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Abstract 

Background: Melanoma is a highly heterogeneous andaggressive cutaneous malignancy. Ferroptosis, a new path-
way of cell deathdepending on the intracellar iron, has been shown to be significantlyassociated with apoptosis of a 
number of tumors, including melanoma.Nevertheless, the relationship between ferroptosis-related genes (FRGs) and 
themelanoma patients’ prognosis needs to be explored.

Methods: Download expression profiles of FRGs andclinical data from The Cancer Genome Atlas (TCGA) database. 
70% data wererandomly selected from the TCGA database and utilized the univariate Coxanalysis and the least abso-
lute shrinkage and selection operator (LASSO)regression model to create a prognostic model, and the remaining 30% 
was usedto validate the predictive power of the model. In addition, GSE65904 andGSE22153 date sets as the verifica-
tion cohort to testify the predictive abilityof the signature.

Results: We identified nine FRGs relating with melanomapatients’ overall survival (OS) and established a prognos-
tic model based ontheir expression. During the research, patients were divided into group ofhigh-risk and low-risk 
according to the results of LASSO regression analysis.Survival time was significantly longer in the low-risk group than 
that of in thehigh-risk group (P < 0.001). Enrichment analysis of different risk groupsdemonstrated that the reasons 
for the difference were related to immune-relatedpathways, and the degree of immune cell infiltration in the low-risk 
group wassignificantly higher than that in the high-risk group.

Conclusions: The FRG prognostic model we established canpredict the prognosis of melanoma patients and may 
further guide subsequenttreatment.
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Introduction
Melanoma is a malignant tumor around the world which 
is associate with rapid growth, early metastasis, local 
recurrence and poor prognosis [1]. According to the data 
of Cancer statistics in 2020, the incidence of melanoma 
accounted for 7% and 4% of male and female patients 

respectively, ranking fifth and sixth respectively [2]. 
Worldwide, there are about 23,100 new reported cases 
of melanoma every year and about 55,500 deaths due to 
melanoma ranked as the sixth most common malignancy 
in the US. Therefore, early detection and recognition of 
melanoma are keys to improve survival rate. At present, 
the treatment of the skin melanoma mainly includes 
surgical resection, which is the standard therapy for the 
primary melanoma, and other treatments applied to 
treat advanced melanoma such as radiotherapy, chemo-
therapy and immunotherapy [3]. Although thorough 
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surgical resection of the tumor can greatly improve the 
five-year survival rate of patients with melanoma [4], the 
prognosis of patients are still not satisfactory, with a 5 
year survival rate of 40 − 50% especially for the lymphatic 
metastasis and gene mutations [4]. Specific biomarkers 
play an important role in the early screening, diagnosis, 
and prognosis of melanoma. Therefore, it is urgent to 
establish a more sensitive prognostic models to assess 
the patient’s current condition for monitoring recurrence 
and evaluating prognosis.

Ferroptosis is a non-apoptotic form of cell death 
dependent on intracellular iron, which is different from 
apoptosis, necrosis and autophagy [5], The occurrence 
of ferroptosis is closely related to the inhibition of glu-
tathione peroxidase4 (GPX4) synthesis. The weakening 
of GPX4-dependent antioxidant defense system eventu-
ally leads to the accumulation of lipid ROS which is toxic 
to cells and the depletion of polyunsaturated fatty acids, 
finally resulting in cell death [6]. Besides, ferroptosis has 
been proved to be related to the prognosis of tumor [7]. 
Ubellacker et  al. found that melanoma cells in lymph 
nodes may be swollen through incorporate oleic acid and 
other antioxidants to protect themselves from ferroptosis 
[8]. This may be one of the reasons for the earlier lym-
phatic metastasis of melanoma mentioned above. There-
fore, it can be speculated that the relationship between 
the expression of FRGs and the prognosis of patients 
remains to be further explored and studied.

