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Abstract 

Abscisic acid (ABA) is a phytohormone that plays important roles in the regulation of plant growth, seed germination, 
and stress responses. The pyrabactin resistance 1-like (PYR/PYL) protein, an ABA receptor, was involved in the initial 
step in ABA signal transduction. However, the evolutionary history and characteristics of PYL genes expression remain 
unclear in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. In this study, 67 PYL genes were identi-
fied in eight Rosaceae species, and have been classified into three subgroups based on specific motifs and phylo-
genetic analysis. Intriguingly, we observed that whole-genome duplication (WGD) and dispersed duplication (DSD) 
have a major contribution to PYL family expansion. Purifying selection was the major force in PYL genes evolution. 
Expression analysis finds that PYL genes may function in multiple pear tissues. qRT-PCR validation of 11 PbrPYL genes 
indicates their roles in seed germination and abiotic stress responses. Our study provides a basis for further elucida-
tion of the function of PYL genes and analysis of their expansion, evolution and expression patterns, which helps to 
understand the molecular mechanism of pear response to seed germination and seedling abiotic stress.
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Introduction
Abscisic acid (ABA) plays a pivotal role in various 
aspects of plant growth and development, such as 
cell elongation and division, seed desiccation toler-
ance and dormancy, seed maturation and germina-
tion, root growth, leaf senescence, fruit ripening and 
adaptation to different biotic and abiotic stresses [1–4]. 
Moreover, ABA can crosstalk and interact with other 

phytohormones to regulate plant development and 
response to environmental cues [5, 6].

In plants, the ABA receptors Pyrabactin Resistance 1 
(PYR1), PYR1-Like (PYL), and Regulatory Component 
of ABA Receptor (RCAR) (hereafter referred to as PYLs) 
function at the first step of the ABA signal pathway and 
activate downstream ABA signaling cascade [7, 8]. After 
binding ABA, PYLs subsequently interact with the clade A 
of protein phosphatase type 2Cs (PP2Cs). In the absence 
of ABA, PYL protein cannot bind to PP2C, thus prevent-
ing the activation of SUCROSE NONFERMENTING 1 
(Snf1) - related protein kinase 2s (SnRK2s); whereas upon 
binding ABA, PYL can interact with PP2C and inhibits 
PP2C from dephosphorylating SnRK2 [9, 10]. In turn, 
phosphorylated SnRK2 activates downstream substrates, 
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such as ABA-responsive element-binding factors (AREBs/
ABFs) and ABA-responsive genes [11, 12].

As core regulators in ABA signaling, the function of 
PYL have been unraveled in many species, including 
Arabidopsis thaliana [7, 13], Triticum aestivum [14], 
Oryza sativa [15], Zea mays [16] and Solanum lycoper-
sicum [17]. For instance, in Arabidopsis, a total of 14 
PYL receptor proteins with the highly conserved START 
(star-related lipid transfer) domain have been identified 
and classified to 3 subfamilies [18, 19]. Different subfami-
lies play diverse roles in plant development and abiotic 
stresses, and functions of most AtPYLs have been verified 
comprehensively in Arabidopsis. AtPYL5 and AtPYL9 
were identified to improve drought tolerance [13, 20]; 
AtPYL5 increase photosynthesis rate in drought stress 
[21]; AtPYR1, AtPYL2, AtPYL4 and AtPYL5 are involved 
in regulating guard cell and stomatal closure in response 
to  CO2 [7]; the AtPYL8 and AtPYL9 play a critical role in 
root growth and leaf senescence [13, 22].

PYL was also involved in seed germination, since ABA 
plays the primary role in seed dormancy and germination 
[8, 23]. Seed germination requires dynamic regulation 
of ABA signaling in a constantly changing environment. 
ABA prevents seed germination and post-germinative 
growth through the PYL receptors and PP2C co-recep-
tors [24]. For example, AtPYR1/PYL4 was involved in 
seed germination [24]; AtPYL6 and AtPYL13 have been 
verified to inhibit seed germination [25, 26]; AtPYL11 
and AtPYL12 have been verified to control ABA-medi-
ated seed germination [8]. In rice, the OsPYL/RCAR5 
was identified to be hypersensitive to ABA during seeds 
germination [27]. In addition, PYL as an ABA receptor, 
the expression of PYLs is precisely modulated at the tran-
scriptional level. For instance, the expression of PYLs 
can be induced by multiple abiotic stresses, such as cold, 
drought and salinity [20, 28, 29]. However, the mecha-
nism through which PYLs in plants are regulated at the 
transcriptional level remains unclear.

Although several PYLs have been identified in diverse 
plant species, the PYL family has not yet been systemati-
cally investigated in Rosaceae, which is an economically 
important family that includes many best-selling com-
mercial fruit species, such as apple, pear, peach, straw-
berry and raspberry. Furthermore, PYL as an ABA 
receptor protein plays one of core role in ABA signaling. 
In this study, genome-wide identification and compara-
tive analysis of the PYL family were performed in eight 
Rosaceae species. A total of 67 PYL genes were identified. 
The features, phylogenic relationships and evolution of 
PYLs were analyzed. qR-PCR of PbrPYLs was performed 
in pear seed under exogenous ABA treatment. In addi-
tion, the expression levels of PbrPYLs were further stud-
ied in pear seeding under heat, cold, drought, NaCl, or 

ABA treatment. Taking all together, this study provides a 
basis for revealing the roles of PYLs in seed germination 
and seedling development responding to stresses.

