 0.06 0.411 ± 0.059 0.448 ± 0.044 0.410 ± 0.055 0.541 0.207 108.27

Three random 
CDSs

100000 × 3 0.411 ± 0.06 0.413 ± 0.059 0.447 ± 0.043 0.412 ± 0.055 0.540 0.201 109.47

Table 3  The similarities of proteins and their frameshifts (aligned by FrameAlign)

a Very large/small similarity values were observed in a few very short or repetitive peptides

Type Species Number of CDSs Average Similarity Number 
of Gaps

 δ12 δ13 δ23 δ MAX MIN

Real CDSs (FrameA-
lign)

H. sapiens 71,853 0.492 ± 0.043 0.472 ± 0.044 0.434 ± 0.040 0.466 ± 0.029 0.713 0.194 2

P. troglodytes 15,781 0.491 ± 0.046 0.468 ± 0.046 0.431 ± 0.042 0.463 ± 0.030 0.625 0.311 2

M. musculus 27,208 0.484 ± 0.046 0.469 ± 0.042 0.426 ± 0.040 0.460 ± 0.029 0.739 0.286 2

X. tropicalis 7706 0.481 ± 0.042 0.481 ± 0.041 0.439 ± 0.037 0.467 ± 0.028 0.644 0.353 2

D. rerio 14,151 0.471 ± 0.044 0.468 ± 0.040 0.408 ± 0.040 0.449 ± 0.030 0.614 0.314 2

D. melanogaster 23,936 0.475 ± 0.046 0.457 ± 0.044 0.362 ± 0.047 0.431 ± 0.030 0.689 0.236 2

C. elegans 29,227 0.450 ± 0.047 0.475 ± 0.045 0.421 ± 0.043 0.449 ± 0.032 0.634 0.224 2

A. thaliana 35,378 0.442 ± 0.045 0.477 ± 0.044 0.412 ± 0.041 0.444 ± 0.031 0.882 0.244 2

S. cerevisiae 5889 0.461 ± 0.041 0.510 ± 0.042 0.423 ± 0.038 0.465 ± 0.029 0.692 0.259 2

E.coli 4140 0.435 ± 0.046 0.426 ± 0.047 0.372 ± 0.043 0.411 ± 0.030 0.571 0.237 2

Average 235,269 0.468 ± 0.045 0.470 ± 0.043 0.413 ± 0.041 0.450 ± 0.030 0.882a 0.194a 2

Random CDSs 
(FrameAlign)

Three frames 100,000 0.394 ± 0.028 0.394 ± 0.028 0.395 ± 0.028 0.394 ± 0.016 0.477 0.330 2

Three random CDSs 100000 × 3 0.383 ± 0.028 0.383 ± 0.028 0.383 ± 0.028 0.383 ± 0.018 0.458 0.304 0
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comparisons are statistically extremely significant (Table 
S1a and S1b). Since all available coding genes were con-
sidered for each species, the standard errors are hun-
dreds of times lower than the standard deviations due to 
the large sample size (number of genes).

As described in Aligning and computing the similari-
ties of wild types and frameshifts section, the average 
frame similarities are defined as the shiftability of pro-
tein-coding genes. As the frame similarities calculated 
from the ClustalW and MSA alignments are false, the 
mean frame similarity from FrameAlign is considered 
the true shiftability of coding genes. As shown in Table 3, 
the overall average shiftability is close to 0.45 for the real 
genes but less than 0.4 for the random CDSs. In other 
words, on average, about 45% of the amino acids remain 
conserved in the real frameshift translations. In addi-
tion, the shiftability varies substantially in different spe-
cies, ranging from 0.411 (E. coli) to 0.466 (human), but 
the standard deviations are generally as low as 0.030 in all 
tested species, i.e., the shiftability is species-dependent 
and is concentrated at a particular value for most genes 
in a specific species.

For example, the readthrough frameshift translations 
of zebrafish vegfaa look different from the wild type, but 
ClustalW aligns them well (Fig. 1B), the est. frame simi-
larities are 0.5233, 0.4922, and 0.4819, and the average is 
0.4991 (Table S1c); when these translations are aligned 
by FrameAlign (Fig.  1C-F), the est. frame similarities 
are 0.5238, 0.4921, and 0.4043, and the average is 0.4734 
(Table S1c). At first glance, these similarities seem sur-
prisingly high, so we must emphasize that this case was 
not cherry-picked but arbitrarily selected for visualiza-
tion. Furthermore, the frame similarities for all zebrafish 
coding genes average 0.4491, ranging from 0.3145 to 
0.6141 (Table 3 and S1b). In zebrafish, 1520 (10.74%) of 

the total 14,151 coding genes have an even higher shift-
ability than vegfaa. As shown in Table S1b, high frame 
similarities are not rare but pretty common either in 
zebrafish or any other species tested. The process for 
computing the frame similarities is demonstrated in 
Table S1c. One can easily reproduce similar results with 
many other real coding genes.