By downloading the mRNA expression profiles of 
some melanoma patients from the Cancer Genome Atlas 
(TCGA) and their corresponding clinical data, and com-
bining with the FRGs obtained from the original pubmed 
literatures, we constructed a prognosis model related to 
ferroptosis gene expression, and used the mRNA expres-
sion profiles of the remaining melanoma patients in the 
TCGA database combined with their clinical data to ver-
ify the correctness of the model. Finally, the functional 
enrichment and tumor microenvironment were analyzed 
to explore the possible mechanism.

Materials and methods
The research flowchart is displayed in Fig. 1.

Data Collection and Preprocessing
First of all, we downloaded the mRNA expression pro-
files and corresponding clinical information of 471 
melanoma patients from the TCGA database (https:// 
portal. gdc. cancer. gov/), after applying the “scale” func-
tion in the “limma” R package (version 4.0.3) to normal-
ize data among databases, we combined them together. 
After that, removing incomplete clinical data and 0-days 
follow-up duration from samples, 455 melanoma sam-
ples obtained and used for the primary cohort. By using 

the method of generating random numbers by Microsoft 
Office Excel (version 2019), 455 samples are randomly 
divided into parts accounting for 70% of the total number 
of samples (n = 318) to be the training cohort and 30% of 
the total number of samples (n = 137) to be the valida-
tion cohort. Table S1 lists the clinical characteristics of 
the patients above. After browsing the previous litera-
tures [9–12], 60 FRGs were obtained. These genes will be 
shown in Supplementary Table S2.

Identification of FRGs Affect Prognosis
After associating the expression levels of FRGs and mela-
noma patients’ overall OS in the training cohort, and 
trough univariate Cox analysis, 12 genes with prognos-
tic significance (p < 0.05) were regarded as serving as an 
independent predictor for OS were obtained. These genes 
were used to form a prognostic model.

Construction and Validation of the Prognostic Model
Through the least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis with package 
“glmnet” in R software and associated 12 genes above 
and patients’ survival data to find the most significant 
9 genes and their corresponding Cox regression coef-
ficient to build model. This model offered a formula 
to calculate risk score of each patient: risk score=esum 

(each gene’s expression×corresponding coefficient). According to the 
median value of the risk score in the training cohort with 
R software, patients in the training cohort were divided 
into high-risk group and low-risk group. After getting 
the formula obtained by establishing the model through 
training cohort, using this formula to calculate each 
patient’s risk score in validation cohort from TCGA data-
base and divide them into high and low risk groups for 
the validation of the model. The t-distributed stochastic 
neighbor embedding (t-SNE) and principal component 
analysis (PCA) was analyzed with “Rtsne” package and 
the prcomp function in the “stats” package to explore the 
distribution of high and low-risk groups. By comping the 
survival between the two groups above and evaluate the 
model’s predictive ability using the “survivalROC” pack-
age in R respectively with “timeROC” package, Kaplan–
Meier survival curves and a time-dependent receiver 
operating characteristic curve (ROC) curve analysis 
were employed. Besides, we downloaded the GSE65904 
and GSE22153 datasets to verify the predictive power of 
the model, the two datasets are embedded in GPL10558 
(Illumina HumanHT-12 V4.0 Expression BeadChip) and 
GPL6102 (Illumina Human-6 V2.0 Expression Bead-
chip) platforms, respectively. After downloading the 
Series Matrix file of the data set, the clinical information 
of patients was extracted, and the probes were replaced 
with the gene ID by the annotation information of the 
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Fig. 1 The procession flow diagram in the present study
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corresponding platform. The samples with incomplete 
clinical information were eliminated after the matrix of 
the combination of patient gene expression profile and 
clinical information, and two datasets with 202 and 49 
patient samples were obtained, respectively. After using 
the RemoveBatchEffect function in “limma” R package 
(Version 4.0.3) to remove the batch effect between TCGA 
data set and Gene Expression Omnibus (GEO) repository 
(https:// www. ncbi. nlm. nih. gov/ geo), the “scale” function 
in “limma” R Package (Version 4.0.3) was used to normal-
ize the data. Finally, calculating patient risk scores by the 
formula obtained in the train cohort and applying sur-
vival analysis and analysis of AUC in ROC for risk signa-
ture at 1-, 2- and 3- year survival time in the same way 
mentioned above.