Results
Identification, phylogenetic relationship and features 
of PYL genes
To identify all the PYL gene members in eight Rosaceae 
species (Chinese white pear, European pear, Japanese 
apricot, apple, peach, strawberry, sweet cherry and black 
raspberry), the HMM (Hidden Markov Model) and 
BLASTp (e-value < = 1e-10) searches were carried out to 
search genome annotation using 14 Arabidopsis thaliana 
PYL [18] amino acid sequence as queries. The candidate 
PYL genes were validated by Pfam (http:// pfam. xfam. 
org/) and Interproscan 63.0 (http:// www. ebi. ac. uk/ Inter 
ProSc an/). The methods of screening and identification 
were referred to previous reports [19, 30]. After filtering 
out redundant and incomplete protein sequences, a total 
of 67 PYL genes were determined: 11 in Chinese white 
pear, 7 in European pear, 7 in Japanese apricot, 13 in 
apple, 7 in peach, 8 in strawberry, 6 in sweet cherry and 8 
in black raspberry (Supplementary Table 1).

To understand the phylogenetic relationship of the 
PYL proteins, the amino acid sequences encoded by 
PYL genes from eight Rosaceae species and Arabidop-
sis were used to construct a phylogenetic tree with the 
Neighbor-Joining (NJ) algorithm. Based on the classi-
fication of subfamilies in Arabidopsis [18], all the PYL 
genes in eight Rosaceae species were classified into three 
clades, designated Subfamily I, Subfamily II and Subfam-
ily III (Fig. 1A). Overall, Subfamily I contained 22 mem-
bers, Subfamily II contained 23 PYLs, and Subfamily III 
comprised 36 PYLs (Fig. 1A). PYLs genes grouping into 
the same subfamilies may perform similar functions. 
The PYL genes of Chinese white pear were named at 
PbrPYL1-11 according to clustering relationship with 
Arabidopsis 14 AtPYL genes (AtPYR1 and AtPYL1-13) 
in order. PbrPYL2-11 were randomly distributed on 8 of 
17 chromosomes and PbrPYL1 on scaffold984.0 (Fig. 1A 
and Supplementary Table 1).

The MEME analysis was used to verify the classifica-
tion of phylogenetic tree by analyzing the presence of 
conserved motifs in 67 PYL family members. 13 con-
served motifs were detected from 67 PYL proteins, all of 
which contained motif 1, motif  2 and motif 3 (Fig. 1B). 
Remarkably, each of three subfamilies contained similar 
motifs; motif 4 was  specific to subfamily I and motif 7 
was only appeared in subfamily III, indicating that each 
subfamily is characterized by their respective conserved  
motifs, which may contribute to unique/specialized 
biological functions. All the PbrPYL genes include the  
PYR_PYL_RCAR domain (Supplementary Fig. S1). All 
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Fig. 1 Phylogenetic relationship and conserved motifs of PYL genes. A phylogenetic relationship of PYLs was constructed in Arabidopsis and eight 
Rosaceae species. Tree was constructed by the Neighbor-Joining (NJ) algorithm. The green, blue, and red lines or boxes depict the subfamily I, II and 
III, respectively. B Distributions of conserved motifs in PYL proteins. Different color boxes indicated different motifs
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of the members in subfamily II consists of two introns, 
whereas no introns were detected  subfamilies I and III 
except PbrPYL4 (Supplementary Fig. S1). Different PYL  
genes were grouped into each subfamily depicting simi-
lar motifs, domains and exon-intron structures, which 
confirmed their close evolutionary  relationships and the 
classification of subfamilies. The detailed characteristics 
of the PYL proteins of Arabidopsis and eight Rosaceae 
species were listed in Supplementary Table 1. The molec-
ular weights of 81 PYL proteins ranged from 17.57 kDa to  
40.90 kDa. Protein isoelectric points (PI) ranged from pH 
4.62 to pH 9.75 (Supplementary Table 1).

In addition, to better understand the potential function 
of the PbrPYL genes, we extracted promoter sequences of 
2000  bp upstream from the initiation codons and iden-
tified cis-elements using the PlantCARE database. Some 
common cis-regulatory elements were briefly marked 
in promoter region, and the diversities of cis-elements 
related to the light, plant hormone and regulatory stress 
response suggested that expression may differ in response 
to development and stress (Supplementary Fig. S1).

Synteny analysis of PYL gene family
Several gene duplication modes contribute to the 
formation of local gene clusters and evolution of 
protein-coding gene family, such as WGD, tandem 
and segmental [31]. Different modes of gene dupli-
cation were identified in eight Rosaceae species, and 
we detect duplicated PYL gene pairs to infer the evo-
lutionary origins. All the PYL family members were 
assigned to five modes of gene duplication, includ-
ing segmental duplication/ WGD, tandem duplica-
tion, proximal duplication, transposed duplication 
and dispersed duplication (Table  1 and Supplemen-
tary Table  2). A total of 87 duplicated gene pairs of 
PYL family members were identified in eight Rosaceae 
species, and the largest number is dispersed duplica-
tion (57 gene pairs, 65.5%), followed by WGD (26 gene 
pairs, 29.9%), and other duplications (4 gene pairs, 

4.6%), suggesting that the modes of dispersed duplica-
tion and WGD mainly contribute to the expansion of 
the PYL gene family. Remarkably, pear and apple expe-
rienced the recent WGD event [32–34], so the num-
ber of PYL genes was more abundant in Chinese white 
pear and apple than in other species. The number of 
WGD duplications in apple and Chinese white pear 
were 11 and 6, but there were just one in Japanese 
apricot, European pear, black raspberry and straw-
berry. The number of dispersed duplication accounted 
for a large proportion of replication modes in each 
Rosaceae species, with the highest percentage in Japa-
nese apricot and European pear (85.7%), and with the 
lowest percentage in apple (47.6%). Both WGD and 
dispersed duplication events play important roles in 
apple and Chinese white pear. The dispersed dupli-
cation events occurred more frequent than WGD in 
Rosaceae species except apple.

