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Abstract 

Background: The application of RNA-seq technology has become more extensive and the number of analysis proce-
dures available has increased over the past years. Selecting an appropriate workflow has become an important issue 
for researchers in the field.

Methods: In our study, six popular analytical procedures/pipeline were compared using four RNA-seq datasets from 
mouse, human, rat, and macaque, respectively. The gene expression value, fold change of gene expression, and statis-
tical significance were evaluated to compare the similarities and differences among the six procedures. qRT-PCR was 
performed to validate the differentially expressed genes (DEGs) from all six procedures.

Results: Cufflinks-Cuffdiff demands the highest computing resources and Kallisto-Sleuth demands the least. Gene 
expression values, fold change, p and q values of differential expression (DE) analysis are highly correlated among 
procedures using HTseq for quantification. For genes with medium expression abundance, the expression values 
determined using the different procedures were similar. Major differences in expression values come from genes 
with particularly high or low expression levels. HISAT2-StringTie-Ballgown is more sensitive to genes with low expres-
sion levels, while Kallisto-Sleuth may only be useful to evaluate genes with medium to high abundance. When the 
same thresholds for fold change and p value are chosen in DE analysis, StringTie-Ballgown produce the least number 
of DEGs, while HTseq-DESeq2, -edgeR or -limma generally produces more DEGs. The performance of Cufflinks-Cuffdiff 
and Kallisto-Sleuth varies in different datasets. For DEGs with medium expression levels, the biological verification rates 
were similar among all procedures.

Conclusion: Results are highly correlated among RNA-seq analysis procedures using HTseq for quantification. Dif-
ference in gene expression values mainly come from genes with particularly high or low expression levels. Moreover, 
biological validation rates of DEGs from all six procedures were similar for genes with medium expression levels. 
Investigators can choose analytical procedures according to their available computer resources, or whether genes of 
high or low expression levels are of interest. If computer resources are abundant, one can utilize multiple procedures 
to obtain the intersection of results to get the most reliable DEGs, or to obtain a combination of results to get a more 
comprehensive DE profile for transcriptomes.
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Background
In recent years, RNA sequencing (RNA-seq) technology 
has developed rapidly, enabling the analysis of differen-
tial expression for transcriptomes in many fields. As the 
application has become more widespread, the number 
of software programs used for RNA-seq analysis has 
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increased. Hundreds of programs, each with unique 
characteristics and applications, are used by research-
ers world-wide [1]. While experienced researchers may 
have good understanding of the available software and 
have their personal application preferences, for many 
researchers, especially those new to the field, choosing 
the appropriate software for analysis could be challeng-
ing. The existence of many analytical procedures pro-
vides more options for researchers and the appropriate 
software may be chosen based on the scientific prob-
lems to be solved as well as the computing resources 
available [2].

RNA-seq analytical procedures can be classified into 
two categories: reference and non-reference genome 
analyses. Regardless of the procedure selected, four 
phases, alignment and assembly, quantification, normali-
zation, differential expression (DE) analysis, are generally 
required to determine the differentially expressed genes 

(DEGs) between two groups of samples (Fig. 1a) [3]. The 
software employed and the input files required for each 
of four phases differ according to the analytical proce-
dure (Fig. 1a).

Phase 1, the alignment and assembly phase, requires 
data files in the FASTQ format [4] containing the raw 
sequenced reads. The most popular alignment tools used 
in this phase are TopHat [5], HISAT [6], and STAR  [7], all 
of which require a reference genome. HISAT is a widely 
used program at present and it is an advanced version of 
TopHat. It also requires fewer computing resources than 
STAR . All these programs utilize their own algorithms 
to cut and align the reads to adjacent exons in the ref-
erence genome to improve the mapping rate. In some 
cases, the original reads may be spliced and associated 
with software-constructed transcriptomes to improve the 
alignment. The tools used for these procedures, includ-
ing StringTie [8] and Cufflinks [9], can detect de novo 

Fig. 1 A schematic overview of the evaluation workflow. a The six procedures for RNA-seq analysis compared in this article are as follows: (1) 
HISAT2-HTseq-DESeq2; (2) HISAT2-HTseq-edgeR; (3) HISAT2-HTseq-limma; (4) HISAT2-StringTie-Ballgown; (5) HISAT2-Cufflinks-Cuffdiff; (6) Kallisto-Sleuth. 
b Time and memories consumed by each software
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transcripts. Moreover, when the annotation for the refer-
ence genome is incomplete, these tools can effectively fill 
the gap for the missing annotation information.

All the above software tools used in Phase 1 are 
based on an earlier concept of RNA-seq analysis, which 
involves first aligning raw sequencing reads to a reference 
genome and then establishing an association between the 
raw sequencing reads and the transcript. Several research 
teams recently have introduced pseudo-alignment or 
“alignment-free” tools. These tools, including Kallisto 
[10] (Fig. 1a) and Salmon [11], can directly associate the 
raw sequencing reads with the transcript and evaluate 
the gene or transcript expression levels. These processes 
are generally carried out in Phase 2 for the mainstream 
analysis procedures.

