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Abstract 

Background: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely 
used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinfor-
matics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles.

Methods: We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed 
the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in 
silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST 
workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, 
comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-
based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the 
most impactful parameters on cgMLST precision.

Results: The isolate’s genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth 
of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference 
circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for 
all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 
allele differences.

Conclusions: This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust 
when paired-end reads are of high quality and when the sequencing depth is ≥40X.

Keywords: cgMLST, Comparability of workflows, Listeria monocytogenes, Principal component analysis, Generalized 
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Introduction
A key component of the surveillance of microbial patho-
gens is the recognition of closely related strains, so that 
clusters of infection cases can be identified, and further 
investigations (e.g., identification of the source of con-
tamination) and control measures taken [1]. Multi-locus 
sequence typing (MLST) was developed in 1998 and pro-
vided high reproducibility in the characterization of iso-
lates, enabling to identify the same clones within bacterial 
populations [2]. However, it lacks discrimination at the 
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strain level [3–5]. With the advances in whole genome 
sequencing (WGS) [6–9], core genome MLST (cgMLST) 
tools and schemes have been proposed for several bac-
terial pathogens, expanding the advantages of MLST at 
the genomic scale and providing a high level of bacterial 
strain discrimination. cgMLST relies on defining alleles 
for thousands of gene loci, translating sequence varia-
tion into numerical profiles, which are computationally 
easier and faster to handle and analyze, as compared with 
genome-based sequence alignments [10, 11].

Different commercial and open-source solutions 
have been proposed for cgMLST, differing in the type 
of input data (i.e. reads and/or assemblies), in the allele 
definition strategies (i.e. algorithms based on nucleotide 
alignments, protein-coding genes predictions, or kmer 
counting) and in settings used to generate cgMLST pro-
files [12–20]. Multi-center ring trials focusing on repro-
ducibility and comparability of cgMLST-based bacterial 
typing and clustering showed discrepancies due to non-
harmonized bioinformatic workflows that may affect 
the precision of WGS-based surveillance and outbreaks 
investigation [21, 83].

Distinct core genome-based MLST schemes have been 
proposed for high resolution typing of the foodborne 
pathogen Listeria monocytogenes, ranging from 1013 to 
1827 loci [12, 23–25], including an open-source reference 
cgMLST scheme of 1748 gene loci that is used worldwide 
[26, 28, 28, 30, 31, 31] and curated in the open-source 
Bacterial Isolate Genome Sequence database (BIGSdb) 
[26].

Several parameters such as genetic background of 
tested strains [32], successive platings [33, 38], replicates 
of DNA extraction and sequencing [35], targeted depth 
of coverage [24, 28, 36], estimated depth and breadth 
of coverage [13, 38, 42] and assembly quality [39], may 
impact alleles called, compromising cgMLST profiles 
reproducibility and the definition of outbreak clusters.

We therefore aimed to identify in  vitro and in sil-
ico  parameters impacting the precision of cgMLST 
profiles from six cgMLST complete workflows while 
assessing clustering concordance using the cut-off of 7 
alleles mismatches [24]. Our study represents a substan-
tial extension in terms of number of assessed allele callers 
and parameters of the study recently published by Lüth 
et al. (2021) [46].

Results
The experimental plan set-up for this study (Fig.  1A) 
allowed us to build an accurate dataset of paired-end 
reads controlling the depth of coverage (Fig. 1B-i), statis-
tically identify parameters explaining the cgMLST preci-
sion among a large set of in vitro and in silico parameters 
(Fig.  1B-ii), and illustrate graphically those parameters 

explaining the cgMLST precision (Fig.  1B-iii). Here, we 
focused on the precision (i.e. identical alleles against ref-
erence circular genomes (IAAR)) and completeness (i.e. 
identified alleles against schema (IAAS)) of cgMLST pro-
files, rather than accuracy, because allele differences were 
observed when comparing cgMLST profiles of reference 
circular genomes from compared cgMLST workflows 
(i.e. BIGSdb, INNUENDO, GENPAT, SeqSphere, BioNu-
merics and MentaLiST) (Fig. 2).

Benchmarking dataset of downsampled reads
Paired-end reads used for downsampling (n = 42) con-
tained enough reads (3.77 ± 0.71 ×  106) to prepare a data-
set of downsampled paired-end reads to process with 
the selected cgMLST workflows. This dataset presented 
the highest expected read depth of coverage (i.e. 100X), 
as well as high and stable average Phred quality scores 
(34.64 ± 0.07) and percentages of Phred quality scores 
higher than 30 (93.00 ± 1.29%). No single nucleotide 
variant (SNV) was detected during Confindr-based exog-
enous DNA contamination screening [41] in the dataset 
used for downsampling. Regardless of the targeted read 
depth of coverage (Dr) defined according to kmer depth 
(Dk) with BBNorm (ranging from 10X to 100X) [42], 
the breadth of coverage of the downsampled paired-end 
reads estimated with BBMap (n = 420) [42] was very 
high (> 99.3%) for each of the tested reference genomes 
(Table 1, Fig. 3A and Additional file 1). The accuracy of 
this downsampled reads was corroborated by the con-
cordance (i.e. linear dependencies with slopes close to 
one) observed between the read depth of coverage esti-
mated with BBMap [42] and INNUca [49]  (R2 > 99.7%; 
Pearson test: p < 2 ×  10− 16) for the three reference 
genomes of interest (Fig. 3B).

Principal component analysis
Principal component analyses (PCAs) were built accord-
ing to investigated categorical parameters, namely tested 
genomes (A) successive platings (B), replicates of DNA 
extraction (C) and sequencing (D), targeted depth (E) 
and cgMLST workflows (F) (Fig. 4 and Additional file 4). 
PCAs showed that the investigated in  vitro parameters 
(i.e. successive platings, DNA and sequencing replicates), 
did not impact the precision (i.e. IAAR) and complete-
ness (i.e. IAAS) of cgMLST profiles (Fig.  4B-Fig.  4D; 
Additional file  4B-Additional file  4D). In contrast, the 
tested reference genomes (Fig.  4A), targeted depth 
(Fig.  4E) and cgMLST workflows (Fig.  4F) may influ-
ence the precision and completeness of cgMLST pro-
files. More precisely, high targeted read (Dr) and kmer 
(Dk) depth (DrDk) were associated with high IAAR val-
ues (Fig.  4E), depth and breadth of coverage, as well as 
LA, N50 and NA50 for the assembly-based workflows 
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(Additional file  4E-Additional file  4F). Otherwise, low 
values of DrDk (Fig.  4E) were mainly associated with 
the workflows BioNumerics and MentaLiST (Fig.  4F; 
Additional file 4F). Low values of IAAS were associated 
with the reference genome ATCC19114 (Fig.  4A; Addi-
tional file 4A). Overall for assembly-based workflows, the 
decrease of cgMLST precision (i.e. IAAR) was associated 
with high values of MA, GC, TL1000 and TL10000 or 
high values of L50, LA50, C1000 and C10000 (Additional 
file 4).

Generalized linear model
Generalized linear models (GLMs) were performed 
including all cgMLST workflows (A) or focusing on 

BIGSdb (B), INNUENDO (C), GENPAT (D), SeqSphere 
(E) and BioNumerics (F) (Additional file 5). The assembly 
metrics were not linearly correlated to cgMLST precision 
through GLMs (p > 1.0 ×  10− 3) (Additional file  5). The 
GLM (Table 2) globally showed that IAAR (i.e. precision) 
was significantly explained by the workflow MentaLiST 
(p = 2.0 ×  10− 16), breadth (p = 5.3 ×  10− 12) and depth 
(p = 1.5 ×  10− 12) of coverage, tested reference genome 
ATCCBAA679 (p = 2.0 ×  10− 16), as well as amount of any 
base (N) per 100 kb (N100) (p = 2.0 ×  10− 16) and IAAS 
(i.e. completeness) (p = 3.7 ×  10− 6) for assembly-based 
cgMLST workflows (Additional file 5A). Looking at these 
workflows individually, the GLMs showed that IAAR 
was significantly explained by N100 (p = 2.0 ×  10− 16) 

Fig. 1 Experimental plan (A) and data analyses (B) aiming at controlling a dataset of downsampled paired-end reads (i: n = 420 paired-end reads), 
as well as identifying statistically (ii) and confirming significant parameters (iii) explaining the Listeria monocytogenes cgMLST precision (identical 
alleles against circular reference genomes: n = 2520 cgMLST typing) among in vitro (i.e. tested reference genomes, successive platings, as well as 
replicates of DNA extraction and sequencing) and in silico (i.e. targeted depth of coverage, read depth and breadth of coverage, assembly metrics, 
cgMLST workflows, identified alleles against schema) parameters (n = 57 parameters of interest)
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Fig. 2 Edward’s Venn diagrams representing the identical alleles between the cgMLST workflows BIGSdb, INNUENDO, GENPAT, SeqSphere, 
BioNumerics and MentaLiST for the Listeria monocytogenes reference circular genomes ATCC19114 (A), ATCC19115 (B) and ATCCBAA679 (C)
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for BioNumerics (Additional file  5F), while poorly cor-
related linearly with the other parameters for BIGSdb 
(Additional file  5B: p > 9.1 ×  10− 1), INNUENDO (Addi-
tional file  5C: p > 9.8 ×  10− 1), GENPAT (Additional 
file 5D: p > 9.4 ×  10− 1) and SeqSphere (Additional file 5E: 
p > 9.3 ×  10− 1).