The PYL family genes were randomly distributed on 
different chromosomes in each species. For Chinese 
white pear, 10 of 11 PbrPYL genes were distributed on 
8 of the 17 chromosomes while PbrPYL1 was located 
on scaffold984.0 (Fig. 2A and Supplementary Table 1). 
Furthermore, intra-genomic collinearity of PYL gene 
family was investigated in each of eight Rosaceae spe-
cies. 6 pairs was found in Chinese white pear, 3 pairs 
in European pear, 11 pairs in apple, 2 pairs in Japa-
nese apricot, and one pair in strawberry, peach, sweet 
cherry and black raspberry (Fig.  2A-H and Supple-
mentary Table  2). Further, the collinear correlation of 
the PYL genes between Chinese white pear and the 
other seven Rosaceae species were identified. A total 
of 81 pairs were found including 13, 1, 13, 13, 14, 12 
and 14 collinear gene pairs between Chinese white pear 
with strawberry, apple, sweet cherry, Japanese apricot, 
peach, European pear and black raspberry (Fig. 2I and 
Supplementary Table 2). The results suggest that a con-
served collinearity relationship between Chinese white 
pear and the other seven Rosaceae species.

Table 1 Numbers of PYL gene pairs from different origins in 8 Rosaceae genomes

Species name No. of PYL gene 
pairs

WGD Tandem Proximal Transposed  Dispersed

P. bretschneideri 17 6 (35.3%) 0 0 1 (5.9%) 10 (58.8%)

M. domestica 21 11 (52.4%) 0 0 0 10 (47.6%)

P. persica 9 3 (33.3%) 0 0 0 6 (66.7%)

P. mume 7 1 (14.3%) 0 0 0 6 (85.7%)

P. communis 7 1 (14.3%) 0 0 0 6 (85.7%)

R. occidentalis 9 1 (11.1%) 1 (11%) 0 0 7 (77.8%)

F. vesca 10 1 (10%) 1 (10%) 0 1 (10%) 7 (70%)

P. avium 7 2 (28.6%) 0 0 0 5 (71.4%)
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PYL genes evolved under strong purifying selection
Deleterious mutations can be eliminated by negative (puri-
fying) selection and advantageous mutations can be accu-
mulated by positive (Darwinian) selection [35]. To detect 
the selection pressure of PYL genes, we estimated the Ka, 
Ks and Ka/Ks values of paralogous PYL gene pairs in the 
eight Rosaceae species (Table 2). The strength and direction 
of selection pressure have been widely measured based on 
Ka/Ks ratio (Ka/Ks > 1: positive selection; Ka/Ks = 1: neutral 

evolution; Ka/Ks < 1: negative selection) [36]. All Ka/Ks 
ratios of the paralogous genes were less than one (Table 2), 
suggesting that purifying selection was the main driving 
force of PYL family gene evolution in Rosaceae species.

Expression pattern of PYL family genes in different pear 
tissues
To analyze the expression levels of PYL family genes in 
different pear tissues, previously published RNA-seq 

Fig. 2 Chromosomal localization and syntenic relationships of PYL genes in eight Rosaceae species. A Chinese white pear; B European pear; C black 
raspberry; D apple; E peach; F strawberry; G sweet cherry; H Japanese apricot; I: The collinear correlation of the PYL is displayed between Chinese 
white pear and seven other Rosaceae species. PYL genes are mapped on different chromosomes and syntenic gene pairs are linked by colored lines
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Table 2 Gene duplication events identified and Ka, Ks and Ka/Ks analysis in PYL gene family

Species names Duplicated 
modes

Duplicate gene 1 Duplicate gene 2 Ka Ks Ka/Ks P-Value

Fragaria vesca WGD FvH4_7g16220.1 FvH4_7g31130.1 0.111809 3.47965 0.0321323 2.44E-67

TD FvH4_3g07710.1 FvH4_3g07720.1 0.165144 1.18186 0.139732 9.47E-16

TRD FvH4_3g16470.1 FvH4_7g31130.1 0.0191826 1.0173994 0.0188545423 0.714904

DSD FvH4_2g32040.1 FvH4_5g22060.1 0.344001 3.50477 0.0981522 6.13E-29

FvH4_3g07710.1 FvH4_7g25180.1 0.341964 3.3568 0.101872 0

FvH4_3g07720.1 FvH4_6g10740.1 0.471614 3.64497 0.129388 0

FvH4_5g22060.1 FvH4_6g10740.1 0.425737 3.4844 0.122184 0

FvH4_6g10740.1 FvH4_7g25180.1 0.216804 3.4798 0.0623035 2.18E-56

FvH4_7g16220.1 FvH4_7g25180.1 0.376761 3.50493 0.107495 0

FvH4_7g31130.1 FvH4_6g10740.1 0.514944 3.70463 0.139 2.75E-35

Malus domestica WGD MD01G1078900 MD01G1216100 0.11464 3.5566 0.032233 4.33E-47

MD01G1158500 MD07G1227100 0.0268639 0.314949 0.085296 2.40E-14

MD01G1216100 MD07G1286000 0.0115856 0.133633 0.0866976 5.77E-08

MD01G1078900 MD07G1147700 0.0116527 0.204397 0.0570102 5.83E-11

MD01G1078900 MD07G1286000 0.109027 3.94655 0.0276258 1.02E-45

MD01G1216100 MD07G1147700 0.106375 3.57085 0.0297899 4.11E-47

MD04G1165000 MD12G1178800 0.0815507 0.404153 0.201782 9.88E-12

MD06G1034000 MD16G1274400 0.0388825 0.40891 0.0950881 1.04E-14

MD07G1147700 MD07G1286000 0.103343 2.90561 0.0355667 3.77E-45

MD07G1227100 MD12G1178800 0.204621 3.1111 0.0657712 9.49E-30

MD08G1043500 MD15G1060800 0.0463626 0.135679 0.341708 0.00562685

DSD MD01G1078900 MD07G1227100 0.379574 3.53939 0.107243 5.31E-39

MD01G1158500 MD04G1165000 0.203633 3.56206 0.0571672 2.27E-37

MD01G1216100 MD04G1165000 0.452985 3.6647 0.123608 3.47E-37

MD04G1165000 MD07G1227100 0.190499 3.52175 0.0540923 1.83E-33

MD05G1300200 MD07G1227100 0.34931 3.51504 0.0993757 5.12E-38

MD06G1034000 MD08G1043500 0.350207 3.51566 0.0996134 0

MD07G1147700 MD04G1165000 0.389925 3.52186 0.110716 2.95E-31

MD08G1043500 MD16G1274400 0.33648 3.49283 0.0963343 0

MD15G1060800 MD16G1274400 0.347433 3.541 0.0981174 8.11E-43

MD16G1274400 MD07G1227100 0.416881 3.51859 0.11848 1.07E-40

Prunus avium WGD Pav_sc0000591.1_g120.1.mk Pav_sc0001335.1_g500.1.mk 0.111293 3.47319 0.0320435 1.63E-53