Phase 2 in RNA-seq analysis involves evaluating the 
expression level of genes or transcripts according to the 
sequencing reads aligned to the reference genome in 
Phase 1. Previous studies have shown that quantification 
tools have a greater impact on the final DE results than 
alignment tools [12, 13]. Commonly used quantification 
tools include Rcount [14], HTseq [15], StringTie [8], and 
Cufflinks [9] (Fig. 1a). These tools can be divided into two 
groups according to the evaluation standards for gene 
expression which can be based on counts or fragments 
per kilobase of transcript per million mapped reads 
(FPKM) values. Rcount, HTseq, and Kallisto are based on 
counts, while StringTie and Cufflinks are based on FPKM 
values. Both HTseq and Rcount count the reads mapped 
unambiguously to a single gene. HTseq discards the 
reads aligned to multiple positions and those that over-
lap with more than one gene [15], while Rcount assigns 
weights to each alignment of a multiread [14]. Therefore, 
Rcount is better at counting multireads and gene overlap-
ping regions. Generally, when the reads in a dataset have 
good quality and length, unambiguous reads account for 
the majority of the transcriptome. StringTie and Cufflinks 
were developed by the same research team [8, 9]. Both 
quantify the gene expression levels based on FPKM val-
ues. The expression values for different transcripts can be 
determined from the results of these two programs. The 
resulting values for different transcripts of the same gene 
can be combined to obtain the gene expression values for 
DE analysis.

Most analysis procedures used to evaluate gene 
expression based on counts require a third phase, in 
which an expression matrix is constructed using quar-
tile or median normalization methods [16, 17] (Fig. 1a). 
Once an expression matrix is constructed, a matrix of 
expression values can be modeled to determine which 
gene or transcript features are likely to have altered 
expression levels. Earlier studies have shown that 

the normalization methods used in Phase 3 may have 
a major impact on the results of DE analysis [18, 19]. 
Procedures used to evaluate gene expression based on 
FPKM values [20] do not require a third phase; how-
ever, the normalization methods may be slightly inad-
equate in explaining the guanine-cytosine (GC) content 
[21] and read depth [22]. Software tools used for DE 
analysis in Phase 4 include DESeq2[23], edgeR [24], 
limma [25], Ballgown [26], Cuffdiff [9], and Sleuth [27].

Different combinations of analytical tools at these 
four phases generate hundreds of alternative pro-
cedures/pipelines for RNA-seq analysis. Therefore, 
the major challenge in this field is for users to choose 
between many possible methodological options accord-
ing to their needs and to obtain accurate results. Many 
possible combinations of tools have been comparatively 
analyzed to date, but their performance remains under 
discussion [1, 12, 28, 29]. Corchete et  al. performed a 
thorough comparison of 192 pipelines applied to 18 
samples of human cell lines. Based on the precision 
and accuracy of raw gene expression quantification and 
DEG detection, they provided a guide to the different 
procedures for RNA-seq analysis [30].

Here we investigated the differences and character-
istics of the results obtained with six analytical pro-
cedures that are most commonly used for RNA-seq 
analysis to date (Fig. 1a) [3]. We compared five different 
quantification tools, specifically Rcount, HTseq, String-
Tie, Cufflinks, and Kallisto, and six different tools for 
DE analysis, namely DESeq2, edgeR, limma, Ballgown, 
Cuffdiff, and Sleuth. The six analysis procedures were: 
(1) HISAT2-HTseq-DESeq2; (2) HISAT2-HTseq-edgeR; 
(3) HISAT2-HTseq-limma; (4) HISAT2-StringTie-Ball-
gown; (5) HISAT2-Cufflinks-Cuffdiff; (6) Kallisto-Sleuth. 
All six procedures were applied to RNA-seq datasets 
from four different organisms (mouse, human, rat, and 
macaque) to make the results more convincing. Our 
goal is to help researchers determine the optimal ana-
lytical procedure for their needs in terms of the com-
puting resources available, time consumption, and their 
research goals.

Methods
Computing resource and software operating environment
All analyses were performed on the same computer 
equipped with a Microsoft Windows 10 system, 64  GB 
random access memory (RAM), and an Intel Core 
i9-9900 K CPU. The programs that required a Linux sys-
tem were installed in a virtual machine in VirtualBox, 
and the operating system on the virtual machine was Bio-
Linux 8.0.7.