Graphically confirmations
The graphical representation in four-way figures were 
built including IAAS (A, B, C, D) or IAAR at extended (E, 
F, G, H) or restricted (I, J, K, L) scales, according to refer-
ence genomes (A, E, I), successive platings (B, F, J), DNA 
extraction replicate (C, G, K) and sequencing replicate 
(C, H, L) (Additional file 6). These four-way figures clearly 
showed that IAAS (i.e. completeness) were impacted 
by tested reference genomes and cgMLST workflows 
(Additional file 6A) but not by in vitro parameters (Addi-
tional file  6B-Additional file  6D). In fact, BioNumer-
ics profiles showed the higher number of unidentified 
alleles (38 over 1748 loci) for ATCC19114 compared to 
the other workflows (5 over 1748) (Additional file 7). For 
ATCC19115 and ATCCBAA679, INNUENDO and GEN-
PAT showed 3 unidentified alleles over 1748 loci (Addi-
tional file 7), while the other workflows identified all the 
loci of the schema. IAAR (i.e. precision) is impacted by 
DrDk, cgMLST workflows and tested reference genomes 

(Fig. 5). More precisely, IAAR of BioNumerics and Men-
taLiST sharply dropped down at depth of coverage of 
~30X (up to 1686) and ~ 40X (up to 1614), respectively. 
While INNUENDO showed almost 100% of identi-
cal allele calls at ≥30X (as it filters out reads at ≤25X), 
BIGSdb, GENPAT and SeqSphere called almost 100% 
of IAAR at lower depth of coverage (≥20X) (Fig.  5). At 
this depth of coverage (~ 20X) the number of misiden-
tified alleles against reference (MIAAR) of BioNumerics 
and MentaLiST was remarkably higher (i.e. > 7) com-
pared to BIGSdb, GENPAT and SeqSphere that showed 
similar  misidentified alleles against reference  (MIAAR) 
only at ~10X coverage (Fig. 6). As reported in Table 3, all 
workflows reached ~ 100% precision at ≥40X depth of 
coverage excepted BioNumerics with ~ 98%.

Clustering of cgMLST profiles
Minimum spanning tree (MST)-based clustering 
showed that the minimum depth of coverage of 40X 
consistently grouped the cgMLST profiles from each 
reference genomes into clusters with up to 7 pairwise 
allele differences (Fig.  7A-Fig.  7F). Below 40X, clus-
ter discrepancies were identified for each cgMLST 
workflows (Additional  file  8A-Additional  file  8F). The 
major increase of pairwise allele differences accord-
ing to decreasing of targeted depth was observed with 

Table 1 Mean and standard deviation of read depth of coverage estimated from BBMap (version February 13, 2020) or INNUca 
(version 4.2.2) with constant high read breadth of coverage (99.34 ± 0.07%) according to targeted read (Dr) and kmer (Dk) depth 
(X) from BBNorm downsampling (read length R = 150 and kmer size K = 30) of Listeria monocytogenes paired-end reads from tested 
reference genomes ATCC19114, ATCC19115 and ATCCBAA679 (n = 420)

Targeted depth of 
coverage

ATCC19114 ATCC19115 ATCCBAA679

BBMap INNUca BBMap INNUca BBMap INNUca

Dr100-Dk75 101.6 ± 1.6 98.2 ± 1.5 101.9 ± 1.4 96.2 ± 1.8 101.0 ± 2.1 97.6 ± 2.6

Dr90-Dk68 91.9 ± 1.5 89.3 ± 1.7 92.3 ± 1.4 87.2 ± 2.3 92.0 ± 1.3 89.2 ± 2.1

Dr80-Dk60 80.9 ± 1.3 78.7 ± 1.8 81.3 ± 1.2 78.3 ± 1.7 81.4 ± 1.1 79.9 ± 2.2

Dr70-Dk53 71.4 ± 1.1 69.5 ± 2.0 71.7 ± 1.1 67.8 ± 1.6 72.0 ± 1.3 70.4 ± 1.7

Dr60-Dk45 60.5 ± 0.9 58.7 ± 2.0 60.7 ± 0.9 58.1 ± 1.5 61.1 ± 1.2 59.3 ± 2.2

Dr50-Dk38 50.9 ± 0.8 49.5 ± 1.2 51.1 ± 0.8 48.6 ± 1.6 51.5 ± 1.1 49.9 ± 2.0

Dr40-Dk31 41.3 ± 0.6 40.1 ± 1.0 41.5 ± 0.6 38.7 ± 1.3 41.9 ± 0.9 41.3 ± 1.7

Dr30-Dk23 30.7 ± 0.4 29.9 ± 1.6 30.8 ± 0.4 29.5 ± 1.1 31.1 ± 0.6 29.8 ± 1.1

Dr20-Dk16 21.5 ± 0.2 20.9 ± 0.9 21.5 ± 0.2 20.7 ± 0.9 21.7 ± 0.4 21.8 ± 0.8

Dr10-Dk8 10.9 ± 0.1 11.3 ± 0.1 10.9 ± 0.1 11.2 ± 0.1 11.0 ± 0.2 11.2 ± 0.2

Fig. 3 Boxplot-based distributions of targeted read (Dr) and kmer (Dk) depth (X) from BBNorm downsampling (read length R = 150 and kmer 
size K = 30) of Listeria monocytogenes paired-end reads from reference genomes ATCC19114, ATCC19115 and ATCCBAA679 (n = 420) according 
to estimated read depth (X) from BBMap (version February 13, 2020) or INNUca (version 4.2.2) with constant high read breadth of coverage 
(99.34 ± 0.07%) (A) and linear correlations between read depth of downsampled paired-end reads (n = 420) estimated with BBMap or INNUca for 
each reference genome (B)

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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MentaLiST (Additional  file  8F), and to a lesser extent 
with BIGSdb (Additional  file  8A), INNUENDO (Addi-
tional file 8B), GENPAT (Additional file 8C), SeqSphere 
(Additional file 8D) and BioNumerics (Additional file 8E). 
The effect of downsampling on MST-clustering was 
observed at 10X depth of coverage for all workflows 
(Additional file 8A-Additional file 8F) excepted MentaL-
iST that poorly clustered profiles from reads downsam-
pled at ≤40X.

Discussion
Internationally accepted validation of cgMLST typing 
workflows contributes to enhance routine surveillance 
of bacterial pathogens [21] by promoting the application 
of standards and benchmarking data sets [17]. Here, we 
focused on cgMLST precision and completeness between 
workflows rather than overall accuracy as the latter 
would refer to the ability to call the “right” alleles based 
on commonly assumed reference alleles. The comparison 
between different cgMLST workflows based on accu-
racy is hampered by the absence of a common strategy 
for definition of alleles, due to cgMLST approaches (i.e. 
assembly-based [12, 14–17] or -free [13, 18, 19], or com-
bination of both [20]), as well as implemented algorith-
mic steps and related parameters (e.g. BLAST-based or 
-free algorithms, BLASTN or BLASTP, detection of open 
reading frames (ORFs) before BLAST step, coverage and 
identity of aligned sequences [12–20]).

Allele differences between cgMLST workflows
In the present study, we did not assess the cgMLST pre-
cision with schemes presenting missing alleles because 
it would have decreased the completeness and preci-
sion of all cgMLST workflows, while minimizing differ-
ences of completeness and precision observed between 
these workflows. The allele differences observed between 
cgMLST workflows (Fig.  2) are induced by algorithmic 
differences of the definition of alleles and reflect the 
impossibility of direct comparisons of cgMLST profiles 
generated by different workflows (i.e. accuracy), delay-
ing the multi-centers surveillance of strain variants. In 
the present study, the cgMLST allele calling of six work-
flows was assessed, using the 1748-loci L. monocytogenes 
schema [24]. All workflows successfully detected ~ 100% 
loci of the schema in the reference circular genomes 
with up to ~ 95% of common alleles showing exact match 
with alleles from the schema (Fig.  2). Overall, the main 

differences resulting from different profiles were either 
alleles uniquely found in a workflow, up to ~ 2% for Seq-
Sphere or BioNumerics, or due to a different allele call-
ing strategy, up to ~ 5% for INNUENDO and GENPAT 
(i.e. chewBBACA allele caller) (Fig.  2). While BIGSdb 
found an exact match in the reference schema for each 
allele as expected (because the schema was built based on 
this workflow), other cgMLST workflows (e.g. MentaL-
iST, INNUENDO and GENPAT) inferred new alleles (not 
presented in the reference schema) based on the imple-
mented algorithms. These divergences hamper the com-
parison of profiles generated using different workflows, 
even when using a common scheme aiming at supporting 
interoperability of genomic data [44].

In vitro parameters and cgMLST precision
Our overall results showed that in vitro parameters such 
as successive platings, replicates of DNA extraction and 
sequencing did not impact cgMLST precision, demon-
strating that these wet-lab steps are very reproducible 
(p > 1.0 ×  10− 3). Indeed, the improvements during several 
years of documentation, validation, quality check and 
quality monitoring of wet-lab steps, from growth of iso-
lates to sequencing through DNA extraction and library 
preparation, allowed to obtain nowadays a stable and 
repeatable wet-lab process [45].