Pav_sc0000057.1_g050.1.mk Pav_sc0001341.1_g250.1.mk 0.206769 3.45147 0.0599077 4.40E-42

DSD Pav_sc0000037.1_g470.1.mk Pav_sc0001341.1_g250.1.mk 0.338981 3.35285 0.101102 3.39E-29

Pav_sc0000057.1_g050.1.mk Pav_sc0004290.1_g030.1.mk 0.427881 3.4789 0.122993 0

Pav_sc0000591.1_g120.1.mk Pav_sc0001341.1_g250.1.mk 0.384841 3.48093 0.110557 5.31E-29

Pav_sc0001335.1_g500.1.mk Pav_sc0001341.1_g250.1.mk 0.412724 3.52279 0.117158 0

Pav_sc0001341.1_g250.1.mk Pav_sc0004290.1_g030.1.mk 0.418773 3.45463 0.121221 1.32E-25

Pyrus bretschneideri WGD Pbr027457.1 Pbr013616.1 0.119033 3.57341 0.0333107 1.31E-44

Pbr013616.1 Pbr010794.1 0.0157776 0.154226 0.102302 5.42E-08

Pbr027457.1 Pbr010794.1 0.11267 3.57425 0.0315229 2.57E-52

Pbr016128.1 Pbr000497.1 0.0796357 0.14881 0.535151 0.0896506

Pbr028222.1 Pbr019415.1 0.0610577 0.46577 0.13109 1.79E-15

Pbr019827.1 Pbr036422.1 0.0417345 0.113073 0.369095 0.0074364

TRD Pbr042468.1 Pbr036422.1 0.348505 3.50604 0.0994014 0
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Table 2 (continued)

Species names Duplicated 
modes

Duplicate gene 1 Duplicate gene 2 Ka Ks Ka/Ks P-Value

DSD Pbr000497.1 Pbr028222.1 0.422075 3.58091 0.117868 3.81E-26

Pbr009570.1 Pbr019415.1 0.201551 3.53735 0.056978 4.32E-43

Pbr010794.1 Pbr019415.1 0.522478 3.65444 0.142971 1.25E-36

Pbr013616.1 Pbr019415.1 0.480095 3.65137 0.131483 5.60E-31

Pbr016128.1 Pbr009570.1 0.345165 3.50627 0.0984424 8.68E-36

Pbr019415.1 Pbr042468.1 0.385776 3.51598 0.109721 2.49E-37

Pbr019827.1 Pbr042468.1 0.34476 3.50929 0.0982423 0

Pbr027457.1 Pbr009570.1 0.376167 3.51597 0.106988 2.43E-37

Pbr028222.1 Pbr042468.1 0.387427 3.52701 0.109846 2.84E-44

Pbr036422.1 Pbr009570.1 0.392733 3.53164 0.111204 4.54E-24

Pyrus communis WGD pycom01g10720 pycom07g14670 0.0244846 0.16692 0.146685 9.06E-08

pycom12g16880 pycom04g14710 0.0796933 0.362637 0.21976 3.32E-10

pycom16g24460 pycom06g02810 0.0364341 0.429431 0.0848428 3.92E-15

DSD pycom01g10720 pycom07g20570 0.401604 3.53454 0.113622 6.03E-37

pycom04g14710 pycom07g20570 0.236098 3.51749 0.0671212 5.83E-29

pycom06g02810 pycom07g20570 0.427578 3.526 0.121264 2.32E-37

pycom07g14670 pycom07g20570 0.430594 3.50067 0.123003 1.81E-36

pycom07g20570 pycom12g16880 0.217137 3.00525 0.0722526 6.48E-30

pycom12g16880 pycom16g24460 0.400614 3.5472 0.112938 2.42E-38

Prunus mume WGD Pm018396 Pm019775 0.111453 3.47718 0.0320528 1.07E-55

DSD Pm002844 Pm018987 0.211125 3.46082 0.0610044 1.70E-38

Pm005489 Pm023250 0.337261 3.5912 0.0939129 3.91E-44

Pm010233 Pm018987 0.303213 3.28914 0.092186 0

Pm018396 Pm018987 0.366869 3.45993 0.106034 0

Pm018987 Pm023250 0.423619 3.43084 0.123474 0

Pm019775 Pm018987 0.42043 3.61373 0.116342 1.06E-42

Prunus persica WGD Prupe.2G185800.1 Prupe.2G308200.1 0.110113 3.58704 0.0306975 2.88E-52

DSD Prupe.1G413500.1 Prupe.5G036800.1 0.350907 3.56861 0.0983314 2.98E-41

Prupe.2G185800.1 Prupe.2G256700.1 0.371103 3.44492 0.107725 0

Prupe.2G256700.1 Prupe.6G284000.1 0.213853 3.4239 0.062459 1.50E-40

Prupe.2G308200.1 Prupe.6G284000.1 0.401603 3.54339 0.113339 0

Prupe.4G062100.1 Prupe.6G284000.1 0.389699 3.47765 0.112058 1.04E-22

Prupe.5G036800.1 Prupe.2G256700.1 0.42 3.4189 0.122847 0

Rubus occidentalis WGD Ro07_G18701 Ro07_G34681 0.101014 3.49716 0.0288844 2.92E-50