Functional analysis
With the “clusterProfiler” R package, the analysis of Kyoto 
Encyclopedia of Genes, Gene Ontology (GO) and kyoto 
encyclopedia of genes and genomes (KEGG; www. kegg. 
jp/ kegg/ kegg1. html ) between the groups of high- and 
low-risk was enriched. In order to investigate the path-
ways enriched in the subgroups of high- and low-risk and 
explore possible molecular mechanisms. Using the false 
discovery rate (FDR) method to adjust P-values and while 
the P-value < 0.05, the pathways were considered to be 
enriched significantly.

Immune score, calculation of immune‑related pathways 
and immune cells infiltration between two groups
By using the “estimate” package of R software in order 
to estimate the expression of immune and stromal cells 
in malignant tumor tissue and obtain immune stromal 
component ratio in the tumor microenvironment (TME) 
[13]. The result of the “estimate” R package created three 
scores to evaluate the presence of stroma (Stromal Score), 
the level of immune cells infiltrations (Immune Score), 
and the sum of stromal score and immune score (Esti-
mate Score) [14]. The scores go up with the proportion 
of corresponding condition in the TME. The single-sam-
ple geneset enrichment analysis (ssGSEA) [15] was fin-
ished by using “GSVA” package of R software, the result 
of the level of the 13 immune-related pathways expres-
sion and16 kinds of immune-related cells are received. 
Supplementary Table S3 illustrates the immune-related 
genes.

Statistical analysis
Multivariate and Univariate Cox regression analyses were 
used to estimate if the factor can be regarded as an inde-
pendent predictor. Utilizing R package “timeROC” to 
predict overall survival. Using t-test and chi-square test 
of student to identify the difference of Stromal Score, 

Immune Score, and ESTIMATE Score between patients 
in different risk groups. R software (Version 4.05) were 
applied here for all statistical analyses. Statistically signif-
icant were regarded in case when p-value less than 0.05.

Quantitative real‑time PCR
Human normal skin cell line (TE353.sk) and human mel-
anoma cell line (SKMEL5) (purchased from YaJiBiologi-
cal, China) for verification are prepared after culture in 
accordance with the instructions provided by the manu-
facturer. Before the 2 −ΔΔCt statistics were applied to cal-
culate the gene expression level in the final step, the total 
RNA of two kinds of cells above was extracted by TRI-
zol reagent (Invitrogen, China), and PrimeScript RT kit 
(Takara, China) was used for reverse transcription and 
the SYBR PrimeScript RT-PCR kit (Takara, China) was 
used for quantitative reverse transcriptase polymerase 
chain reaction (qRT-PCR) analysis. Supplementary Table 
S4 includes the primer sequences involved in this study.

Results
Identification of prognostic FRGs
Univariate Cox regression analysis showed that 12 genes 
could be used as independent factors of OS in patients 
with melanoma. Among the 12 genes, 6 of them were 
protective genes (HR<1) and 6 were risk genes (HR > 1) 
(Fig. 2).