In silico parameters and cgMLST precision
In contrast to the absence of effect from wet-lab param-
eters, the depth and breadth of coverages, as well as 
cgMLST workflows, tested reference strains and com-
pleteness (i.e. IAAS), were the main factors explaining 
cgMLST precision (i.e. IAAR), based on PCAs, GLMs 
and graphical confirmations. Indeed, the incapabil-
ity to call alleles against schema (i.e. IAAS) impacts 
directly the number of identical alleles against refer-
ence genomes (i.e. IAAR), and consequently cgMLST 
precision (IAAR linearly correlated with IAAS; 
p = 3.7 ×  10− 6). This underlines the necessity to keep 
cgMLST schemes regularly updated through synchro-
nized systems (e.g. BIGSdb-Lm [24, 46] and chewieNS 
[47]). Recently proposed Hash-based nomenclature 
servers may circumvent the need of schema synchro-
nization, and likely facilitate interlaboratories data 
comparability and sharing when confidentiality con-
cerns apply (chewieSnake [48]). In terms of precision, 
we would expect chewieSnake having the same outputs 

(See figure on next page.)
Fig. 4 Principals component analyses (PCAs) of the numerical parameters IAAR, IAAS, DEPTH and BREADTH (defined in the section abbreviations) 
according to the categorical parameters “reference genome” (A), “successive platings” (B), “DNA extraction replicate” (C), “sequencing replicate” (D), 
“targeted depth” (E), “ cgMLST workflows” (F) including BIGSdb (n = 420), INNUENDO (n = 336), GENPAT (n = 420), SeqSphere (n = 420), BioNumerics 
(n = 420) and MentaLiST (n = 420) applied to downsampled paired-end reads from 3 reference genomes of Listeria monocytogenes (i.e. ATCC19114, 
ATCC19115 and ATCCBAA679). The PCA outcomes from the workflows BIGSdb and SeqSphere are overlapped
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Fig. 4 (See legend on previous page.)
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than the workflow chewBBACA as both allele callers 
are based on the chewBBACA suite. However, such 
decentralized and nomenclature-free approach requires 
further developments to be integrated in global surveil-
lance systems where common language and genotypes 
naming are essential. Indeed, when using the reference 
threshold of 7 pairwise allele differences, commonly 
used for WGS-based surveillance of L. monocytogenes 
to define clusters of isolates likely sharing an epidemi-
ological link, the negative effect of incomparable pro-
files from different workflows became negligible, with 
all workflows leading to the same clusters when read 
depth of coverage was ≥40X (Fig.  7 and Additional 
file  8). These findings are consistent with previous 
studies on viruses [49] and bacteria [50], that did not 
observe improvement of the breadth of coverage above 

specific values of depth of coverage. Few studies recom-
mended minimal depth of coverage for precise cgMLST 
typing of L. monocytogenes (40X with BIGSdb) [24, 
28, 36], Yersinia (50X with BIGSdb) [42], Mycoplasma 
(47X with SeqSphere) [38], Campylobacter, Chla-
mydia, Neisseria and Streptococcus (20X with STing) 
[13]. For the first time in the present study, we recom-
mend 40X as a suitable read depth of coverage for the 
highest cgMLST precision across 6 different assembly-
based and -free workflows. This recommendation of 
minimal depth of coverage for precise cgMLST typing 
has been defined based on Illumina short reads (i.e. 
NextSeq) sequencing. Other short reads (IonTorrent) 
and long reads (PacBio SMRT and Oxford Nanopore) 
sequencing technologies may require higher depth of 
coverage than Illumina to reach similar quality of base 

Table 2 Coefficients (Coef.) of the generalized linear model (GLMs with quasi Poisson distribution and with overdispersion) 
comparing the parameters “identical alleles against circular reference genomes” (IAAR) with the parameters of interest “tested reference 
genomes” (REFERENCE), “successive platings” (PLATING) (B), “DNA extraction replicate” (DNA), “sequencing replicate” (SEQUENCING), 
read depth (DEPTH), read breadth (BREADTH), identified alleles against schema (IAAS) and cgMLST workflows (WORKFLOW) including 
BIGSdb (n = 420), INNUENDO (n = 336), GENPAT (n = 420), SeqSphere (n = 420), BioNumerics (n = 420) and MentaLiST (n = 420) applied 
to downsampled paired-end reads from 3 tested reference genomes of Listeria monocytogenes (i.e. ATCC19114, ATCC19115 and 
ATCCBAA679). Few parameters are not defined because of singularities

Parameters Coef. estimate Coef. standard error Coef. t value Coef. P-value(>|t|)

WORKFLOW: MentaLiST -1.9E-01 1.1E-02 -1.7E+ 01 2.0E-16

BREADTH 5.6E-01 8.1E-02 6.9E+ 00 5.3E-12

DEPTH 8.1E-04 1.9E-04 4.3E+ 00 1.5E-05

REFERENCE: ATCCBAA679 −3.8E-02 1.1E-02 −3.6E+ 00 3.5E-04

SEQUENCING: NextSeq_B −2.3E-02 7.0E-03 −3.2E+ 00 1.3E-03

REFERENCE: ATCC19115 −3.0E-02 1.0E-02 −3.0E+ 00 2.9E-03

WORKFLOW: BioNumerics −2.9E-02 1.2E-02 −2.4E+ 00 1.7E-02

PLATING: tenth_culture −2.4E-02 1.1E-02 −2.1E+ 00 3.3E-02

WORKFLOW: INNUENDO −2.0E-02 1.1E-02 −1.8E+ 00 7.5E-02

PLATING: fifth_culture −1.8E-02 1.1E-02 −1.6E+ 00 1.1E-01

IAAS 6.3E-04 5.1E-04 1.2E+ 00 2.2E-01

DNA: extraction_A −7.4E-03 8.4E-03 −8.9E-01 3.7E-01

DNA: extraction_B −4.5E-03 8.3E-03 −5.4E-01 5.9E-01

WORKFLOW: GENPAT 1.7E-04 1.1E-02 1.6E-02 9.9E-01

WORKFLOW: SeqSphere 4.5E-05 1.1E-02 4.3E-03 1.0E+ 00

Model Intercept −4.9E+ 01 8.1E+ 00 − 6.1E+ 00 1.1E-09

Fig. 5 Box-plots representing the impact of downsampled paired-end reads (i.e. 2x150bp) of Listeria monocytogenes on identical alleles against 
reference at extended (A) or restricted (B) scales, according to reference genomes (i.e. ATCC19114, ATCC19115 and ATCCBAA679) and cgMLST 
workflows including BIGSdb (n = 420), INNUENDO (n = 336), GENPAT (n = 420), SeqSphere (n = 420), BioNumerics (n = 420) and MentaLiST (n = 420). 
The targeted read depth (Dr: 10X, 20X, 30X, 40X, 50X, 60X, 70X, 80X, 90X and 100X) were prepared according to kmer depth (Dk): 8X, 15X, 23X, 
30X, 38X, 45X, 52X, 60X, 67X, 75X) setting of BBNorm (read length R = 150 and kmer size K = 30). Because of internal firewall, the INNUca assembler 
integrated into the cgMLST workflow INNUENDO cannot not perform assemblies of paired-end reads with read depth of coverage of 20X (n = 42) 
and 10X (n = 42)

(See figure on next page.)
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calling, independently of GC-content and repeated 
region biases which are inherent in sequencing tech-
nologies based on short reads [51–53].

Performances of assembly-based and -free cgMLST 
workflows
Among the 6 compared cgMLST workflows, BIGSdb, 
INNUENDO, GENPAT and SeqSphere did not show 
obvious effect of depth of coverage on precision con-
trary to BioNumerics and MentaLiST (Table  3). In par-
ticular, BIGSdb and SeqSphere performed well also at 
very low coverage values. This is probably due to refine-
ment steps of assembly pipelines used for the workflow 
BIGSdb (i.e. fq2dna) and SeqSphere (i.e. average qual-
ity > 30 with a window of 20 bases), as well as similar 
allele definitions between BIGSdb and SeqSphere (i.e. 
BLASTN; nucleotide identity > 70%; coverage > 70%). 
In contrast, BioNumerics and MentaLiST were poorly 
precise for depth of coverage ≤30X and 40X (Fig.  6B) 
according to PCAs (Fig.  4) and GLMs (Table  2). Dif-
ferences of precision between the cgMLST workflows 
are consequently induced by their respective de novo 
assemblers and/or allele callers. Even though MentaLiST 
requires more reads to achieve adequate precision com-
pared to the assembly-based workflows, its precision is 
slightly impacted by tested reference genomes for high 
read depth of coverage (i.e. ≤ 30X and 40X) (Fig.  6B). 
This result highlights that MentaLiST precision is overall 
less impacted by in  vitro and in silico parameters com-
pared to assembly-based workflows, whose precision 
also depend on de novo assembly. Further comparisons 
with other assembly-free cgMLST workflows would con-
firm the supposed absence of strain effect on precision 
observed with MentaLiST [54]. However, MentaLiST 
outperformed other workflows in terms of percentage of 
correct allele predictions for cgMLST in a recent bench-
marking of different assembly-free approaches [13]. Here 
we observed that both assembly-free and -based cgMLST 
workflows reach ~ 100% of identical allele predicted in 
the processed reads with coverage ≥40X compared to 
reference circular genomes.

Performances of assembly-based cgMLST workflows
The decrease of cgMLST precision from assembly-based 
workflows may reflect the fragmentation of de novo 

assembly potentially induced by the GC bias [55] and/
or and repetitive regions [56] (Additional file 4). This was 
particularly evident for BioNumerics workflow where the 
decreasing of cgMLST precision (i.e. IAAR) was linearly 
correlated with high amount of N100 through GLMs 
(p = 2.0 ×  10− 16). This is probably induced by the absence 
of assembly refinement steps and/or an old version of 
SPAdes implemented in BioNumerics, in comparison 
with the other workflows (Table 4) [57]. In this study, no 
linear correlations between cgMLST precision and GC%, 
or cgMLST precision and duplication ratio were identi-
fied. Nevertheless, significant differences were observed 
(Wilcoxon rank sum tests: p < 2.2 ×  10− 16) between GC% 
of references genomes draft assemblies (38.081 ± 0.007% 
for ATCC19114, 37.879 ± 0.006% for ATCC19115 and 
37.865 ± 0.006% for ATCCBAA679), while duplication 
ratios were not significantly different (Wilcoxon rank sum 
tests: p > 1.5 ×  10− 2) between these references genomes 
draft assemblies (1.0001 ± 0.0003 for ATCC19114, 
1.00018 ± 0.0003 for ATCC19115 and 1.0000 ± 0.0008 for 
ATCCBAA679). Other statistical approaches would be 
necessary to test non-linear correlations [63, 64] between 
cgMLST precision and assembly metrics.

Future analytical prospects
The analytical approach (Fig. 1) here applied to L. mono-
cytogenes can be easily fine-tuned for the analysis other 
bacterial species and taxa, assuming that a species-spe-
cific cgMLST scheme is established.