The genetic code was optimized for frameshift tolerance
As described in  Computational analysis of frameshift 
codon substitutions  section, the average amino acid 
substitution scores for random, interchangeable, and 
frameshift substitutions were computed. As shown in 
Table  4 and S2, of the 4096 possible random substitu-
tions, only a small proportion (230/4096 = 5.6%) are syn-
onymous, and the proportion of positive substitutions 
(with a positive substitution score) is 859/4096 = 20.1%. 
Interchangeable substitutions have the highest mean 
score because most (192/256 = 75%) interchangeable 
substitutions are synonymous, and at the same time, 
most (192/230 = 83%) synonymous substitutions are 
interchangeable. In contrast, only a small percentage 
(28/512 = 5.5%) of the frameshift substitutions are syn-
onymous (Table 4), while the remaining 94.5% are non-
synonymous. But 29.7% of frameshift substitutions are 
positive nonsynonymous, about 1.5-fold of that in ran-
dom (20.1%) and about 2-fold of that in interchangeable 
(15.6%). In summary, interchangeable substitutions are 
assigned mostly with synonymous AAs in the SGC, while 
frameshift substitutions are more frequently with posi-
tive nonsynonymous ones.

Besides, no matter which AA substitution scoring 
matrix is used, the average FSSs are always significantly 
higher than random substitutions. Using GON250, e.g., 
the average FSS (− 1.78) is significantly higher than 

Table 4  The amino acid substitution scores for different kinds of codon substitutions

SS/NSS Synonymous/nonsynonymous substitution, FF/RF Forward/reverse frameshift substitutions

Codon Substitution Random Frameshift Interchangeable

FF RF

Type of Codon Substitution

  All 4096 256 256 256

  Unchanged (%) 64 (1.6%) 4 (1.6%) 4 (1.6%) 64 (25%)

  Changed (%) 4032 (98.4%) 252 (98.4%) 252 (98.4%) 192 (75%)

  SS (%) 230 (5.6%) 14 (5.5%) 14 (5.5%) 192 (75%)

  NSS-Positive (%) 859 (20.1%) 76 (29.7%) 76 (29.7%) 40 (15.6%)

  NSS-Negative (%) 3007 (73.4%) 166 (64.8%) 166 (64.8%) 24 (9.4%)

Average Substitution Score

  BLOSSUM62 −1.29 −0.61 −0.65 3.77

  PAM250 −4.26 −0.84 −0.84 3.68

  GON250 −10.81 −1.78 −1.78 35.60
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the average RSS (− 10.81). As shown in Table S2, AAs 
assigned to frameshift substitutions are significantly 
more conservative than those to random substitutions. 
The P-values of the t-tests between the FSSs and the RSSs 
are 2.497 × 10− 10 (forward frameshifting vs. random sub-
stitutions) and 2.896 × 10− 9 (reverse frameshifting vs. 
random substitutions), respectively.

In the most common scoring matrices, such as BLOS-
SUM62, PAM250, and GON250, most scores are nega-
tive, and the percentage of positive scores is about 35%, 
i.e., in random codon substitutions, the percent of posi-
tive substitutions is about 35%, which is consistent with 
the observed mean random similarity, 0.383 (Table  3). 
However, as mentioned above, the mean frame similar-
ity of the real genes is significantly higher than the means 
of the random similarities or random frame similarities, 
implying that the shiftability of genes is determined at 
two different levels — the genetic code and the coding 
sequences.

The natural genetic code ranks at the top of all possible 
codon tables
To further investigate the frameshift optimality of the SGC, 
we compared it with two types of alternative codon tables:

(1)	 Random codon tables are produced by swapping 
the amino acids assigned to sense codons while 
keeping all degenerative codons synonymous [7]. 
From all possible (20! = 2.43290201 × 1018) ran-
dom codon tables, 100 independent samples, each 
with 1 million codon tables, were sampled using 
a simple random sampling algorithm. As shown 
in Fig. 2A and Table 5, when FSSs were calculated 
using PAM250, BLOSSUM62, and GON250 scor-
ing matrices, the sum FSS of the SGC ranks among 
the top 13.26, 1.98, and 2.94% in the samples, 
respectively. For all the 100 independent samples, 
the standard deviations of the means and the ranks 
of FSSs are as low as 0.03-0.15%, indicating that the 
sample size (1 million) is sufficiently large.