TD Ro03_G05255 Ro03_G05254 0.121703 1.65984 0.0733222 3.83E-22

DSD Ro02_G04464 Ro05_G07357 0.355936 3.46687 0.102668 8.77E-32

Ro03_G05254 Ro07_G04754 0.302499 3.42801 0.0882432 1.57E-41

Ro03_G05255 Ro07_G04754 0.33339 3.44744 0.0967064 2.86E-36

Ro05_G07357 Ro06_G05644 0.399903 3.4264 0.116712 4.02E-28

Ro06_G05644 Ro07_G04754 0.31105 3.54625 0.0877124 9.65E-27

Ro07_G04754 Ro07_G18701 0.356946 3.48012 0.102567 4.36E-41

Ro07_G34681 Ro07_G04754 0.439223 3.51407 0.12499 0
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data was analyzed including mature pollen, seed, sepal, 
petal, ovary, bud, stem, leaf and fruit (Fig. 3 and Supple-
mentary Table 3). The transcript abundances of four PYL 
genes (PbrPYL2, PbrPYL3, PbrPYL10 and PbrPYL11) in 
all experimental tissues were hardly detected. PbrPYL1, 
PbrPYL7, PbrPYL8 and PbrPYL9 were expressed in all 
the different pear tissues, whereas PbrPYL7 and PbrPYL8 
were expressed at higher levels, indicating their roles in 
different tissue growth and development. Most PbrPYL 
genes were expressed in mature fruits except PbrPYL2, 
PbrPYL3, PbrPYL10 and PbrPYL11. Most PbrPYL genes 
presented no or very low expression levels in pollen 
except PbrPYL7, PbrPYL5 and PbrPYL9 showed higher 
expression levels in leaf than other tissues. Moreover, 
PbrPYL1, PbrPYL4, PbrPYL7, PbrPYL8 and PbrPYL9 
were expressed in ungerminated mature seeds.

Expression analysis of PbrPYLs during ABA treatment 
and seed germination
Previous research has shown that dormant seed coats 
produce ABA to suppress embryo germination [37, 38]. 
Therefore, pear seed coats were peeled to prevent ABA 
interference and accelerate germination. As expected, the 
uncoated seeds treated with water successfully germinated 
in 36 h (Fig. 4A). However, the seeds treated with ABA for 
36 h did not germinate as well as control treated for 0 h 
(Fig. 4A). As the ABA receptors, the PYL family has been 
reported to play an important role in seed germination 
[18, 39]. To better reveal the functions of PYLs in the ABA 
signal pathway during the seed germination, 11 PbrPYL 

genes were detected using qRT-PCR. Consistent with the 
transcriptome data in seed (Fig.  3), just PbrPYL7, Pbr-
PYL8 and PbrPYL9 genes of the 11 PYL genes were much 
greater expressed than those of the other PYLs expressed 
in seeds (Fig. 4B). Moreover, PbrPYL7, PbrPYL8 and Pbr-
PYL9 of subfamily II were significantly lower expressed in 
the germinated embryos (36 h-H2O) than in the dormant 
embryos (0 and 36  h-ABA treatment) (Fig.  4B). Con-
versely, the expression of other PbrPYL genes except the 
PbrPYL7, PbrPYL8 and PbrPYL9 genes were low or and 
almost not expressed. Although the low expression of Pbr-
PYL2, PbrPYL3, PbrPYL4, PbrPYL5, PbrPYL6, PbrPYL10 
and PbrPYL11, they were most strongly expressed in the 
germinated embryos than dormant embryos (Fig.  4B). 
The expression of PbrPYL2, PbrPYL3, PbrPYL4, PbrPYL5, 
PbrPYL6, PbrPYL10 and PbrPYL11 increased dramati-
cally at 36 h after germination, whereas that of PbrPYL1, 
PbrPYL7, PbrPYL8 and PbrPYL9 decreased substantially. 
Upon exogenous ABA treatment during germination, 
the trends of gene expression were somewhat changed 
(Fig. 4B). Therefore, ABA can inhibit germination of the 
uncoated seed. Meanwhile, this significant change of Pbr-
PYL genes indicates that PYLs play critical and various 
roles in ABA-mediated seed germination.

Expression analysis of PbrPYLs in pear seedling 
under different treatments
In this study, the expression patterns of 11 PbrPYL family 
genes were detected by qRT-PCR, and the results showed 
transcriptional changed under heat, cold, drought, NaCl, 

Fig. 3 Relative gene expression of PbrPYLs in pollen, seed, petal, sepal, overy, stem, bud, mature leaves, and mature fruit was determined by 
RNA-Seq from Dangshan pear. RPKM, reads per kilobase of exon model per million mapped reads
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or ABA treatment, suggested that the response of Pbr-
PYLs to multiple stresses is a dynamic process (Fig.  5 
and Supplementary Table  5). The expression levels of 
PbrPYL7, PbrPYL8 and PbrPYL9 remain very high under 
different treatments, while PbrPYL4 and PbrPYL6 were 
hardly detected during all treatments. Although other 
six PbrPYL genes were expressed at lower levels, their 
expression levels were altered at different time points 
in response to various treatments (Fig.  5). For heat 
treatment, three genes of PbrPYL7, PbrPYL8 and Pbr-
PYL9 tended to be observably up-regulated at 12 h and 
decreased at 24  h. Four genes (PbrPYL2, PbrPYL3, Pbr-
PYL10 and PbrPYL11) were significantly up-regulated at 