Page 4 of 15Liu et al. BMC Genomics          (2022) 23:232 

Data collection and quality control
An RNA-seq dataset from samples of mouse (Mus mus-
culus) prefrontal cortices was obtained based on previous 
work in our laboratory (NCBI, GSE111708) [31]. FASTQ 
and metadata files from an RNA-seq dataset from sam-
ples of human (Homo sapiens) lymphoblastoid cell lines 
were obtained from the Gene Expression Omnibus 
(ERP001942) [32–34]. The RNA-seq datasets from sam-
ples of rat (Rattus norvegicus) lung tissues and macaque 
(Macaca mulatta) blood were obtained from GSE159668 
[35] and GSE184949 [36] of the Gene Expression Omni-
bus database, respectively. After downloading and 
decompressing the datasets, the integrity of the data was 
checked and quality control was performed with FastQC 
(version 2.11.5). The total number of samples and the 
data sizes for individual samples are presented in Supple-
mentary Table 1.

Alignment
Alignment software can be divided into two types: accu-
rate alignment and pseudo-alignment (Fig.  1a). The ref-
erence genomes used were Mus musculus GRCm38 
for mouse datasets, Homo sapiens GRCh38 for human 
datasets, Rattus norvegicus Rnor6 for rat datasets, and 
Macaca mulatta Mmul10 for macaque datasets. Accu-
rate alignment was executed using HISAT2 (version 
2.1.0). Pseudo-alignment was performed using Kallisto 
(version 0.46.1). For Kallisto, the mapping rate was cal-
culated as the proportion of the pseudo-aligned reads to 
the total reads.

Assembly and quantification
Five different assembly and quantification software pack-
ages were used: Rcount, HTseq, StringTie (version 1.3.4d), 
Cufflinks (version 2.2.1), and Kallisto (Fig. 1a). Samtools 
(version 1.9) was used for the file format conversion 
required during the alignment and quantification steps.

Differential expression analysis
Tools that perform DE analysis include DESeq2 (version 
1.22.2), edgeR (version 3.24.3), limma (version 3.38.3), 
Ballgown (version 2.14.1), Cuffdiff (version 2.2.1), and 
Sleuth (version 3.30.3). Cuffdiff was installed in Bio-
Linux 8.0.7. Other tools were run in the R environment 
(R-3.6.3). DESeq2, edgeR, and the limma package used 
the trimmed mean for M values (TMM) for expression 
normalization.

Correlation analysis
Correlation analysis was performed to compare gene 
expression values, fold changes (FCs), and statistical 
significance. Correlation analysis was performed using 
the cor package in the R environment (R-3.6.3). Pearson 

correlation coefficient was calculated to evaluate the 
correlation of pairwise comparisons. During the com-
parison process, inconsistencies in the number of results 
were inevitable; that is, some genes only appeared in 
the results from one procedure. In these situations, only 
the expressed genes identified in both procedures were 
retained. We defined the top 10% of all retained genes as 
high expression genes, the bottom 10% as low expression 
genes, and the 80% in between as medium abundance 
genes.

Quantitative real‑time polymerase chain reaction
Total RNA was extracted from the mouse prefrontal cor-
tices (PFCs) using TRIzol reagent (Invitrogen) and the 
messenger RNAs (mRNAs) were subsequently extracted. 
A complementary DNA (cDNA) Synthesis Kit (New Eng-
land Biosystems) was used to synthesize cDNA. Quan-
titative real-time polymerase chain reaction (qRT-PCR) 
was performed using the cDNA Synthesis Kit (Kapa Bio-
systems). The sequences for the primers (synthesized in 
Invitrogen) are listed in Supplementary Table  2. Quan-
tification of gene expression was performed in a DNA 
thermocycler (CFX Connect, Bio-Rad) using a three-step 
cycling protocol. The housekeeping gene Gapdh was 
used as an endogenous control to normalize the mRNA 
content in each sample. Normalized mRNA levels were 
quantified using the comparative C(T) method. A DEG 
was confirmed only when FC of mRNA level and p value 
from qRT-PCR met the criteria that |log2FC|> 1 and 
p < 0.01. Verification rates (VR) were defined as the num-
ber of genes that passed validation divided by the total 
number of genes that were assessed using qRT-PCR.

Statistical analysis
Statistical analysis was performed using the GraphPad 
Prism or R packages. All data are represented as the 
mean ± the standard error of the mean (SEM). The statis-
tical significance values for all bioinformatic analyses are 
presented in the results.

Results
Comparison of the computing resources consumed 
by different procedures
To compare the computing resources consumed by dif-
ferent procedures during different phases for different 
species, we performed the same data analysis on four 
sets of RNA-seq data from four model organisms, includ-
ing mouse [31], human [32, 34], rat [35], and macaque 
[36]. The total number of samples and the data size of 
individual samples were presented in Supplementary 
Table 1. Data analysis was performed using our in-house 
computers with a Microsoft Windows 10 system, 64 GB 
RAM, and an Intel Core i9-9900  K CPU. The analysis 
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procedures and software used are listed in Fig. 1a and the 
time consumption for different procedures is shown in 
Fig. 1b.

On our in-house computers, the time required by the 
same software for these four different RNA-seq datasets 
was roughly the same, suggesting that when the sizes of 
the reference genome are comparable, the computational 
resources consumed are practically equal. Comparing 
the time required by different analytical procedures, we 
found that Kallisto exhibited the fastest computing speed 
in Phases 1 and 2. In Phases 3 and 4, the time and com-
puter memory required by Cuffdiff were much higher 
than those for other methods. These results indicate 
that Kallisto-Sleuth may require the least computing 
resources, while Cufflinks-Cuffdiff requires the most.