In the present study, the read depth of coverage was 
identified as one of the most impactful parameters on 
cgMLST precision. We thus proposed a minimal read 
depth of coverage of 40X for precise cgMLST typing and 
consistent MST clustering. We did not assess an upper 
limit of read depth but we showed that increasing the 
sequencing depth up to 100X did not effectively improve 
cgMLST precision. Sequencing at very high depth of 
coverage may promote errors on the assembly graph 
and confuse error correction algorithms, in addition to 
increase the computational burden [65]. Further stud-
ies may be needed to assess precision at higher coverage, 
yet 100X is enough high for L. monocytogenes cgMLST 
typing. Indeed, bacterial genomes sequences deposited 
in public databases (e.g. RefSeq, independently of the 
considered assembly surveillance project) are mostly 

(See figure on next page.)
Fig. 6 Box-plots representing the impact of downsampled paired-end reads (i.e. 2x150bp) of Listeria monocytogenes on misidentified alleles against 
reference at extended (A) or restricted (B) scales, according to reference genomes (i.e. ATCC19114, ATCC19115 and ATCCBAA679) and cgMLST 
workflows including BIGSdb (n = 420), INNUENDO (n = 336), GENPAT (n = 420), SeqSphere (n = 420), BioNumerics (n = 420) and MentaLiST (n = 420). 
The targeted read depth (Dr: 10X, 20X, 30X, 40X, 50X, 60X, 70X, 80X, 90X and 100X) were prepared according to kmer depth (Dk): 8X, 15X, 23X, 
30X, 38X, 45X, 52X, 60X, 67X, 75X) setting of BBNorm (read length R = 150 and kmer size K = 30). Because of internal firewall, the INNUca assembler 
integrated into the cgMLST workflow INNUENDO cannot not perform assemblies of paired-end reads with read depth of coverage of 20X (n = 42) 
and 10X (n = 42)
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generated at ≤100X sequencing depth (range: 30-150X) 
[66].

Our main goal here was to provide guidance concern-
ing the “standalone” solutions that can be adopted today 
for assembly and allele calling following developers’ 

recommendations. Our results suggests that the assembly 
pipelines may impact the cgMLST precision to a greater 
extent than the allele calling pipelines. This hypothesis 
should be further confirmed assessing the impact of allele 
callers on cgMLST precision pipeline. However, results 

Table 3 cgMLST precision (i.e mean percentage ± standard deviation) of the workflows BIGSdb (n = 420), INNUENDO (n = 336), 
GENPAT (n = 420), SeqSphere (n = 420), BioNumerics (n = 420) and MentaLiST (n = 420) according to targeted read (Dr) and kmer 
(Dk) depth (X) from BBNorm downsampling (read length R = 150 and kmer size K = 30) of Listeria monocytogenes paired-end reads 
from reference genomes ATCC19114, ATCC19115 and ATCCBAA679. The cgMLST schema harbors 1748 loci. NA means not applicable: 
Because of internal firewall, the INNUca assembler integrated into the cgMLST workflow INNUENDO cannot not perform assemblies of 
paired-end reads with read depth of coverage of 20X (n = 42) and 10X (n = 42)

Reference Targeted depth of 
coverage

BIGSdb INNUENDO GENPAT SeqSphere BioNumerics MentaLiST

ATCC19114 Dr100-Dk75 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 97.79 ± 0.04 99.71 ± 0.02

Dr90-Dk68 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 97.80 ± 0.03 99.71 ± 0.02

Dr80-Dk60 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 97.80 ± 0.04 99.71 ± 0.02

Dr70-Dk53 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 97.80 ± 0.03 99.71 ± 0.02

Dr60-Dk45 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 97.80 ± 0.04 99.71 ± 0.02

Dr50-Dk38 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 97.79 ± 0.06 99.70 ± 0.02

Dr40-Dk31 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 97.78 ± 0.06 99.54 ± 0.12

Dr30-Dk23 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 99.71 ± 0.02 97.69 ± 0.10 93.77 ± 0.82

Dr20-Dk16 99.71 ± 0.02 NA 99.71 ± 0.02 99.71 ± 0.02 96.87 ± 0.22 36.67 ± 1.70

Dr10-Dk8 99.44 ± 0.13 NA 99.51 ± 0.02 99.51 ± 0.09 69.63 ± 2.34 0.07 ± 0.07

ATCC19115 Dr100-Dk75 100 ± 0.00 99.83 ± 0.00 99.83 ± 0.00 100 ± 0.00 99.99 ± 0.02 100 ± 0.00

Dr90-Dk68 100 ± 0.00 99.83 ± 0.00 99.83 ± 0.00 100 ± 0.00 99.99 ± 0.03 100 ± 0.00

Dr80-Dk60 100 ± 0.00 99.83 ± 0.00 99.83 ± 0.00 100 ± 0.00 99.99 ± 0.03 100 ± 0.00

Dr70-Dk53 100 ± 0.00 99.83 ± 0.00 99.83 ± 0.00 100 ± 0.00 100 ± 0.02 100 ± 0.00

Dr60-Dk45 100 ± 0.00 99.83 ± 0.00 99.83 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.02

Dr50-Dk38 100 ± 0.00 99.83 ± 0.00 99.83 ± 0.00 100 ± 0.00 99.99 ± 0.02 100 ± 0.02

Dr40-Dk31 100 ± 0.00 99.83 ± 0.00 99.83 ± 0.00 100 ± 0.00 99.99 ± 0.03 99.85 ± 0.11

Dr30-Dk23 100 ± 0.00 99.83 ± 0.00 99.83 ± 0.00 100 ± 0.00 99.91 ± 0.09 93.76 ± 0.84

Dr20-Dk16 100 ± 0.00 NA 99.83 ± 0.00 100 ± 0.00 99.15 ± 0.26 37.04 ± 2.01

Dr10-Dk8 99.77 ± 0.14 NA 99.64 ± 0.11 99.78 ± 0.13 72.41 ± 1.40 0.09 ± 0.05

ATCCBAA679 Dr100-Dk75 100 ± 0.02 99.82 ± 0.02 99.82 ± 0.02 100 ± 0.02 99.98 ± 0.04 99.96 ± 0.03

Dr90-Dk68 100 ± 0.02 99.82 ± 0.02 99.82 ± 0.02 100 ± 0.02 99.99 ± 0.02 99.95 ± 0.03

Dr80-Dk60 100 ± 0.02 99.82 ± 0.02 99.82 ± 0.02 100 ± 0.02 99.98 ± 0.04 99.95 ± 0.02

Dr70-Dk53 100 ± 0.02 99.82 ± 0.02 99.82 ± 0.02 100 ± 0.02 99.97 ± 0.04 99.94 ± 0.03

Dr60-Dk45 100 ± 0.02 99.82 ± 0.02 99.82 ± 0.02 99.99 ± 0.02 99.97 ± 0.03 99.95 ± 0.03

Dr50-Dk38 100 ± 0.02 99.82 ± 0.02 99.82 ± 0.02 100 ± 0.02 99.97 ± 0.04 99.94 ± 0.04

Dr40-Dk31 100 ± 0.02 99.82 ± 0.02 99.82 ± 0.02 100 ± 0.02 99.98 ± 0.04 99.81 ± 0.08

Dr30-Dk23 100 ± 0.02 99.82 ± 0.02 99.82 ± 0.02 100 ± 0.02 99.92 ± 0.05 94.19 ± 1.02

Dr20-Dk16 100 ± 0.02 NA 99.82 ± 0.02 100 ± 0.02 99.09 ± 0.25 37.18 ± 1.77

Dr10-Dk8 99.69 ± 0.14 NA 99.56 ± 0.10 99.75 ± 0.10 72.49 ± 2.33 0.13 ± 0.06

Fig. 7 Minimum spanning trees (MSTs) representing the impact on clustering of cgMLST workflows BIGSdb (A: n = 339), INNUENDO (B: n = 339), 
GENPAT (C: n = 339), SeqSphere (D: n = 339), BioNumerics (E: n = 339) and MentaLiST (F: n = 339), of Listeria monocytogenes reference genomes (i.e. 
ATCC19114, ATCC19115 and ATCCBAA679) and targeted depth of coverage (Dr: 30X, 40X, 50X, 60X, 70X, 80X, 90X and 100X) prepared according to 
kmer depth (Dk): 8X, 15X, 23X, 30X, 38X, 45X, 52X, 60X, 67X, 75X) setting of BBNorm (read length R = 150 and kmer size K = 30) from downsampled 
paired-end reads (i.e. 2x150bp). The MSTs were built with BioNumerics ignoring missing data. The MST clusters of at least two genomes, one node 
and allele differences ≤7, were highlighted in grey

(See figure on next page.)
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from Lüth et  al. (2021) showed a ~ 100% correlation 
between matrices of cgMLST profile distances providing 
identical L. monocytogenes assemblies to different allele 
callers (e.g. Ridom SeqSphere versus chewBBACA) [46].

To foster interoperability between the tested cgMLST 
solutions, the impact of different allele calling settings 
on cgMLST precision and nonidentical calls (i.e. miss-
ing data, partial alleles and new alleles) should also be 
investigated. In view of the main differences between the 
cgMLST allele calling algorithms, such studies should 
assess settings, such as BLASTN nucleotide identity, 
BLAST coverage, word size (i.e. BIGSdb, SeqSphere, 
BioNumerics), allele size threshold, minimum BLASTP 
score ratio (i.e. chewBBACA implemented in GENPAT 
and INNUENDO), mutation threshold and kmer thresh-
old (i.e. MentaLiST).

The definition of new alleles is not centralized between 
allele calling pipelines. This inevitably leads to a drift of 
allele identifiers in the scheme adopted by each system 
and consequently hinders profiles’ comparability and 
communication on L. monocytogenes genotypes across 
laboratories. A common effort of developers, curators 
and users of such cgMLST systems will allow the imple-
mentation of novel functionalities (e.g. application pro-
gramming interfaces, nomenclature mapping) to ensure 
that an universal language is adopted by the scientific 
community.