24 h. PbrPYL5 was induced rapidly at 6 h and decreased 
at 12 and 24 h (Fig. 5). Under cold treatment, the genes 
of PbrPYL1, PbrPYL2, PbrPYL7, PbrPYL8, PbrPYL9, 
PbrPYL10 and PbrPYL11 did not change significantly 
at 6 h after treatment, but up-regulated at 24 h (Fig. 5). 
Under drought or NaCl treatment, most genes had simi-
lar expression patterns, PbrPYL7, PbrPYL8 and Pbr-
PYL9 genes were significantly up-regulated at 12  h, 
while there was no significant difference at 24  h. Other 
genes were significantly up-regulated at 24  h (Fig.  5). 
Under ABA treatment, the genes of PbrPYL1, PbrPYL2, 
PbrPYL5, PbrPYL7, PbrPYL10 and PbrPYL11 were up-
regulated rapidly at 6  h. All the genes except PbrPYL5 

Fig. 4 Seed treatment and expression analysis of PbrPYL genes. A Coat peeled from seed and treated with ABA and H2O. B Expression levels of 11 
PbrPYL genes under 0 h (dormant embryos), 36 h ABA (dormant embryos) and 36 h H2O (germinated embryos)
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were significantly up-regulated at 24  h (Fig.  5). In addi-
tion, three highly expressed genes, PbrPYL7, PbrPYL8 
and PbrPYL9, had similar expression trend at 12 h under 
heat, drought and NaCl treatments, and observably up-
regulated at 24 h under cold and ABA treatments. Taken 
together, all the nine genes were induced by different 
stresses, but the diverse expression pattern of PbrPYL 
genes may suggest that these genes may be critical to abi-
otic and hormone stress responses.

Subcellular localization of PbrPYL proteins
To investigate the subcellular localization of the PbrPYL 
proteins, three highly expressed genes PbrPYL7/8/9 were 

cloned and individually constructed into a recombinant 
plasmid. Microscopic visualization showed that the GFP 
fluorescence signal of the positive control 35 S-GFP was 
distributed the whole cell, whereas the fluorescence of 
PbrPYL7/8/9-GFP was detected in the cytosol and the 
nucleus (Fig. 6). The results showed that PbrPYL proteins 
were localized in both the cytoplasm and the nucleus, 
which is consistent with the previous research [20, 27]. 
PP2C protein is at the downstream of PYL protein and 
interacts with PYL, which is located in the nucleus [27]. 
PP2C complexes were also localized to the nucleus, even 
if the interacting partners PYL protein were not exclu-
sively localized in the nucleus [20, 27]. This indicates that 

Fig. 5 Expression analysis of PbrPYL genes under heat, cold, drought, NaCl, and ABA treatments in pear seedling. The bars display the relative gene 
expression levels, calculated based on the  2−ΔΔCt method. The expression levels are equal to the mean values and transform  log2 values



Page 11 of 16Wang et al. BMC Genomics          (2022) 23:233  

the PYL may function as a nuclear ABA receptor in the 
regulation ABA-dependent gene expression.

Discussion
Gene structure and evolution
ABA is directly perceived by the PYL receptor, which 
plays an important role in initiating the ABA signaling 
pathway [18, 40]. The identification and function of PYL 
genes have been studied in many model species, such 
as Arabidopsis [7], Oryza sativa [15, 27] and Solanum 
lycopersicum [41]. However, the knowledge of the PYL 
gene family is very limited in the Rosaceae species. In 
present study, a genome wide comprehensive analysis of 
PYL genes from 8 Rosaceae species was carried out, and 
their potential role in pear seed development was subse-
quently investigated. A total of 67 PYLs in the 8 Rosaceae 
species were identified based on the similarity to 14 
AtPYLs. The numbers of PYLs across 8 different Rosaceae 
species ranges from 6 to 13, including 13 in apple, 11 in 
Chinese white pear, 8 in strawberry, 8 in black raspberry, 

7 in European pear, 7 in Japanese apricot, 7 in peach and 
6 in sweet cherry. Meanwhile, chromosomal distribution 
of PYL genes across 8 Rosaceae species showed uneven 
distribution (Fig. 2). Based on phylogenetic analysis with 
Arabidopsis homologs, 67 PYLs can be broadly classi-
fied into three clusters: subfamilies I, II and III (Fig. 1A), 
which is consistent with the classification of PYL genes 
in other plant species [28, 29]. The number and composi-
tion of conserved motifs varied in each PYL subfamilies 
(Fig. 1B). All 67 PYL protein contained motif 1, motif 2 
and motif 3, indicating a highly conserved function of 
this family. Phylogeny analysis of PYL genes showed that 
similar motifs exist in each subfamily, such as motif 4 
and motif 7 were specific to subfamily I and subfamily 
III, respectively (Fig. 1). PYL genes of the same subfamily 
have similar unique/specialized biological functions, but 
their functions remain unclear.

Gene duplication events can be generally divided into 
five types, including WGD, TD, PD, DSD and TRD, 
which could drive gene family expansion in eukaryotes 

Fig. 6 Subcellular localization of the fusion protein PbrPYLs-GFP in N. benthamiana leaves. The vector 35 S-GFP was used as the control. Bar 
= 20 μm
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[42, 43]. WGD events can generate a large number of 
duplicate genes in a short period of time [44]. WGD and 
small-scale duplication events are not only the main fea-
tures of eukaryotic genome evolution, but also the main 
driving force of new functions in the genome and genetic 
evolutionary system [43]. Gene families, such as heat-
shock transcription factors, SWEET and F-box families, 
expanded primarily through WGD and DSD [45–47]. 
However, the expansions of WRKY and AP2/ERF gene 
families mainly resulted from TD events [48, 49]. In this 
study, WGD and DSD were found to be the main driv-
ing forces for the expansion of the PYL gene family in 
8 Rosaceae species. Meanwhile, the number of DSDs 
account for a large proportion of gene duplications and 
made primary contributions in the expansion of PYL 
genes (Table 1). In addition, evolutionary analysis based 
on the Ka, Ks and Ka/Ks, suggesting that purifying selec-
tion were the primary evolutionary force imposing on 
PYL family genes in 8 Rosaceae species (Table 2).