(2)	 Compatible codon tables are produced by permut-
ing the bases in the three different codon positions 
independently and preserving the AA assignment 
[8]. There are 4! (= 24) possible permutations of the 
four nucleotides for each codon position. All 243 
(= 13,824) compatible codon tables were produced, 
and their FSSs were computed (Table S3). Fig-
ure 2A and Table 5 show that the SGC ranks in the 
top 30.91% of the compatible genetic codes when 
their FSSs were computed using the PAM250 scor-
ing matrix but ranks in the top 3.48% when using 
BLOSSUM62 or GON250.

In either case, the ranks of the SGC computed using 
BLOSSUM62 and GON250 are highly consistent with 
each other, indicating that the SGC ranks in the top 2.0–
3.5% of all possible codon tables in terms of frameshift 
tolerability. Moreover, the t-tests p-values are close to 
zero in all six comparisons (Table S3), suggesting that the 
sum FSS of the SGC is significantly higher than the mean 
FSS of the random or compatible genetic codes (Fig. 2B). 
Itzkovitz and Alon [8] pointed out that, due to the wobble 
constraint for base pairing in the third position, only two 
permutations (the identity permutation and the A↔G 
permutation) are allowed in the third position. Thus, the 
genetic code has only 24 × 24 × 2 = 1152 distinct alter-
natives. Of these unique codes, only a dozen to a few 
dozen are superior to the natural genetic code regarding 
frameshift tolerance. Therefore, it is concluded that the 
SGC is nearly optimal in terms of frameshift tolerance.

The shiftability was further optimized at gene−/
genome‑level
As abovementioned, shiftability is species-dependent 
(Table  3). For some real genes, shiftability is exception-
ally high (Table S1b), such as E. coli ydaE (δ = 0.571) and 
the human glutenin gene (δ = 0.660). As shown in Table 6 
and S4, the mean FSS weighted by codon usages 
in E. coli, A. thaliana, and C. elegans are lower than 
expected (the mean FSSs of the equal usage of codons), 
showing that frameshift-resistant codons (FRCs) are not 
overrepresented in these genomes. The weighted mean 
FSSs are significantly higher than expected in humans, 
mice, Xenopus, and yeast, suggesting that FRCs are 
overrepresented in these genomes. In other words, the 
shiftability of certain genes or genomes can be adjusted 
through the biased usage of codons.

On the other hand, frameshifting involves adjacent 
codon pairs, so the usages of codon pairs are more likely 
to be related to the frameshift tolerance of genes. As 
shown in Table  7 and S5, the usages of codon pairs are 
also highly biased in all species tested. Surprisingly, of the 
4096 codon pairs, less than 41% (up to 1660) are overrep-
resented, while the remaining 59 + % (> 2400) codon pairs 
are underrepresented or even unused, suggesting that the 
synonymous codon pairs had undergone a strong selec-
tion pressure [39]. The weighted mean FSSs are signifi-
cantly lower than expected (the mean FSS of equal usage 
of codon pairs) in E. coli, C. elegans, and A. thaliana, 
showing that frameshift-resistant codon pairs (FRCPs) 
are not overrepresented in these genomes; in humans, 
mice, Xenopus, and yeast, however, the weighted mean 
FSSs are significantly higher than expected, indicating 
thatFRCPs are overrepresented in these species. In these 
higher species, genome-level shiftability is also higher 
than those in the lower species (Table  3), suggesting 
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that the shiftability is related to the usage of codons and 
codon pairs.