Conclusion
cgMLST precision was mainly impacted by the tested 
reference strains, cgMLST workflows, cgMLST com-
pleteness, as well as depth and breadth of coverage. 
Successive platings, DNA extraction and sequencing 
replicates did not show an impact on cgMLST precision. 
Overall loci detection was > 99% for assembly-free and 

assembly-based workflows and had no impact on cluster 
definitions, for read depth of coverage ≥40X. This study 
highlights the importance of high sequencing depth to 
ensure reproducibility of profiles in genomic surveillance 
and outbreak investigations.

Material and methods
After a review about the cgMLST principles and 
approaches, the experimental plan, cgMLST workflows 
of interest, statistical analyses and confirmations of rel-
evant parameters are presented successively.

Review about cgMLST principles and approaches
The MLST method aims at assigning arbitrary numbers 
to each allele of a small set of DNA fragments from dif-
ferent loci (typically < 10 gene fragments with ~ 500 bp) 
presenting up- and downstream conserved sites for 
hybridization of forward and reverse oligonucleotides 
during PCR amplifications of housekeeping genes of 
interest [2]. The combination of these MLST allele num-
bers from a single strain allows assignment of a MLST 
sequence type (ST) already shared between laboratories 
or a new one [67]. The cgMLST is an extension of the 
MLST principle allowing screening of alleles from sev-
eral hundreds of core genes. More precisely, after steps 
related to potential read trimming (usually with Trim-
momatic [58]) and mandatory de novo assembly (usu-
ally with SPAdes [57]), the assembly-based cgMLST 
workflows include (i.e. chewBBACA [14]) or not (i.e. 
 SeqSphere+ [12], MLSTar [15], BIGSdb-Pasteur [16], 
BioNumerics [17]) a step to detect open reading frames 
(ORFs) from drafts de novo assembly (i.e. Prodigal [68] 
implemented in chewBBACA [14]). Then, these assem-
bly-based cgMLST workflows aligne alleles from schema 
to sequences from drafts de novo assembly (ORFs or not) 

Table 4 License type, as well as de novo assembly and allele calling pipelines recommended by developers of cgMLST workflows 
compared in the present study to assess precision of Listeria monocytogenes cgMLST typing. N/A stands for not applicable

cgMLST workflow (version) License type Recommended assembly pipeline 
(version)

Recommended allele calling pipeline 
(strategy or version)

Reference

BIGSdb (N/A) open source AlienTrimmer (2.0)-, Musket (1.1)-and 
SPAdes (3.15.0)-based fq2dna (21.06)

BLASTN-based BIGSdb (alignment) [24]

INNUENDO (N/A) open source Trimmomatic (0.36)-, Pilon (1.18)- and 
SPAdes (3.9.0)- based INNUca (4.2.2)

Prodigal- (ORF discovery) and BLASTP-
based (alignment) chewBBACA (2.6.0)

[14, 49]

GENPAT (N/A) open source Trimmomatic (0.36)- and SPAdes (3.11.1)-
based pipeline

Prodigal- (ORF discovery) and BLASTP-
based (alignment) chewBBACA (2.6.0)

[14, 57, 58]

SeqSphere (6.0.2) commercial FastQC (0.11.7)- and SPAdes (3.11.1)-based 
pipeline

BLASTN-based SeqSphere (alignment) [12, 59, 67]

Bionumerics (7.6.3) commercial SPAdes (3.7.1)-based pipeline BLASTN-based assembly-based and -free 
algorithms (alignments)

[17, 20, 61, 62]

MentaLiST (1.0.0) open source N/A (i.e. assembly free) stringMLST principle-based MentaLiST 
(kmer counting)

[13, 19]



Page 16 of 24Palma et al. BMC Genomics          (2022) 23:235 

based on the BLASTN (i.e. SeqSphere [12], MLSTar [15], 
BIGSdb-Pasteur [16], BioNumerics [17]) or BLASTP 
(i.e. chewBBACA [14]) algorithms [69], as well as differ-
ent parameters related coverage and identity of aligned 
sequences. In addition, recently published assembly-
free cgMLST workflows process reads independently of 
de novo assembly based on heuristic kmer mapping (i.e. 
KMA [18]) or counting and voting of kmers (MentaL-
iST [19] and STing [13]). Some cgMLST workflows may 
combine de novo assembly-free and -based allele calling 
(e.g. BioNumerics [20]). This review drove the selection 
of the 6 workflows of interest and related settings rec-
ommended by developers (BIGSdb, INNUENDO, GEN-
PAT, SeqSphere, BioNumerics and MentaLiST), in order 
to cover the different genomics-based cgMLST typing 
approaches (Table 4).

Experimental plan
The experimental plan was built to take into account a 
large range of in vitro and in silico parameters potentially 
explaining the cgMLST precision (i.e. identical alleles 
against reference circular genomes × 100 / 1748). The 
in vitro parameters include the tested reference genomes, 
successive platings, as well as replicates of DNA extrac-
tion and sequencing. The in silico parameters include 
the targeted read/kmer depth of coverage, read depth 
of coverage, read breadth of coverage, assembly met-
rics, cgMLST workflows and identified alleles against 
schema. For the sake of clarity, acronyms of this large set 
of parameters were defined in the section abbreviations.

In vitro parameters of interest
Three L. monocytogenes strains and three original 
genomic DNA (gDNA) were obtained from the Ameri-
can Type Culture Collection Global Bioresource Center 
(ATCC: https:// www. atcc. org): ATCC 19114 (cgMLST 
type L3-SL69-ST201-CT996, serotype 4a), ATCC 19115 
(L1-SL2-ST145-CT375, serotype 4b) and ATCC BAA-
679 (L2-SL9-ST35-CT637, serotype 1/2a), which cor-
responds to the reference EGD-e strain. The original 
gDNA of each of the three ATCC strains was sequenced 
in two different batches (i.e. n = 3 × 2 = 6 paired-end 
reads) (Fig.  1). The three ATCC strains were grown 5 
and 10 times through successive plating (i.e. 4 and 9 
platings, respectively), leading to two subcultures for 
each strain. Each of the subcultures was extracted three 
times, and each extract was then sequenced in two dif-
ferent batches (n = 3 × 2 × 3 × 2 = 36 paired-end reads) 
(Fig.  1). For bacterial culture, DNA was extracted using 
previously described procedures [70]. All gDNA sam-
ples were quantified by Qubit dsDNA HS Assay Kit using 
the Qubit fluorometer 2.0 (Thermo Fisher Scientific, 
Waltham, Massachusetts, United States). gDNA quality 

was estimated based on the Eppendorf BioSpectrom-
eter® fluorescence (Eppendorf, Hamburg, Germany), 
whereas gDNA integrity was assessed using the Agilent 
4200 TapeStation system (Agilent Technologies, Santa 
Clara, CA, United States). The sequencing libraries were 
prepared with 30 μl of Illumina DNA Prep kit and 100–
500 ng of input gDNA. These libraries were sequenced 
with a NextSeq500 sequencer (Illumina). In total, a set 
of 42 paired-end reads (n = 3 × 2 + 3 × 2 × 3 × 2 = 42 
paired-end reads) were produced to assess the impacts 
on cgMLST precision of in vitro parameters of interest: 
tested reference genomes, successive platings, as well as 
replicates of DNA extraction and sequencing (Fig. 1).

In silico parameters of interest
The in silico parameters of interest include the targeted 
read/kmer depth of coverage, read depth of coverage, 
read breadth of coverage, assembly metrics, cgMLST 
workflows and identified alleles against schema. The 
number of reads, average Phred quality scores and per-
centages of Phred quality scores higher than 30 were 
checked for each 42 paired-end reads with FastQC (ver-
sion 0.11.5) [79]. In addition, the absence of exogenous 
DNA contamination was confirmed with ConFindr 
(version 0.7.4) [41]. After quality assessment, downsam-
pling of paired-end reads was performed with BBNorm 
(version February 13, 2020) in parallel with the estima-
tion of depth and breadth of coverages of reads through 
BBMap-based mapping (version February 13, 2020) [42]. 
BBNorm-based downsampling was performed from 
paired-end reads (i.e. duplicated DNA samples of each 3 
tested reference genomes) at 10 different kmer depth of 
coverage (Dk: 8X, 16X, 24X, 32X, 40X, 48X, 56X, 64X, 
72X and 80X) fixing read length (R = 150) and kmer size 
(K = 30). Then, the corresponding read depth of cover-
age (Dr) measured with BBMap allowed estimation of the 
correlation with kmer depth of coverage (Dr = 1.3502 x 
Dk - 0.2923; R2 = 99.98%; n = 60) based on the ‘stats’ R 
library [72]. After this standard curve building, the setting 
of kmer depth of coverage (Dk: 8X, 15X, 23X, 30X, 38X, 
45X, 52X, 60X, 67X, 75X) during another BBNorm-based 
downsampling (i.e. argument ‘target’) allowed prepara-
tion of 420 paired-end reads with different read depth of 
coverage (Dr: 10X, 20X, 30X, 40X, 50X, 60X, 70X, 80X, 
90X and 100X). Finally, the high read breadth of cover-
age and expected read depth of coverage (Dr) of the 420 
prepared paired-end reads were double checked inde-
pendently with BBMap [42], and the INNUca (version 
4.2.2) [49] internal module based on Bowtie2 (version 
2.2.9) [73] and Samtools (version 1.3.1) [74]. In total, 420 
paired-end reads were produced to assess the impacts on 
cgMLST precision of in silico parameters (Fig. 1). Follow-
ing de novo assembly steps recommended by developers 

https://www.atcc.org
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detailed below, the 420 paired-end reads were processed 
through the six cgMLST workflows of interest (n = 6 × 10 
x [3 × 2 + 3 × 2 × 3 × 2] = 2520 cgMLST results) (Fig.  1). 
Then, de novo assembly metrics of the assembly-based 
cgMLST workflows were assessed with Quast (version 
5.0.2) [75] and combined with MultiQC (version 1.9) [76] 
(n = 5 × 10 x [3 × 2 + 3 × 2 × 3 × 2] = 2100 quality results 
assessing 48 assembly metrics) (Fig. 1).

cgMLST workflows of interest
Six different cgMLST workflows were tested: BIGSdb 
[24], INNUENDO [14, 49], GENPAT [14, 57, 58], Seq-
Sphere [12, 59, 67], BioNumerics [17, 20, 61, 62] and 
MentaLiST [19] (Fig.  1). The open-source workflows 
(MentaLiST, INNUENDO and GENPAT), based on 
Docker images (version 19.03.4) (https:// www. docker. 
com/) which are hosted in the in-house GENPAT system 
(IZSAM, Italy), and commercial workflows (BioNumer-
ics and SeqSphere) were executed in IZSAM (Italy). The 
workflow GENPAT corresponds to the in-house cgMLST 
workflow implemented in the GENPAT system (IZSAM, 
Italy). The open-source workflow BIGSdb was executed 
using the genomic taxonomy platform of Institut Pasteur 
(France; https:// bigsdb. paste ur. fr/). All cgMLST work-
flows included in the present study were assessed based 
on the same set of loci and alleles, using the L. monocy-
togenes schema of 1748 cgMLST loci [24] downloaded 
from BIGSdb-Lm [24, 46] on 8th March 2021.