Comparison of the gene expression levels determined 
with different quantitative methods
To compare the gene expression levels determined by dif-
ferent procedures, we first created MA plots to illuminate 
the relationship between the gene expression level and 
FC of gene expression determined using each procedure 
(Fig. 2a for mouse data; Supplementary Fig. 1a, b, and c 
for human, rat, and macaque data, respectively). It can be 
seen from the MA plots that range for gene expression 
values determined by Procedures 1, 2, and 3 were basi-
cally the same (between  10–2 and  106 for all four datasets). 
The results for Procedure 5, Cufflinks-Cuffdiff, accounted 
for genes with average FPKM between  10–4 and  104. The 
results for Procedure 4, StringTie-Ballgown, accounted 
for genes with average FPKM as low as  10–6, while those 
for Procedure 6, Kallisto-Sleuth, only accounted for genes 
with average counts above 1. These results suggest that 
Procedure 4 is more sensitive to genes with low expres-
sion levels, while Procedure 6 may only be useful to eval-
uate genes with medium to high abundance. The MA plot 
can also reflect the total number of genes evaluated by 
different procedures Because the analytical tools used in 
Phase 2 of Procedure 1, 2, and 3 are the same, the total 
number of genes finally evaluated is the same within each 
dataset, but the total number of genes produced varied 
between different datasets. Procedure 6 yielded the least 
number of genes in all four datasets, which may be due 
to its insensitivity to genes with low expression levels. 
The performance of other procedures varied in different 
datasets (Fig. 2a for mouse data; Supplementary Fig. 1a, 
b, and c for human, rat, and macaque data, respectively).

We next examined the pair-wise correlation of gene 
expression values produced by different quantification 
methods. To simplify the number of comparisons, we 
divided quantitative tools into three groups: 1) Rcount 
and HTseq that evaluate gene expression values as 
counts; 2) StringTie and Cufflinks that use FPKM values; 

and 3) Kallisto that performs pseudo-alignment using 
counts. First, we compared the gene quantitative soft-
ware within each group. If there was a high correlation 
within the group, we selected the most commonly used 
software within the group as the representative tool for 
inter-group comparison.

Upon comparing the results for these four datasets 
gene expression values, we found that the three Proce-
dures that evaluated gene expression values using counts 
(Rcount, HTseq, and Kallisto) showed high correlations 
(Fig. 2b for mouse data; Supplementary Figs. 3, 4 and 5a, 
for human, rat, and macaque data, respectively). The 
Pearson correlation coefficients (R2) between Rcount and 
HTseq were higher than 0.9 and those between Kallisto 
and HTseq were higher than 0.8 in all four datasets. 
Although both StringTie and Cufflinks use FPKM values 
to evaluate gene expression levels, results obtained with 
these tools exhibited poor correlations in all four datasets 
(Fig. 2b for mouse data; Supplementary Figs. 3, 4 and 5a, 
for human, rat, and macaque data, respectively). Algo-
rithms that use counts and FPKM were also compared 
and neither HTseq nor Kallisto correlated well with Cuf-
flinks (Fig.  2b for mouse data; Supplementary Figs.  3, 4 
and 5a, for human, rat, and macaque data, respectively).

To explore the source of differences in the gene 
expression levels obtained with different procedures, 
a logarithmic transformation was performed on the 
gene expression values  [log10(gene expression level)] 
and the Pearson correlation analysis was repeated. The 
pair-wise correlation coefficients among StringTie, Cuf-
flinks, HTseq, and Kallisto were much higher after the 
logarithmic transformation (Supplementary Fig.  2 for 
the mouse dataset; Supplementary Figs. 3, 4 and 5b for 
the human, rat, and macaque datasets, respectively). 
As logarithmic transformation generally reduces dif-
ferences in very high or very low values, these results 
suggested that the source of differences in the gene 
expression levels obtained with different procedures 
may be due to genes with very high or very low expres-
sion levels. Indeed, when genes with the top and bot-
tom 10% expression levels were removed, the Pearson 
correlation coefficients for gene expression levels (with-
out logarithmic transformation) between StringTie, 
Cufflinks, HTseq, and Kallisto were increased in all four 
datasets (Fig. 2c for the mouse dataset and Supplemen-
tary Figs. 3, 4 and 5c for the human, rat, and macaque 
datasets, respectively). Together, these results indicate 
that the differences in gene expression obtained with 
different procedures mainly come from genes with par-
ticularly high or low expression levels. For genes with 
medium abundance, the expression levels determined 
using different procedures were comparable. We also 
found that the correlation coefficients between HTseq 
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and Rcount were very high (Fig. 2b for the mouse data-
set; Supplementary Figs.  3, 4 and  5a, for the human, 
rat, and macaque datasets, respectively), indicating that 
these two methods can be mutually substituted. There-
fore, we used the results from HTseq to perform the 
subsequent normalization and DE analysis procedures 
for Procedures 1, 2, and 3.