Discussion
The optimality of the genetic code and the shiftability 
of coding genes
Since the origin of life, the natural genetic code has 
existed and has been optimized by codon reassignments 

and competition with alternative codes [40]. The natural 
genetic code was optimized along with several proper-
ties during the early history of evolution [41]. It has been 
reported that the natural genetic code was optimized 
for the minimization of translational errors, which is 
explained by the selection to minimize the deleterious 
effects of translation errors [4]. Besides, it was suggested 
that only one in every million alternative genetic codes is 

Fig. 2  The distribution and the statistical analysis of the FSSs for the alternative genetic codes. A The frequencies of occurrence of the FSSs in 
the random codon tables and the compatible codon tables. B The means and standard deviations of the sum FSSs of different types of genetic 
codes. T-tests indicate that the sum FSS of the NGC is significantly higher than the mean FSS of the random or compatible genetic codes in all six 
comparisons (P ≈ 0) (Table S3). NGC: natural genetic code; FSSs were calculated using matrices PAM250, BLOSSUM62, and GON250. The probability 
densities were computed using a normal distribution function, and the diagrams were plotted in the language R
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more efficient than the SGC in minimizing the effects of 
point-mutations or translational errors [7]; Also, it was 
shown that the genetic code is nearly optimal for storing 
additional information within coding sequences, such as 
out-of-frame hidden stop codons (HSCs) [8].

During 2000-2014, only a few reports were published 
on the optimality of the genetic code [42–45]. Since we 
proposed the hypothesis that the natural genetic code 
was optimized for frameshift tolerance in 2015 [25], this 
topic has gained renewed attention, with over a dozen 
new reports emerging on the optimality of the genetic 
code [26, 46–57]. These results are generally more 
reliable, informative, and supportive of the early 
conclusions that the SGC was optimized regarding 
the robustness to the effects of point mutations or 
frameshift mutations. Particularly, using evolution-
ary algorithms, Wnętrzak, Błażej, and Mackiewicz 
proved that the SGC was optimized in both point and 
frameshift mutations [50–52].

A complete frameshift is usually a loss of function, while 
a functional frameshift is usually a partial frameshift. 
Shiftability does not guarantee that all frameshifts retain 
their wild-type function but have a higher probability of 
restoring normal structure and function when repairing 
a frameshift mutation [58]. Because of the shiftability, on 
average, near half of the amino acids remain conserved in 
a frameshift, regardless of whether it is a complete or a 

Table 5  The frameshift substitution scores of the natural and alternative genetic codes

Genetic codes (Number tested) Scoring Matrix FSS of the natural genetic code (NGC) FSS of the alternative genetic 
codes

FSS Score Rank Rank% STDEV STDEV% Average STDEV STDEV%

Random (1,000,000 × 100) PAM250 − 344 132,586.79 13.26% 1011.17 0.1011% − 504.88 0.54 −0.1073%

Blossum62 − 276 19,752.52 1.98% 295.17 0.0295% −450.53 0.27 −0.0598%

Gonnet250 −912 29,447.26 2.94% 398.72 0.0399% − 2872.95 4.16 −0.1447%

Compatible (13824) PAM250 −344 4273 30.91% – – −401.25 – –

Blossum62 −276 481 3.48% – – −436.75 – –

Gonnet250 −912 481 3.48% – – − 2736.13 – –

Table 6  The usage of codons and their weighted mean FSSs 
(Gon250)

No Species (Codon Usage) Weighted 
mean FSS

1 H. sapiens −9.82

2 M. musculus −13.47

3 X. tropicalis −12.75

4 D. rerio −20.58

5 D. melanogaster −19.43

6 C. elegans −23.38

7 A. thaliana −22.52

8 S. cerevisiae −14.08

9 E. coli −28.59

10 Equal usage −22.27

Table 7  The usage of codon pairs and their weighted mean FSSs (Gon250)

No species Number of codon pairs Weighted mean FSS

Over-represented Under-
represented

Absent Over-represented Under-
represented

All

1 H. sapiens 1573 2523 50 −1.52 −7.80 −3.06

2 M. musculus 1505 2591 190 −2.83 −7.13 − 3.81

3 X. tropicalis 1660 2436 148 −3.12 −6.98 −3.80

4 D. rerio 1493 2603 148 −4.87 −6.09 −5.18

5 D. melanogaster 1418 2678 140 −5.33 −5.86 −5.02

6 C. elegans 1469 2627 164 −6.47 −5.26 −6.11

7 A. thaliana 1566 2530 15 −6.30 −5.35 − 6.37

8 S. cerevisiae 1493 2603 159 −4.86 −6.14 −4.27

9 E. coli 1389 2707 197 −6.76 − 5.11 − 6.82

10 Equal Usage 0 0 0 N/A N/A −5.67
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partial frameshift and where the frameshifting starts and 
ends. It is conceivable that a genetic code with a greater 
shiftability had a better chance of winning the competi-
tion with its competitors in earlier evolutionary history. 
As mentioned above, on average, about 40 to 45% of the 
amino acids are kept conservative in a frameshift. This 
intriguing feature of the genetic code forms the basis 
of frameshift tolerance, which explains why functional 
frameshifts exist [17, 21, 59].