BIGSdb
Paired-end reads were de novo assembled using fq2dna 
version 21.06 (https:// gitlab. paste ur. fr/ GIPhy/ fq2dna; 
strategy B; default settings). The corresponding fq2dna 
pipeline consists of trimming and clipping of low-qual-
ity reads and adapters with AlienTrimmer (version 2.0) 
[77], sequencing error correction with Musket (version 
1.1) [78], paired-end read merging with FLASh (ver-
sion 1.2.11) [79], coverage homogenization with ROCK 
(version 1.9.3; https:// gitlab. paste ur. fr/ vlegr and/ ROCK) 
[81, 82, 90], and de novo assembly with SPAdes (version 
3.15.0) [57]. In brief, the paired-end reads were first pre-
processed through deduplication, clipping, trimming 
(Phred score threshold: 15, minimum read length: 50 bp) 
and error correction. Second, two distinct sequence data-
sets were created for each paired-reads by merging or not 
the pre-processed paired-end reads. Third, the coverage 
depth of the two read datasets (i.e. merged or not) was 
homogenized to 60X (i.e. digital normalization proce-
dure), and each of the two resulting subsets of paired-end 
reads was used to infer a de novo genome assembly. The 
most precise between the two assemblies was selected 

by maximizing the number of genes completely con-
tained within assembled contigs (E-size) [83]. Finally, the 
selected assembly was used together with its correspond-
ing paired-end reads to infer a genome coverage profile 
(GCP) (i.e. distribution of the number of assembled bases 
per sequencing depth value) [84]. Based on the cover-
age profile, sufficiently long (> 1000 bp) and significantly 
covered scaffold sequences were finally selected. Contigs 
smaller than 300 bp were ignored. Draft assemblies were 
uploaded in a dedicated project in BIGSdb-Lm (https:// 
bigsdb. paste ur. fr/ liste ria) powered by the BIGSdb soft-
ware (version 1.31.0) [46]. cgMLST allele calling [46] was 
performed therein based on the BLASTN algorithm [69], 
with minimum of 70% of nucleotide identity and 70% of 
coverage and word size of 10. The missing data (0) and 
mismatches (empty set) from BIGSdb were considered 
as nonidentical calls in the present study. For the record, 
the mismatches (empty set) correspond to potential new 
alleles which are quality-checked by the Institute Pasteur 
curator before designation of new identifiers.

INNUENDO
As proposed by the cross-sectoral platform for the inte-
gration of genomics in the surveillance of food-borne 
pathogens (INNUENDO), the cgMLST workflow INNU-
ENDO was based on de novo assembly and allele call-
ing using INNUca (version 4.2.2) [49] and chewBBACA 
(version 2.6.0; default setting) [14] pipelines, respec-
tively. More precisely, the INNUca assembler performs 
successively read control with FastQC (version 0.11.5) 
[79], trimming with Trimmomatic (version 0.36; clip-
ping 3:30:10:6; sliding window 5:20; leading 3; trailing 3; 
minimum length 55) [58], coverage estimation with the 
internal module based on Bowtie2 (version 2.2.9) [73] 
and Samtools (version 1.3.1) [74], de novo assembly with 
SPAdes (version 3.9.0, careful; only assembler: coverage 
cutoff 2; k 21,33,55,67 and 77) [57], pearl-based filtering 
of contigs presenting at least 200 bp, kmer coverage of 2 
and CG content between 5.0 and 95.0% (version 0.9.10), 
and correction of draft assembly with Pilon (version 1.18) 
[85], as well as MLST assessment based on MLST (ver-
sion 2.4) [16]. The default parameters of chewBBACA 
(including allele size threshold = 0.2, BLASTP score 
ratio ≥ 0.6 and the recommended prodigal training file 
Listeria_monocytogenes.trn: https:// chewb baca. online/ 
stats [69]) were applied in the present study considering 
exact match with known alleles (encoded EXC) as identical 
calls, as well as new inferred allele (INF), locus not found 
(LNF), possible locus on the tip of contigs (PLOT), non-
informative paralogous hits (NIPH), alleles larger (ALM) 
and smaller (ASM) than mode, as nonidentical calls.

https://www.docker.com/
https://www.docker.com/
https://bigsdb.pasteur.fr/
https://gitlab.pasteur.fr/GIPhy/fq2dna;
https://gitlab.pasteur.fr/vlegrand/ROCK
https://bigsdb.pasteur.fr/listeria
https://bigsdb.pasteur.fr/listeria
https://chewbbaca.online/stats
https://chewbbaca.online/stats
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GENPAT
The GENPAT workflow is constituted of the NGSman-
ager de novo assembly pipeline implemented in GENPAT 
and chewBBACA allele caller with identical setting and 
version described above (see INNUENDO) [14]. More 
precisely, the NGSmanager assembly pipeline performs 
read trimming with Trimmomatic (version 0.36; clip-
ping 2:30:10; leading 25; trailing 25 sliding window 20:25 
minimal length 36) [58], de novo assembly with SPAdes 
(version 3.11.1; only assembler; careful; −k 21, 33, 55 and 
77) [57], and filtering of contigs lower than 200 bp with 
a homemade Python script AssemblyFilter.py (i.e. ver-
sion 2.7.8). The chewBBACA-based definitions of identi-
cal and nonidentical calls of the GENPAT workflow were 
identical to those described above (see INNUENDO).

SeqSphere
A new task template was created in Ridom SeqSphere+ 
(version 6.0.2), so-called SeqSphere in the present study, 
by importing allele library constructed using L. monocy-
togenes 1748 loci schema of cgMLST alleles [25] down-
loaded from BIGSdb-Pasteur, as described above. The 
first allele of each target was indicated as a reference 
sequence (ref-seq) and ref-seq alignment gap penalty was 
set to default. In the default “Target QC Procedure”, the 
warnings were issued for alleles with breadth of coverage 
< 75% and read depth of coverage <5X, as well as in cases 
of frameshift detected in translatable target and consen-
sus length varying by more than 6 triplets compared to 
the ref-seq. Moreover, ambiguities were not allowed in 
the target sequences. The target scan procedure was set 
according to the guidelines for L. monocytogenes cgMLST 
typing from the Institute Pasteur (https:// bigsdb. paste ur. 
fr/ liste ria/ cgMLST_ guide lines. pdf ) with the minimum 
required allele identity and minimum percentage aligned 
to re-seq of 70% [24]. The best matching allele was forced 
when multiple gene matches were identified. In order 
to assess the full workflow of Ridom SeqSphere+, the 
sequencing reads were assembled de novo using the inte-
grated assembly pipeline. Briefly, the paired sequencing 
reads were quality-trimmed with FastQC (version 0.11.7) 
at 5′ and 3′ end until average quality was 30 in a window 
of 20 bases [79]. The trimmed reads were assembled with 
SPAdes using default settings (−-careful option ena-
bled) [57]. The assembled scaffolds were scanned for the 
presence of targeted genes and the alleles were assigned 
using the established parameters. The unidentified (? (not 
found)) and new alleles (? (new)) from SeqSphere+ were 
considered as nonidentical calls in the present study.

BioNumerics
BioNumerics (Applied Maths NV: bioMérieux company, 
Sint-Martens-Latem, Belgium) offers a fully automated 

workflow for cgMLST, the so-called WGS tools plugin 
(version 7.6.3). By default, the WGS tools plugin (i.e. 
AWS environment) proposes assembly-based (i.e. 
BLASTN algorithm from de novo assembly [69]) and/
or -free workflows (i.e. kmer-based detection of alleles 
from unassembled reads) [34, 46, 61]. The BioNumer-
ics assembly-based workflow can detect new alleles in 
addition to allele calling, while the assembly-free work-
flow cannot identify new alleles (https:// www. appli ed- 
maths. com/ news/ bionu merics- versi on- 763- relea sed). 
By default, the BioNumerics outputs of the free-assem-
bly workflow correspond to cgMLST alleles identically 
identified by assembly-based and -free workflows, in 
addition to alleles identified only through assembly-free 
workflow. Consequently, the output of the assembly-
based workflow alone (BioNumericsAB), or in combina-
tion with the assembly-free workflow (BioNumericsAF), 
were firstly compared to each other in the present study 
in order to compare secondly the most precise one to the 
other cgMLST workflow of interest. More precisely, the 
reads were assembled using SPAdes (version 3.7.1) imple-
mented in BioNumerics (version 7.6.2) without specify-
ing any parameter, then the sequences obtained were 
scanned with the “assembly-based calls” and “assembly-
free calls” algorithms successively. The minimum simi-
larity to call new alleles (i.e. 80%), kmer size (35 bases), 
minimum coverage (3X), minimum forward coverage 
(1X) and minimum reverse coverage (1X) were set fol-
lowing BioNumerics recommendations. The unidentified 
alleles from BioNumerics (labeled with a question mark 
‘?’) were considered as nonidentical calls in the present 
study.