Regulation of gene expression
Analyzing the expression pattern of pear PYL genes 
across the broad spectrum of various tissues, develop-
mental stages and stress treatments will help further 
understand the physiological and developmental func-
tions of PbrPYL. The PYL genes expression pattern in 
different tissues has been studied in many species. The 
expression levels of most PYL genes in soybean seeds 
were higher than those in other tissues [50]. The tran-
scription level of PYLs showed much higher in seeds 
of oilseeds during germination than in other vari-
ous tissues [51]. The transcription level of PYLs was 
highly abundant in latex of rubber tree [52]. PYLs were 
expressed at a higher level in the callus of B. rapa than 
in other tissues [53]. We analyzed the PbrPYL genes 
expression patterns in the various tissues of ‘Dang-
shang’ pear. The result shows that PbrPYL1, PbrPYL4, 
PbrPYL5, PbrPYL6, PbrPYL7, PbrPYL8 and PbrPYL9 
showed higher expression potential in different tis-
sues, suggesting that these PYLs have multiple roles 
throughout the growth and development. Furthermore, 
we found that all 3 members (PbrPYL7, PbrPYL8 and 
PbrPYL9) of subfamily II showed much higher expres-
sion potential in different tissues (Figs. 3 and 4). How-
ever, other PbrPYL genes in all of the various tissues 
were nearly zero, indicating that the functions of these 
PbrPYL genes are not required (Fig. 3). Meanwhile, the 
results showed that only PbrPYL1, PbrPYL4, PbrPYL7, 
PbrPYL8 and PbrPYL9 were highly expressed in dor-
mant embryos (Fig. 3).

ABA acts as a primary mediator in seed dormancy 
and germination [37, 38]. In this study, uncoated seeds 
germinated for 36  h under water treatment, but there 

was no significant change at the same time under ABA 
treatment (Fig.  4A). This indicates that ABA inhibited 
seeds germination, which was consistent with previ-
ous studies [24, 38]. PYL gene family as ABA receptors 
starts from ABA sensing and plays an important role in 
ABA-mediated seed germination. The OsPYL7, OsPYL8 
and OsPYL9 in rice have been shown to play important 
role during seed germination and development stage 
[19]. OsPYL/RCAR5 and PYL8/RCAR3 may perform 
critical biological functions in seed germination and 
seedling growth in rice and Arabidopsis [27, 54]. PYL11 
and PYL12 were expressed specifically in mature seeds, 
which positively modulate ABA-mediated seed germi-
nation in Arabidopsis [8]. The Arabidopsis pyr1, pyl1, 
pyl2 and pyl4 single mutants were not sensitive to ABA 
during seed germination, while they quadruple mutant 
was strongly insensitive to ABA [18]. PYL13 overex-
pression mutants were sensitive to ABA during seed 
germination [39]. PYR1, PYL1, PYL2 or PYL4 overex-
pression mutants can increase sensitivity to ABA-medi-
ated inhibition during seed germination [55]. Among 
the 11 PYL genes detected in pear, the expression of 7 
PbrPYL were up-regulated during seed germination 
and 4 PbrPYL were down-regulated by exogenous ABA. 
This result indicates the diversity of the expression pat-
terns and multiple roles of PYLs in ABA signaling.

ABA has been reported to play crucial roles in respond-
ing to multiple abiotic stresses, such as heat, cold, drought 
and salinity [56, 57]. ABA was produced rapidly in 
response to multiple stresses and then regulates the stress 
response. PYL as the ABA receptor was involved in the 
initial step under multiple abiotic stresses [20, 28, 29]. In 
this study, qRT-PCR analysis showed that all the PbrPYLs 
were almost up-regulated by one or more different abiotic 
stresses (heat, cold, drought and NaCl) and ABA treat-
ment at seedling stage, except PbrPYL4 and PbrPYL6, the 
expression of which were too low to be detected. This sug-
gests that PYLs play important roles in stress responses 
and ABA treatment of pear. By contrast, the expression 
patterns of all 3 subfamily II members (PbrPYL7, PbrPYL8 
and PbrPYL9) were up-regulated many folds than control 
under four different abiotic stresses and ABA treatment. 
These PbrPYLs may be utilized to improve the tolerance of 
pear seedling under abiotic stresses and ABA treatment.

Conclusions
In conclusion, 67 PYL genes were identified in eight 
Rosaceae species and classified into three subgroups. 
WGD and DSD were major contributions to PYL fam-
ily expansion. Purifying selection was the major force in 
PYL gene evolution. The qRT-PCR analyses of 11 PbrPYL 
genes revealed multifaceted critical roles of PYL in seed 
germination as well as abiotic stress responses. This study 
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provides a basis for further elucidation of the function 
of PYL genes and analysis of their expansion, evolution 
and expression patterns, which helps to understand the 
molecular mechanism of pear in response to seed germi-
nation and seedling abiotic stress.

Materials and methods
Identification of PYL genes in pear and other Rosaceae 
species
To identify the PYL gene family in Chinese white pear and 
other seven Rosaceae species, multiple database searches 
were performed. The Chinese white pear (Pyrus bretsch-
neideri) genome sequence was retrieved from the Pear 
Genome Project (http:// pearg enome. njau. edu. cn/) [34]. 
The Japanese apricot (Prunus mume) genome sequence was 
obtained from Prunus mume Genome Project (http:// prunu 
smume genome. bjfu. edu. cn/ index. jsp). The apple (Malus 
domestica), the European pear (Pyrus communis), peach 
(Prunus persica), strawberry (Fragaria vesca), sweet cherry 
(Prunus avium) and black raspberry (Rubus occidentalis) 
genomic datasets were downloaded from the Genome Data-
base of Rosaceae (GDR) (http:// www. rosac eae. org). Arabi-
dopsis PYL genes were downloaded from TAIR (http:// 
www. arabi dopsis. org/) [18] and used as query to identify 
PYL members in eight Rosaceae species (Supplementary 
Table 1). A local TBLASTN (version 2.2.26, Bethesda, MD, 
USA) search was performed and the E-value threshold was 
set at 1 ×  e− 10 to obtain the candidate PYL genes.