Comparison of differentially expressed genes obtained 
with different software
After comparing the gene expression values, we next 
compared FCs for gene expression levels, p values, and 
corrected p values for each gene between two groups of 
RNA-seq samples (control vs. case) obtained from the DE 
analysis software in Phase 3 and 4. We analyzed all these 

Fig. 2 Evaluation and comparison of genes expression levels in the mouse dataset. a MA plots of different analytical procedures. b Comparison of 
gene expression levels evaluated by different quantitative software without any screening. c Comparison of gene expression levels obtained with 
different quantitative software after removing the genes with the top and bottom 10% expression levels. The numbers in brackets represents the 
procedure number. R2 was calculated via Pearson’s correlation analysis
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four different RNA-seq datasets using all six analytical pro-
cedures with the same parameter settings. FC values, p val-
ues, and corrected p values were extracted from the outputs 
of all six procedures for subsequent correlation analysis.

Fold change
Firstly, FC values produced by all six analytical proce-
dures were compared using Pearson correlation analy-
sis. We observed high correlations among the results 
from Procedures 1 (DESeq2), 2 (edgeR), 3 (limma), and 
6 (Sleuth) (all R2 > 0.6, Fig.  3a-d for the mouse dataset; 
Supplementary Figs.  6, 7 and 8a-d for the human, rat, 
and macaque datasets, respectively). Among them, Pro-
cedures 1 and 2 showed the highest level of correlation 
(R2 > 0.9), probably because DESeq2 and edgeR employ 
the same normalization method. Procedures 4 (Ball-
gown) and 5 (Cuffdiff) exhibited poor correlation with 
each other (R2 = 0.190 for the mouse dataset, R2 = 0.466 
for the human dataset, R2 = 0.400 for the rat dataset, and 
R2 = 0.281 for the macaque dataset, Fig. 3h and Supple-
mentary Figs. 6, 7 and 8h). They also showed poor cor-
relation with the other four procedures (Fig. 3e-h for the 
mouse dataset; Supplementary Figs. 6, 7 and 8e–h for the 
human, rat, and macaque datasets, respectively).

To explore the overlapping DEGs among different pro-
cedures, a threshold of |log2FC|> 1 was used to define 
the DEGs and a set of visualization graphics was created 
(Fig. 3i for the mouse data; Supplementary Figs. 6, 7 and 
8i for the human, rat, and macaque datasets, respec-
tively). Procedure 4 produced the least number of DEGs 
in the mouse, human, and rat datasets (18 for the mouse 
dataset, 335 for the human dataset, and 333 for the rat 
dataset), and very few DEGs overlapped with those 
obtained with the other procedures. Procedure 5 pro-
duced the highest number of DEGs (1198 for the mouse 
dataset, 2258 for the human dataset, 1495 for the rat 
dataset, 1742 for the macaque dataset), although only a 
small fraction overlapped with the results from the other 
five procedures (Fig.  3i for the mouse dataset; Supple-
mentary Figs. 6, 7 and 8i for the human, rat, and macaque 
datasets, respectively). Procedures 1, 2, 3, and 6 showed 
high levels of overlap in DEGs, consistent with the Pear-
son correlation analysis.

Together, the above results indicate that FCs of gene 
expression levels from Procedure 1, 2, and 3 show a good 
correlation with each other. When using |log2FC|> 1 as 
the threshold, Procedure 4 generally produces the least 
number of genes, while Procedure 5 yields the highest 
number of genes.

p values and corrected p values (q values)
p values and corrected p values produced by differ-
ent procedures were also compared using Pearson 

correlation analysis (Fig.  4 for the mouse dataset, Sup-
plementary Figs.  9, 10 and 11  for the human, rat, and 
macaque datasets, respectively). p values in the Pearson 
correlation analysis from Procedures 1 and 2 exhibited 
the highest correlation (R2 = 0.965 for the mouse data-
set, R2 = 0.961 for the human dataset, R2 = 0.975 for the 
rat dataset, R2 = 0.960 for the macaque dataset). p val-
ues from Procedure 3 also correlated well with those 
from Procedures 1 and 2 (R2 > 0.78 for the mouse data-
set, R2 > 0.85 for the human dataset, R2 > 0.91 for the rat 
dataset, R2 > 0.88 for the macaque dataset), most likely 
because the normalization methods employed by these 
three procedures were the same. In contrast, p values 
from Procedures 4, 5, and 6 correlated poorly with those 
from other procedures, as the basic statistical models 
used in these three Procedures for DEG analysis were 
fundamentally different. Consistent with these results, 
when p < 0.01 was used as the threshold to define DEGs, 
the number of overlapping DEGs from Procedures 1, 2, 
and 3 was high, while those from the other Procedures 
were relatively low (Fig.  4i for the mouse dataset; Sup-
plementary Figs.  9, 10 and  11i for the human, rat, and 
macaque datasets, respectively).