Even though few differences of identical alleles against 
reference circular genomes (IAAR) were observed at 
extended scales between the workflows BioNumeric-
sAB and BioNumericsAF (Additional  file  9A and Addi-
tional  file  9B), the workflow BioNumericsAF identified 
significantly (Wilcoxon signed rank tests: p < 1 ×  10− 6) 
more IAAR that the workflow BioNumericsAB for each 
targeted depth of coverage (Additional file 9C and Addi-
tional file 9D). Consequently, the BioNumerics workflow 
combining assembly-based and-free approaches was 
retained to be compared to the other cgMLST workflow. 
In the interests of simplification, this BioNumerics work-
flow combining assembly-based and-free approaches (i.e. 
BioNumericsAF) will be named BioNumerics workflow 
in the present study.

MentaLiST
Working directly with the raw paired-end reads, MentaL-
iST does not require prior genome assembly (i.e. de novo 
assembly or reference genome mapping) [19]. In brief, 
the workflow MentaLiST (version 1.0.0) implements the 

https://bigsdb.pasteur.fr/listeria/cgMLST_guidelines.pdf
https://bigsdb.pasteur.fr/listeria/cgMLST_guidelines.pdf
https://www.applied-maths.com/news/bionumerics-version-763-released
https://www.applied-maths.com/news/bionumerics-version-763-released
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principle of kmer counting [54] and data compression 
to decrease dataset sizes and execution duration based 
on the construction of a coloured de Bruijn graph [87]. 
After assessment of all kmers present on the schema 
of alleles for each locus stored as a kmer hash map, all 
alleles that contain kmers from reads of a given sample 
will receive one vote, and the called alleles are those with 
the most votes for each locus [19]. The argument “--fasta” 
of MentaLiST was used to perform cgMLST of the three 
ATCC reference assemblies used in the present study. 
The default parameters of MentaLiST were applied in the 
present study considering multiple possible alleles (+) 
and partially covered alleles (−) as identical calls, as well 
as missing loci (0 or 0?) and new allele (N) as nonidenti-
cal calls.

Statistical analyses
The differences of alleles between cgMLST workflows 
applied to reference circular genomes were represented 
through Edward’s Venn diagrams [88] built with jvenn 
(http:// jvenn. toulo use. inra. fr/ app/ examp le. html) [89]. 
The results from paired-end read downsampling (Addi-
tional file  1), cgMLST typing (Additional  file  2) and 
the parameters of interest (Fig.  1) were compiled into a 
single dataframe (Additional  file  3) to perform statisti-
cal analyses. With the objective to explain the precision 
of cgMLST workflows, the amount of identical alleles 
against reference genomes (i.e. the parameter to explain, 
also called the response variable) was compared to sev-
eral in vitro and in silico parameters of interest (i.e. the 
parameters potentially explaining the response variable, 
also called the explanatory variables) based on two inde-
pendent statistical analyses, namely PCA and GLM. The 
PCA and GLM were selected because of their abilities to 
manage together categorical and numerical parameters. 
The in  vitro parameters of interest include 4 categori-
cal parameters (i.e. tested reference genomes, succes-
sive platings, as well as replicates of DNA extraction and 
sequencing). The in silico ones include 2 categorical (i.e. 
cgMLST workflows and targeted read/kmer depth of 
coverage) and 51 numerical parameters (i.e. read depth of 
coverage, read breadth of coverage, 48 assembly metrics 
and number of identified alleles against schema) (Addi-
tional file 3). The R-scripts dedicated to statistical analy-
ses are available in GitHub (https:// github. com/ Nicol 
as- Radom ski/ Downs ample dReads and https:// github. 
com/ Nicol as- Radom ski/ cgMLS Tcomp arison).

Principal component analyses
The exploratory PCAs aimed at increasing interpret-
ability and minimizing information loss at the same 

time, by reducing the dimensional of the large dataset of 
numerical parameters through projection of data points 
on the first few principal components [90]. Two dif-
ferent PCAs were performed in the present study. The 
first PCA assessed the behavior of the response variable 
(i.e. the parameter to explain: IAAR) together with the 
explanatory variables corresponding to in silico numeri-
cal parameters of interest estimated through all assem-
bly-based and assembly-free cgMLST workflows (i.e. the 
parameters potentially explaining the response variable: 
DEPTH, BREADTH and IAAS). The PCA was repeated 
excluding the assembly-free workflow MentaLiST (i.e. 
DEPTH, BREADTH, assembly metrics and IAAS) to 
additionally evaluate the impact of 48 assembly metrics 
on cgMLST precision for a total of 52 numerical parame-
ters (i.e. DEPTH, BREADTH, 48 assembly metrics, IAAS 
and IAAR). For readability of the illustrations, these 
numerical parameters were grouped together accord-
ing to PCA outcomes and only one parameter from each 
group was represented (Additional file  4). These PCAs 
were systematically performed in comparison to the 
in  vitro and in silico categorical parameters of interest 
(i.e. tested reference genomes, successive platings, as well 
as replicates of DNA extraction and sequencing, targeted 
read/kmer depth of coverage and cgMLST workflows). 
These PCAs were performed with the ggplot2-based 
biplot R library [91] called “ggbiplot” (https:// github. 
com/ vqv/ ggbip lot) requiring R libraries “usethis” and 
“devtools” [72].

Generalized linear models
Extending the concept of the linear regression model, the 
GLMs integrate link functions around the linear combi-
nations of the explanatory variables in order to bypass 
the restriction to linearity from the linear models [92]. 
As described above concerning the PCAs, two differ-
ent GLMs were performed in the present study. The first 
GLM aimed at explaining the response variable (i.e. the 
parameter to explain: IAAR) by explanatory variables cor-
responding to in vitro and in silico parameters of inter-
est (i.e. numerical and categorical) estimated through all 
assembly-based and assembly-free cgMLST workflows 
(i.e. the parameters potentially explaining the response 
variable: tested reference genomes (REFERENCE), suc-
cessive platings (PLATING), DNA extraction replicates 
(DNA), sequencing replicates (SEQUENCING), read 
depth of coverage (DEPTH), read breadth of coverage 
(BREADTH) and IAAS). Following the same design, the 
second GLM aimed at explaining the response variable 
by explanatory variables from assembly-based cgMLST 
workflows (i.e. the parameters potentially explaining 

http://jvenn.toulouse.inra.fr/app/example.html
https://github.com/Nicolas-Radomski/DownsampledReads
https://github.com/Nicolas-Radomski/DownsampledReads
https://github.com/Nicolas-Radomski/cgMLSTcomparison
https://github.com/Nicolas-Radomski/cgMLSTcomparison
https://github.com/vqv/ggbiplot
https://github.com/vqv/ggbiplot
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the response variable: REFERENCE, PLATING, DNA, 
SEQUENCING, DEPTH, BREADTH, assembly metrics 
and IAAS). Before to perform these GLMs, the distri-
butions of the response variable were assessed through 
statistical tests Shapiro-Wilk (Gaussian distribution), 
Chi-square (uniform distribution), two side Poisson (two 
side Poisson distribution), one side Poisson with upper 
hypothesis (one side Poisson distribution with upper 
hypothesis) and one side Poisson with lower hypothesis 
(one side Poisson distribution with upper hypothesis) 
implemented in the R library “stats” [72].

Including or excluding MentaLiST from the cgMLST 
comparison, the IAAR did not follow Gaussian (Sha-
piro-Wilk, p < 2.2 ×  10− 16), uniform (Chi-square, 
pp < 2.2 ×  10− 16), two side Poisson (two side Poisson, 
p < 2.2 ×  10− 16) or one side Poisson with upper hypothesis 
(one side Poisson with upper hypothesis, p < 2.2 ×  10− 16) 
distributions, in the favor of one side Poisson with lower 
hypothesis (one side Poisson with upper hypothesis, 
p = 1). The presence (including MentaLiST) and absence 
(excluding MentaLiST) of GLM overdispersions, imple-
mented in the R library “AER” [93], allowed retainment 
of quasiPoisson- (dispersion test, p < 2.2 × 10–16–16 and 
alpha > 1) and Poisson- (dispersion test, p = 1 and alpha 
≈ 1) distributions for GLMs, respectively, for the R func-
tion “glm” from the R library “stats” [72].

Confirmations of parameters explaining the cgMLST 
precision
In order to confirm results from PCA- and GLMs-
based statistical analyses, the parameters explaining the 
cgMLST precision (i.e. IAAR × 100 / 1748) were pre-
sented trough four-way figures, MST-based clustering 
and three-way tables.

Four‑way figures
The IAAS (Additional  file  6A-Additional  file  6D) and 
IAAR (Additional  file  6E-Additional  file  6H) were pre-
sented according to the parameters of interest focus-
ing on the parameters explaining the cgMLST precision 
through four-way figures with the R library “ggplot2” 
[91]. These four-way figures were prepared with y-axis 
presenting broad (i.e. extended scale) or narrow (i.e. 
restricted scale) range of units.

MST‑based clustering
The cgMLST clustering was represented through MSTs 
according to parameters explaining the cgMLST preci-
sion. The cgMLST profiles from each workflow (Addi-
tional file 2) were used to build MSTs using Bionumerics 
software (version 7.6.3). Missing alleles calls were ignored 
in the MST differences calculations. The MST clusters 

containing at least two genomes and allele differences 
≤7, were highlighted in grey.