Moreover, if a frameshift is not removed by select-
ing against, it can be repaired by a reverse mutation or 
changed by point mutations [60]. Proteins have been 
evolving through point and frameshift mutations in their 
CDSs. The point mutation rate is extremely low, so that 
they alter the sequences, structures, and functions of pro-
teins at a slow rate. However, frameshift + point muta-
tions provide a far more effective means for fast-evolving 
protein sequences, allowing the emergence of novel (or 
overlapping) genes or protein domains. Undoubtedly, 
shiftability can play a vital role in the evolutionary pro-
cess in maintaining, repairing, and evolving proteins and 
their coding genes.

With billions of years of evolution, the canonical genetic 
code remains a fundamental outline that is highly con-
served across all three domains of life [61]. On the other 
hand, the natural genetic code results from the coevolu-
tion along with the ribosome complex [62]. It has been 
confirmed that codon reassignments to amino acids exist 
in the alternative genetic codes [63–65], suggesting that 
the genetic codes have undergone many rounds of optimi-
zation in the evolution history. The alternative codes are 
slightly different from the SGC; however, it remains to be 
clarified whether these minor changes significantly affect 
the shiftability of their coding genes and genomes.

The usage of codons and codon pairs
There have been quite some disputes on the cause and 
consequence of the usages of codons/codon pairs, such as 
gene expression level [66], mRNA structure [67], mRNA 
stability [68], and protein abundance [69]. Here we dem-
onstrated that the shiftability of a gene or a genome is 
adjusted through the usage of codons and codon pairs, 
e.g., the overall average shiftability for all protein-coding 
genes is significantly higher in humans (0.4660) than in 
fruit flies (0.4311) (Table  3). Meanwhile, the weighted 
average FSSs is also significantly higher in humans 
(− 3.06) than in fruit flies (− 5.02) (Table  7). Together, 
these data suggest that many genes in the human genome 
were optimized for frameshift tolerance and that the 
shiftability of coding genes could either be a cause or a 

consequence of a biased usage of codons or codon pairs. 
The more a frameshift resembles the wild type, the more 
likely it can restore a normal function when it encoun-
ters a frameshift mutation. Thus, overuse of frameshift-
resistant codons or codon pairs confers an evolutionary 
or survival advantage on a gene or genome. In other 
words, frameshift tolerance is achieved not only through 
the optimality of the genetic code but, more importantly, 
by further optimizing genes and genomes through biased 
usages of codons/codon pairs, which sheds light on the 
role of frameshift mutations in molecular and genomic 
evolution.

The statistics for measuring frameshift tolerability
We calculated frameshift substitution scores and 
showed that they are significantly higher than random 
substitution scores. Recently, Bartonek, Braun, and 
Zagrovic analyzed frameshift proteins using the amino 
acids’ physicochemical properties (PCPs) [26]. From 
a chemical point of view, PCPs are more suitable for 
analyzing frameshift tolerance with consideration of 
protein structures, while FSSs are more convenient for 
biological studies. Substitution scores are calculated 
from the probability that different amino acids were 
substituted by each other over time. Although the sub-
stitution scores are ultimately determined by the phys-
icochemical properties of the amino acids, their values 
also reflect the evolutionary relationships among the 
organisms of interest. As such, they are widely used 
in sequence analyses, such as calculating similarities, 
constructing alignments, and searching databases. 
Each family of scoring matrices has different members, 
such as PAM1, …, PAM100, and PAM250, represent-
ing substitution probabilities over different timescales. 
Different scoring matrix members are designed for dif-
ferent evolutionary distances, e.g., PAM1, …, PAM100 
are more suitable for aligning closely related protein 
sequences, while PAM250 is more suitable for remotely 
related sequences. Pearson [70] pointed out that “deep” 
scoring matrices (like BLOSUM62) target alignments 
with 20-30% identity, while “shallow” scoring matrices 
(e.g., VTML10), target alignments that share 50-90% 
identity, reflecting much less evolutionary change. The 
alignment of frameshifts is unique and special because 
a frameshift and its wild-type CDS are closely related, 
but their translations have a low identity and a moder-
ate similarity. Obviously, “deep” matrices are more suit-
able than “shallow” matrices for aligning and analyzing 
frameshifts. This study adopted three representative 
“deep” matrices to calculate FSSs. Since frame simi-
larities are quasi-constant, these scoring matrices were 
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used without considering divergence levels. However, 
it remains undetermined which scoring matrix fam-
ily (or a family member) is best suited for calculating 
frameshift tolerance, or whether a specialized scoring 
matrix is needed to analyze frameshift mutations.