As p value correction is necessary for multiple sta-
tistical testing, q value is widely used to set a threshold 
for defining DEGs in RNA-seq analysis. Therefore, we 
also performed correlation analysis with q values and 
the results were consistent with those for p values in 
the mouse and the human datasets. In the rat and the 
macaque datasets, the correlation between Procedures 
1 and 2 was also high, but Procedures 2 and 3 have the 
highest correlation (Supplementary Figs.  12–15, for the 
mouse, human, rat, and macaque datasets, respectively). 
When DEGs were defined as genes with q < 0.05, Pro-
cedures 1 produced the highest number of DEGs in the 
mouse, the human, and the macaque datasets, and the 
second-highest in the rat dataset. The performance of 
other procedures varied considerably. Some procedures 
yielded an insufficient number of DEGs for further analy-
sis in certain datasets (Supplementary Figs. 12–15).

Together, the above results indicate that p values and 
q values correlated well among Procedure 1, 2, and 3, 
which is consistent with Corchete et  al.’s report [30]. 
When using q < 0.05 as the threshold, Procedures 1 gen-
erally produced the highest number of DEGs.

Number of differentially expressed genes produced 
by different procedures
As a general practice in the field, DEGs are defined taking 
into consideration both the FC of gene expression lev-
els and the p or q value in statistical analysis. Therefore, 
we defined DEGs with both criteria and compared the 
results of DE analysis with different procedures.
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Fig. 3 Evaluation and comparison of fold change (FC) of gene expression levels obtained with different analytical procedures for the mouse 
dataset. a‑h Comparison of  log2FC obtained with different procedures. R2 and p were calculated via Pearson’s correlation analysis. i Set visualization 
graphics of DEG numbers when |log2FC|> 1 was used as threshold to define DEGs. The numbers in brackets represent the procedure number
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Fig. 4 Evaluation and comparison of p values from different analytical procedures for the mouse dataset. a‑h Comparison of p values obtained 
from different procedures. R2 and p were calculated via Pearson’s correlation analysis. i Set visualization graphics of DEG numbers when p < 0.01 was 
used as threshold to define DEGs. The numbers in brackets represent the procedure number
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When the threshold for FC was set as |log2FC|> 1 in the 
mouse data analysis, the number of DEGs increased rap-
idly with the increasing p value when p is above 0.01 for 
all procedures except Procedure 5 (Fig. 5a and b). The sit-
uations for the other three datasets were similar, except 
that Procedure 5 also produced a considerable number of 
DEGs when p > 0.01 (Supplementary Figs. 16, 17 and 18a 
and b, for the human, rat, and macaque datasets, respec-
tively), indicating that the threshold may vary for differ-
ent RNA-seq datasets.

When using p < 0.01 as the statistical threshold, a 
considerable number of DEGs were obtained with FCs 
between 1.5 and 4.5 using Procedures 1, 2, 3, and 6, but 
very few were obtained with Procedures 4 and 5 for the 
mouse dataset (Fig. 5c and d). Procedure 4 still produced 
very few DEGs for the human and the rat datasets, while 
Procedure 5 exhibited better performance in the human, 
rat, and macaque datasets (Supplementary Figs.  16, 17 
and  18c and d, for the human, rat, and macaque data-
sets, respectively). When |log2FC|> 1 and p < 0.01 were 
set as the threshold for the mouse dataset, 88 overlap-
ping DEGs were obtained with Procedures 1, 2, and 3, 
but much fewer overlapping DEGs were obtained with 
the other procedures (Fig.  5e). Only two overlapping 
DEGs were obtained with all procedures (Fig. 5e). In the 
human dataset, 427 DEGs were shared among Proce-
dures 1, 2, and 3, whereas 45 DEGs were obtained with 
all procedures (Supplementary Fig. 16e). Procedures 1, 2, 
and 3 also produced the highest number of overlapping 
DEGs in the rat and the macaque datasets, whereas 7 and 
27 DEGs were obtained with all procedures in the rat 
and the macaque datasets, respectively (Supplementary 
Figs. 17 and 18e).

When |log2FC|> 1 and q < 0.05 were set as the thresh-
olds for DEGs in the mouse dataset, Procedures 1, 2, and 
3 still produced a sufficient number of DEGs, but very 
few or no DEGs were obtained with the other procedures 
(Supplementary Fig. 19). When the same thresholds were 
applied to the human dataset, all procedures, except 
Procedure 4, produced a considerable number of DEGs 
(Supplementary Fig. 20). When the same thresholds were 
applied to the rat and the macaque datasets, Procedures 
1 and 5 produced a sufficient number of DEG, but very 
few or no DEGs were obtained with the other procedures 
(Supplementary Fig.  21 for the rat dataset and Supple-
mentary Fig. 22 for the macaque dataset).