Three‑way tables
The cgMLST precision (i.e. IAAR × 100 / 1748) was pre-
sented according to parameters explaining it through 
three-way tables with the R functions ‘subset’ and ‘dcast’ 
from the R library “base” and “reshape2”, respectively 
[72].
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Additional file 1 Read depth (X) and breadth (%) coverages estimated 
with BBMap (version February 13, 2020) or INNUca (version 4.2.2) of Listeria 
monocytogenes paired-end reads from reference genomes ATCC19114, 
ATCC19115 and ATCCBAA679 (n = 420) downsampled at different tar-
geted read (Dr: 10X, 20X, 30X, 40X, 50X, 60X, 70X, 80X, 90X and 100X) and 
kmer (Dk: 8X, 15X, 23X, 30X, 38X, 45X, 52X, 60X, 67X, 75X) depth (X) with 
BBNorm (read length R = 150 and kmer size K = 30). (TSV 65 kb)

Additional file 2 Standardized matrices of the cgMLST workflows BIGSdb 
(n = 423), INNUENDO (n = 339), GENPAT (n = 423), SeqSphere (n = 423), 
BioNumericsAB (n = 423), BioNumericsAF (n = 423) and MentaLiST 
(n = 423) applied to downsampled paired-end reads from 3 reference 
genomes of Listeria monocytogenes (i.e. ATCC19114, ATCC19115 and 
ATCCBAA679). The terms ATCC19114, ATCC19115 and ATCCBAA679 from 
the field FILE correspond to cgMLST profiles of the corresponded circular 
de novo assemblies from ATCC company. The empty sets represent 
mismatches. Because of internal firewall, the INNUca assembler integrated 
into the cgMLST workflow INNUENDO cannot not perform assemblies 
of paired-end reads with read depth of coverage of 20X (n = 42) and 10X 
(n = 42). (TSV 12262 kb)

Additional file 3 Standardized outcomes of the cgMLST workflows 
BIGSdb (n = 420), INNUENDO (n = 336), GENPAT (n = 420), SeqSphere 
(n = 420), BioNumerics (n = 420) and MentaLiST (n = 420) applied to 
downsampled paired-end reads from 3 reference genomes of Listeria 
monocytogenes (i.e. ATCC19114, ATCC19115 and ATCCBAA679) with 
associated de novo assembly parameters assessed with Quast (version 
5.0.2) and MultiQC (version 1.9). The targeted read depth (Dr: 10X, 20X, 
30X, 40X, 50X, 60X, 70X, 80X, 90X and 100X) were prepared according to 
kmer depth (Dk): 8X, 15X, 23X, 30X, 38X, 45X, 52X, 60X, 67X, 75X) setting 
of BBNorm (read length R = 150 and kmer size K = 30). Because of internal 
firewall, the INNUca assembler integrated into the cgMLST workflow 
INNUENDO cannot not perform assemblies of paired-end reads with read 
depth of coverage of 20X (n = 42) and 10X (n = 42). (TSV 1207 kb)

Additional file 4 Principals component analyses (PCAs) of the numeri-
cal parameters C1000, C10000, DR, GC, IAAR, IAAS, ID100, L50, LA50, LA, 
LMA, MA, N50, NA50, DEPTH, BREADTH, SQEM, SQLM, TL1000, TL10000, 
UACP and UAMC (defined in the section abbreviations) according to the 
categorical parameters “reference genome” (A), “successive platings” (B), 
“DNA extraction replicate” (C), “sequencing replicate” (D), “targeted depth” 
(E), “cgMLST workflows” (F), including assembly-based cgMLST workflows 
BIGSdb (n = 420), INNUENDO (n = 336), GENPAT (n = 420), SeqSphere 
(n = 420) and BioNumerics (n = 420) applied to downsampled paired-end 
reads from 3 reference genomes of Listeria monocytogenes (i.e. ATCC19114, 
ATCC19115 and ATCCBAA679). The PCA parameters C0-C1000-C5000-
C10000-C25000-C50000, GC-TL0-TL1000-TL5000-TL10000-TL25000-
TL50000-TL-TAL-MACL, N50-NG50-N75-NG75-SQEM-NA50-NGA50-NA75-
NGA75-LA, L50-LG50-L75-LG75, LA50-LGA50-LA75-LGA75, DEPTH-GF, 
LMA-UAL-MM100-SQLM, DR-N100-UAC and MA-MAC were overlapped 
and are consequently not presented together.

Additional file 5 Coefficients (Coef.) of the generalized linear models 
(GLMs with Poisson distribution and without overdispersion) comparing 
the parameters “identical alleles against reference circular genomes” (IAAR) 
with the parameters of interest “reference genome” (REFERENCE), “succes-
sive platings” (PLATING) (B), “DNA extraction replicate” (DNA), “sequencing 
replicate” (SEQUENCING), “read depth” (DEPTH), “read breadth” (BREADTH), 
assembly parameters (defined in the section abbreviations: C0, C1000, 
C10000, C25000, C5000, C50000, DR, GC, GF, ID100, L50, L75, LA, LA50, 
LA75, LC, LG50, LG75, LGA50, LGA75, LMA, MA, MAC, MACL, MM100, N100, 
N50, N75, NA50, NA75, NG50, NG75, NGA50, NGA75, SQEM, SQLM, TAL, TL, 
TL0, TL1000, TL10000, TL25000, TL5000, TL50000, UAC, UACP, UAL, UAMC), 
cgMLST workflows (WORKFLOW) together (A) and cgMLST workflows 
independently including BIGSdb (B: n = 420), INNUENDO (C: n = 336), 
GENPAT (D: n = 420), SeqSphere (E: n = 420) and BioNumerics (F: n = 420), 
applied to downsampled paired-end reads from 3 reference genomes 

of Listeria monocytogenes (i.e. ATCC19114, ATCC19115 and ATCCBAA679). 
Few parameters are not defined because of singularities.

Additional file 6 Box-plots representing the impact of downsampled 
paired-end reads (i.e. 2x150bp) of reference genomes of Listeria mono-
cytogenes (i.e. ATCC19114, ATCC19115 and ATCCBAA679), on cgMLST 
outcomes (BIGSdb: n = 420, INNUENDO: n = 336, GENPAT: n = 420, 
SeqSphere: n = 420, BioNumerics: n = 420 and MentaLiST: n = 420), includ-
ing identified alleles against schema (A, B, C, D) or identical alleles against 
reference circular genomes at extended (E, F, G, H) or restricted (I, J, K, L) 
scales, according to reference genomes (A, E, I), successive platings (B, F, 
J), DNA extraction replicate (C, G, K) and sequencing replicate (C, H, L). The 
targeted read depth (Dr: 10X, 20X, 30X, 40X, 50X, 60X, 70X, 80X, 90X and 
100X) were prepared according to kmer depth (Dk): 8X, 15X, 23X, 30X, 38X, 
45X, 52X, 60X, 67X, 75X) setting of BBNorm (read length R = 150 and kmer 
size K = 30). Because of internal firewall, the INNUca assembler integrated 
into the cgMLST workflow INNUENDO cannot not perform assemblies 
of paired-end reads with read depth of coverage of 20X (n = 42) and 10X 
(n = 42).

Additional file 7 Box-plots representing the impact of downsampled 
paired-end reads (i.e. 2x150bp) of Listeria monocytogenes on unidentified 
alleles against schema at extended (A) or restricted (B) scales, according 
to reference genomes (i.e. ATCC19114, ATCC19115 and ATCCBAA679) and 
cgMLST workflows including BIGSdb (n = 420), INNUENDO (n = 336), GEN-
PAT (n = 420), SeqSphere (n = 420), BioNumerics (n = 420) and MentaLiST 
(n = 420). The targeted read depth (Dr: 10X, 20X, 30X, 40X, 50X, 60X, 70X, 
80X, 90X and 100X) were prepared according to kmer depth (Dk): 8X, 15X, 
23X, 30X, 38X, 45X, 52X, 60X, 67X, 75X) setting of BBNorm (read length 
R = 150 and kmer size K = 30). Because of internal firewall, the INNUca 
assembler integrated into the cgMLST workflow INNUENDO cannot not 
perform assemblies of paired-end reads with read depth of coverage of 
20X (n = 42) and 10X (n = 42).

Additional file 8 Minimum spanning trees (MSTs) representing the 
impact on clustering of cgMLST workflows BIGSdb (A: n = 423), INNU-
ENDO (B: n = 339), GENPAT (C: n = 423), SeqSphere (D: n = 423), BioNu-
merics (E: n = 423) and MentaLiST (F: n = 423), of Listeria monocytogenes 
reference genomes (i.e. ATCC19114, ATCC19115 and ATCCBAA679 on the 
left of each workflow) and targeted depth of coverage (i.e. on the right 
of each workflow) from downsampled paired-end reads (i.e. 2x150bp). 
The MSTs were built with BioNumerics ignoring missing data. The MST 
clusters of at least two genomes, one node and allele differences ≤7, were 
highlighted in grey. The targeted read depth (Dr: 10X, 20X, 30X, 40X, 50X, 
60X, 70X, 80X, 90X and 100X) were prepared according to kmer depth 
(Dk): 8X, 15X, 23X, 30X, 38X, 45X, 52X, 60X, 67X, 75X) setting of BBNorm 
(read length R = 150 and kmer size K = 30). Because of internal firewall, 
the INNUca assembler integrated into the cgMLST workflow INNUENDO 
cannot not perform assemblies of paired-end reads with read depth of 
coverage of 20X (n = 42) and 10X (n = 42).

Additional file 9 Box-plots representing the impact of downsampled 
paired-end reads (i.e. 2x150bp), at extended (A and B) or restricted (C and 
D) scales of identical alleles against reference circular genomes, spiting (A 
and C) or merging (B and D) reference genomes of Listeria monocytogenes 
(i.e. ATCC19114, ATCC19115 and ATCCBAA679), on cgMLST outcomes from 
the assembly-based workflow alone (BioNumericsAB: n = 420), or in com-
bination with the assembly-free workflow implemented in BioNumerics 
(version 7.6.2) (BioNumericsAF: n = 420).
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