The readthrough rules and their impact 
on the computation of similarity
This study incorporates computational frameshifting 
and readthrough into the analysis. It is important to note 
that such computational operations are conceptually dif-
ferent from biological frameshifting and translational 
readthrough. They do not require that they truly occur in 
an organism because these operations are used only for 
calculating similarities. So, in the present study, they are 
not taken as biological laws but computational methods 
borrowed from biology. However, the expected propor-
tion of hidden stop codons (HSCs) in the frameshifted 
CDS s is 3/64 = 4.69%, and the proportion of HSCs in real 
genes may even be higher than expected [9]. Therefore, 
the readthrough rules can significantly affect the frame 
similarity calculations. We have conducted a series of 
data analyses and found that the location and distribu-
tion of HSCs and the matching wild-type amino acids in 
real genes are not random, different from the simulated 
random CDSs.

Therefore, the differences between readthrough and 
non-readthrough translations are not negligible. All 
these data suggest that the readthrough rules are 
probably adapted to the genetic code and explain part of 
its optimality. As the presentation of these results 
depends on the present study, we will present these 
data in another article.

Conclusion
Based on the above analysis, we conclude that the genetic 
code, many genes and certain genomes were optimized 
for frameshift tolerance. Shiftability ensures high simi-
larities between frameshifts and their wild-type counter-
parts, endowing coding genes the inherent tolerability to 
frameshift mutations in either forward or reverse direc-
tion. Thanks to this unique property, the natural genetic 
code obtained excellent fitness better than its competi-
tors, thus winning the competition in the early evolution. 
The shiftability serves as an innate mechanism by which 
coding genes and genomes tolerate frameshift mutations, 
and thus, deleterious frameshift mutations could have 
been utilized as a driving force for molecular evolution. 
However, the impacts of frameshift tolerance on molec-
ular or genomic evolution remain to be characterized 
across the tree of life.
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The summary of the FSSs of the natural and alternative genetic codes 
(Table 5). (2) Comparing the FSSs of the standard genetic code to random 
or compatible alternative genetic codes. (3) The FSSs of the random 
genetic codes. (4) The FSSs of the compatible genetic codes (PAM250). (5) 
The FSSs of the compatible genetic codes (Blossum62). (6) The FSSs of the 
compatible genetic codes (GON250).

Additional file 4: Table S4. FSSs of different codon usages. (1) The sum-
mary of codon usages and their weighted mean FSSs (Table 6). (2) The 
codon usages and their weighted mean FSSs of humans. (3) The codon 
usages and their weighted mean FSSs of mouse. (4) The codon usages 
and their weighted mean FSSs of xenopus. (5) The codon usages and 
their weighted mean FSSs of zebrafish. (6) The codon usages and their 
weighted mean FSSs of fruit fly. (7) The codon usages and their weighted 
mean FSSs of nematode. (8) The codon usages and their weighted mean 
FSSs of Arabidopsis. (9) The codon usages and their weighted mean FSSs 
of yeast. (10) The codon usages and their weighted mean FSSs of E. coli. 
(11) The 64 triplet codons and their FSSs.

Additional file 5: Table S5. FSSs of different usages of codon pairs. (1) The 
summary of codon pair usages and their weighted mean FSSs (Table 7). 
(2) The codon pair usages and their weighted mean FSSs of humans. (3) 
The codon pair usages and their weighted mean FSSs of mouse. (4) The 
codon pair usages and their weighted mean FSSs of xenopus. (5) The 
codon pair usages and their weighted mean FSSs of zebrafish. (6) The 
codon pair usages and their weighted mean FSSs of fruit fly. (7) The codon 
pair usages and their weighted mean FSSs of nematode. (8) The codon 
pair usages and their weighted mean FSSs of Arabidopsis. (9) The codon 
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pair usages and their weighted mean FSSs of yeast. (10) The codon pair 
usages and their weighted mean FSSs of E. coli. (11) The equal codon pair 
usages and their weighted mean FSSs.
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