Phylogenic and conservative motif analysis of PYL family 
members
The phylogenetic trees were constructed by MEGA7.0 
[58] using the full-length protein sequences of PYL from 
eight Rosaceae species. Neighbor-Joining (NJ) algorithm 
with a matrix of pairwise distances estimated was per-
formed for amino acid sequences. 1000 replicates were 
carried out for Bootstrap analysis. All full-length amino 
acid sequences of the PYLs were analyzed for conserved 
motifs by online MEME (http:// meme- suite. org/). The 
conserved domains of PYL were analyzed by online Con-
served Domain Database (CDD) (https:// www. ncbi. nlm. 
nih. gov/ cdd). The gene structure of PbrPYLs was ana-
lyzed online by the GENE Structure display (GSDS 2.0) 
website (http:// gsds. gao- lab. org/). The 2000  bp genomic 
sequences upstream of PbrYPLs were extracted, and the 
cis-acting elements in the promoter region were analyzed 
by PlantCARE (http:// bioin forma tics. psb. ugent. be/ webto 
ols/ plant care/ html/).

Chromosomal location and synteny analysis of PYL genes
Chromosomal location information of PYL genes were 
obtained from genome annotation files of eight Rosaceae 

species and displayed using the TB-tools software [59]. 
The synteny analysis among eight Rosaceae genomes was 
performed using the method implemented in the PGDD 
(http:// chibba. agtec. uga. edu/ dupli cation/) [60]. Potential 
homologous gene pairs were identified using BLASTP 
(E < 1 e–5, top 5 matches). And the homolog pairs and 
gene location information were analyzed by MCScanX to 
identify syntenic chains [61]. Afterward, DupGen_finder 
was further employed for whole-genome (WGD), tan-
dem (TD), proximal (PD), transposed (TRD) and dis-
persed (DSD) duplications of PYL family genes [62]. The 
results were visualized using the TB-tools software [59].

Calculating values of Ka, Ks and Ka/Ks
The nonsynonymous (Ka) and synonymous (Ks) substi-
tution rates and Ka/Ks ratios were calculated for valid 
gene pairs by KaKs_Calculator 2.0 with a model-averaged 
method and default parameters [63].

Expression analysis of PYL in different tissues
The transcriptome data of ‘Dangshansuli’ different tis-
sues were used to analyze the expression patterns of PYL 
family members. The transcriptome data of different tis-
sues were obtained from our previously published stud-
ies and unpublished data [34, 64, 65], including pollen, 
seed, petal, sepal, ovary, stem, bud, leaf and fruit. RNA-
Seq raw data were obtained from the Sequence Read 
Archive (https:// www. ncbi. nlm. nih. gov/ biopr oject/) with 
the accession numbers PRJNA503323 and PRJNA498777 
[64]. The RPKM values were used to estimate the gene 
expression abundances.

Plant materials treatment and qRT-PCR analysis
‘Cuiguan’ pear (Pyrus pyrifolia Nakai) seeds were 
obtained from the pear germplasm orchard of Pear Engi-
neering Technology Research Center of Nanjing Agri-
cultural University situated at Baima in Nanjing with the 
permission. Seeds with seed coat peeled were treated 
with water or 1 ppm ABA. Seeds were placed on mois-
tened gauze in a growth chamber at 25 ± 1 °C with dark 
and 60% relative humidity, and then collected in 0 h, 36 h 
(ABA treatment) and 36 h (water treatment). Germinated 
seeds were sowed in plastic pots. Seedlings were grown in 
a growth chamber for five weeks (the photoperiod 16/8 h, 
the temperature 25 ± 1  °C) and then exposed to vari-
ous stresses. Seedlings were exposed to 4 and 37  °C for 
cold and heat treatment, respectively. For NaCl, drought 
stress and ABA treatments, the seedlings were cultured 
in 200 mM NaCl, 20% PEG 6000, and 100 µM ABA. The 
conditions of stress treatments were referenced by previ-
ous reports [19]. All treated samples and blank controls 
were collected in continuous time intervals of 6, 12 and 
24 h, respectively. The samples were immediately frozen 
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https://www.ncbi.nlm.nih.gov/bioproject/
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in liquid nitrogen, and stored at − 80  °C until use. Total 
RNA was extracted using RNAprep Pure Plant Kit (Tian-
gen, Beijing, China). The extracted total RNAs were 
synthesized the first-strand cDNA using TransScript 
One-Step gDNA Removal and cDNA synthesis Supermix 
(TransGen, Beijing, China). The primers of all the PYL 
family genes were designed using Primer Premier 6.0 and 
listed in Supplementary Table 4. The qRT-PCR was car-
ried out using a LightCycler 480 SYBRGREEN I Master 
(Roche, USA). The tubulin gene of pear was used as the 
reference. All reactions were carried out with three inde-
pendent biological replicates. The genes expression levels 
were calculated with the  2−ΔΔCt method.

Subcellular localization of the PYL genes
The full-length PbrPYL coding sequences without the 
termination codon were cloned from pear, and direc-
tionally inserted into the pCAMBIA1300-35  S: CDS-
GFP vector. Primers used for cloning were listed in 
Supplementary Table  4. The recombinant plasmids 
and the control plasmid (pCAMBIA1300-35  S alone) 
were individually transformed into Agrobacterium 
tumefaciens strain GV3101. 30-day-old tobacco (Nico-
tiana benthamiana) leaves were used for agrobacte-
rial injection according to the published protocol [66]. 
DAPI staining was used to indicate the nucleus. The 
fluorescence was imaged using a confocal microscope 
LSM780 (Zeiss LSM 780, Germany).
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