Together, these results indicate that when consider-
ing both the FC of gene expression levels and the p (or q) 
value in defining DEGs, Procedures 4 produce the least 
number of DEGs, while Procedures 1, 2, and 3 generally 
produce more DEGs. The performance of Procedure 5 
and 6 varies in different datasets. Therefore, the analyti-
cal procedures and thresholds for screening DEGs should 

be carefully selected according to the characteristics of 
the datasets.

Verification of DEGs using qRT‑PCR
Finally, we assessed the validity of DEGs obtained with 
the six analytical procedures. Twenty-one genes in the 
mouse dataset were selected for qRT-PCR analysis (Sup-
plementary Fig. 23). These genes were DEGs from at least 
one procedure when |log2FC|> 1 and p < 0.01 were used 
to define DEGs. These genes exhibited medium expres-
sion levels, which are more likely to be relevant for bio-
logical functions and are easy for qRT-PCR analysis. 
The correlation coefficients between the results of qRT-
PCR and the  log2FC values from the RNA-seq analysis 
were similar (R2 = 0.3). When both FC of mRNA levels 
(|log2FC|> 1) and p value (p < 0.01) from qRT-PCR were 
considered in defining positively-validated DEGs, the 
verification rates (VR) were comparable (~ 60%) for all six 
procedures (Fig. 6). These results indicate that the perfor-
mance of all six procedures in predicting verifiable DEGs 
is comparable for genes with medium expression levels.

Discussion
In this study, we evaluated the performance of six com-
monly used differential expression analysis procedures 
on four datasets from mouse, human, rat, and macaque, 
respectively. We mainly compared the following three 
aspects: the computing resources and time consumed 
by different procedures, the quantitative values of gene 
expression (expression level, fold change of expression, 
p value, and q value) obtain in different procedures, and 
the validation rate of DEGs obtained through different 
procedures. Knowing the pros and cons of different pro-
cedures in these three aspects, one can choose a more 
suitable procedure for his research.

Differences in computing resources consumed 
by different procedures
We assessed several indicators of computing resource 
consumption, including computer memory usage and 
time spent. Each DE analysis procedure has a minimum 
requirement for computer hardware and the amount of 
memory required for the calculation is probably the most 
important constraint. Before conducting DE analysis, 
a reference genome index file needs to be established, 
which usually takes more computing resources than the 
DE analysis itself. The index files for human or model 
organism genomes can also be downloaded from web-
sites associated with the analysis software. In the four 
phases of DE analysis, Phase 1a usually takes up a large 
amount of RAM, which is determined mainly by the size 
of the reference genome used for alignment. According 
to the results of our comparison, Phases 1 and 4 required 
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Fig. 5 Number of DEGs defined with combination of FC and p value for the mouse dataset. a The line chart reflects the total number of DEGs 
estimated by different procedures with |log2FC|> 1 and different p values. b The histogram reflects the interval number of DEGs estimated by 
different procedures with |log2FC|> 1 and different p values. c The line chart reflects the total number of DEGs estimated by different procedures 
with p < 0.01 and different |log2FC|. d The histogram reflects the interval number of DEGs estimated by different procedures with p < 0.01 and 
different |log2FC|. e Set visualization graphics of DEG numbers when |log2FC|> 1 and p < 0.01. The numbers in brackets represent the procedure 
number



Page 12 of 15Liu et al. BMC Genomics          (2022) 23:232 

the longest duration. In general, Procedure 6 required the 
least RAM to complete the analysis in the shortest time, 
while Procedure 5 required more RAM and time than 
the other procedures. Interestingly, when analyzing data 
on personal computers, we found that a solid-state drive 
could significantly increase the calculation speed for all 
six procedures, indicating that the speed-limiting step is 
the reading and writing process for the hard disk when 

the computer has a high-performance CPU and ample 
RAM.

The quantitative values of genes obtained 
in different procedures
In a complete DE analysis procedure, we obtained four 
values for quantitative analysis, namely gene expression 
level, FC of gene expression, p value, and q value. DEGs 

Fig. 6 Correlation of  log2FC for the same genes in different procedures and qRT-PCR experiments. A total of 21 genes were assessed. VR, verification 
rate. R2 and p was calculated via Pearson’s correlation analysis
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are selected based on these four values for further bioin-
formatic analysis and biological verification.

Common ways to quantify and normalize gene expres-
sion levels include the reads per kilobase of transcript per 
million mapped reads (RPKM) in single-ended sequenc-
ing, FPKM and transcripts per million (TPM) in pair-
ended sequencing, and the count values used in both types 
of sequencing. In our study, different procedures were 
divided into a count group (Procedures 1, 2, 3, and 6) and 
an FPKM group (Procedures 4 and 5). Gene expression 
values were highly correlated among Procedures 1, 2, and 
3, but poorly with the other 3 procedures. This is proba-
bly due to differences in quantification and normalization 
methods, as suggested by Corchete et  al. [30]. However, 
we found that the expression values produced by the six 
procedures were well correlated for genes with medium 
expression levels. The differences among procedures were 
mainly found in genes with extremely high or low expres-
sion levels (Fig.  2 and Supplementary Figs.  3, 4 and  5), 
suggesting that RNA-seq results for genes with medium 
abundance are more reliable for further biological study.

FC of gene expression is an important parameter for 
screening DEGs. Generally, a higher FC of gene expres-
sion levels indicates more important biological functions 
and easier biological verification. In our study, we found 
that the normalization method affects the FCs obtained 
with different procedures, consistent with previous 
reports on RNA-seq analysis [12, 13]. FCs of gene expres-
sion produced by Procedures 1, 2, and 3 were highly con-
sistent, same as the gene expression values (Fig. 3a-d and 
Supplementary Figs. 6, 7 and 8a-d). Procedures 4, 5, and 
6 employed very different quantification and normaliza-
tion algorithms and therefore produced very different 
results for FCs (Fig.  3e-h and Supplementary Figs.  6, 7 
and 8e–h).

The p and q values are statistical values obtained in 
Phase 4 that indicate whether the DE is statistically sig-
nificant. To some extent, these values may also reflect 
whether the target gene expression is stable within each 
group of samples compared (control group vs. case 
group). The p value is determined by the underlying sta-
tistical models used in Phase 4 for different procedures, 
and the q value is determined from the p value as well as 
the total sample size. In this study, we found that the cor-
relation of the p and q values between Procedures 1, 2, 
and 3 was very high (Fig. 4a-c and Supplementary Figs. 9, 
10 and 11a-c), consistent with Corchete et  al.’s report 
[30]. The highest correlation was observed between Pro-
cedures 1 and 2 (Fig.  4a and Supplementary Figs.  9, 10 
and 11a), as both procedures use negative binomial dis-
tribution as the mathematical model in Phase 4 of statis-
tical analysis [23, 24].

Together, our results indicate that the results of gene 
expression levels and DEGs obtained with Procedures 
1, 2, and 3 are highly similar but are different from those 
obtained via Procedures 4, 5, and 6. When both the FC of 
gene expression and the p (or q) value for defining DEGs 
were considered, Procedures 4 usually produce the least 
number of DEGs, while Procedures 1, 2, and 3 generally 
produced more DEGs (Fig. 5 and Supplementary Figs. 16, 
17 and 18).

Validation rates of DEGs obtained using different 
procedures.
In this section, we assessed the validation rates for DEGs 
obtained through different procedures using qRT-PCR. 
Genes with medium expression levels were selected 
as their expression can be easily assessed using qRT-
PCR analysis and are more likely to be functionally rel-
evant. Our results indicated that the validation rates 

Fig. 7 Guidelines for researchers to decide the appropriate procedure for RNA-seq analysis
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for different procedures were similar (Fig.  6), indicating 
that the performance of all six procedures in predicting 
verifiable DEGs was comparable for genes with medium 
expression levels.

Characteristics of different procedure and procedure 
selection guidance
Based on the above results, we summarize the character-
istics and application of the six procedures in Fig. 7. If one 
has very limited computing resources, Procedure 6 is rec-
ommended as it consumes the least computing resources. 
In this study, we analyzed two quantified gene expression 
indicators: count and FPKM value. Users can select dif-
ferent quantified gene expression indicators according 
to their own research needs. If users prefer FPKM, Pro-
cedures 4 and 5 are more suitable. They can also provide 
information about de novo transcripts. Procedure 4 is 
more sensitive to low-expressing genes. If users prefer to 
use count to quantify gene expression, Procedures 1, 2, 
and 3 are more suitable. Results from Procedure 1, 2, and 
3 are highly correlated and generally produce more DEGs 
than the other three procedures. In three out of the four 
datasets (human, rat, and macaque), Procedure 1 pro-
duced the highest number of DEGs. Coechete et al. sug-
gested that limma trend is the most balanced method in 
accuracy and efficiency among 17 DE analysis methods, 
including DEseq2 and edgeR [30]. Investigators with ample 
computing resources can use multiple procedures accord-
ing to their needs and take advantage of the intersection 
of the analysis results to obtain the most reliable DEGs or 
use a combination of procedures to obtain a more com-
prehensive DE profile for the transcriptome.

Conclusion
Results are highly correlated among RNA-seq analysis Pro-
cedures 1, 2, and 3, all of which use HTseq for quantifica-
tion. The difference in gene expression values mainly come 
from genes with particularly high or low expression levels. 
Moreover, biological validation rates of DEGs from all six 
procedures were similar for genes with medium expres-
sion levels. Investigators can choose analytical procedures 
according to their available computer resources, or whether 
genes of high or low expression levels are of interest. If 
computer resources are abundant, one can utilize multiple 
procedures to obtain the intersection of results to get the 
most reliable DEGs, or to obtain a combination of results 
to get a more comprehensive DE profile for transcriptomes.
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