Prognostic model construction in the training cohort
Nine genes which are significant subject to the OS of 
melanoma patients were obtained after the utilizing of 
LASSO Cox regression analysis (i.e., ACSL4, ALOX5, 
ATP5MC3, CHAC1, CS, MT1G, ACACA, ZEB1, and 
ABCC1). A ferroptosis-related prognostic model was 
created on account of the best value of λ from LASSO 
Cox regression analysis. The score of risk can be figured 
out though the following formula: risk score=e (0.05785 
* expression level of ACACA − 0.14149 * expression 
level of ACSL4 − 0.06033 * expression level of ALOX5 
+ 0.04117 * expression level of ATP5MC3 + 0.02936 * 
expression level of CHAC1 + 0.25160 * expression level 
of CS − 0.00617 * expression level of MT1G − 0.09239 * 
expression level of ZEB1 + 0.18878 * expression level of 
ABCC1). The risk values of patients in the train cohort 
were arranged from high to low, and the median value 
was found as the cut-off value to divide patients into 
two groups of low-risk (n = 159) and high -risk (n = 159) 
(Fig.  3(A)). PCA and t-SNE analysis showed the result 
that the patients in low-risk and high-risk groups were 
split into two directions (Fig. 3(B) and (C)). Figure 3(D) 
indicated that patients of high-risk group own a poor sur-
vival. The Kaplan–Meier survival analysis also confirmed 
the survival time of high-risk group was yielding reduced 
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(Fig. 3(E), P < 0.001). An evaluation of the predictive per-
formance was evaluated with the time-dependent ROC 
curves of the model and in Fig. 3(F), the area under curve 
(AUC) reached 0.598 at 1 year, 0.687 at 2 years, and 0.664 
at 3 years.

The prognostic model validation in the validation cohort
Calculating the score of risk for each patient in the vali-
dation cohort by using the formula obtained above to 
verify the accuracy of the prediction ability of the model. 
Using the method mentioned above, patients are split 
into high- (n = 68) and low-risk (n = 68) groups in the 
validation cohort according to risk score and median 
(Fig. 4(A)). In the validation cohort, a reliable clustering 
ability of risk score are also validated by PCA and t-SNE 
analysis (see Fig. 4(B) and 4(C)). It is obvious that the sur-
vival time of high-risk group patients is shorter than that 
of low-risk (Fig. 4(D), P < 0.001). Meanwhile, the Kaplan–
Meier survival OS analysis between the high-risk group 
and low-risk group in the validation cohort shows there 
were also significant differences in survival between high 
and low-risk groups. (Figure 4(E)) and the values of AUC 
of year 1, 2 and 3 after ROC analysis are 0.759, 0.676 and 
0.639 (Fig. 4(F)).

Independent prognostic value of the risk score
In order to further explore whether risk score is an 
independent prognostic factor, we conducted uni-
variate and multivariate Cox regression analysis. In 
the train cohort (HR= 4.383, 95% CI= 2.581 − 7.445, 
P < 0.001, Fig.  5(A)) and the validation cohort (HR= 
6.672, 95% CI= 2.661 − 16.733, P < 0.001, Fig.  5(B)), 

univariate Cox regression analysis showed that the both 
risk score had a significant relationship with OS. Mul-
tivariate Cox regression analysis corrected for poten-
tial confounding factors also showed that risk score 
could be used as an independent predictor of OS (train 
cohort: HR= 4.429, 95% CI= 2.610 − 7.516, P < 0.001; 
validation cohort: HR= 7.032, 95% CI= 2.858 − 17.298, 
P < 0.001, Fig.  5(C) and 5(D)). In order to prove that 
our prognostic model is not a different way to quantify 
immune infiltration, we include the ESTIMATE score 
into the multivariate regression analysis model. The 
results show that the FRG based risk score still has pre-
dictive ability (P < 0.001 in train cohort and P < 0.05 in 
test cohort, Figure S1A and Figure S1B) although with a 
diminished hazard ratio.

Functional analyses
Enrichment and KEGG pathway were carried out 
according to the differential expression genes (DEGs) 
between high-risk group and low-risk group in the 
train cohort and validation cohort to clarify the bio-
logical function and pathway related to risk score. 
According to the GO enrichment analysis result, the 
DEGs between risk groups from validation cohort and 
the train cohort were primarily enriched in immune 
response−activating cell surface receptor so as to signal 
pathway and immune response−activating signal trans-
duction. (P. adjust <0.05, Fig.  6(A), (B)). It is can be 
seen that the cytokine−cytokine receptor interaction 
pathway was significantly enriched in both cohorts (P. 
adjust <0.05, Fig. 6(C), (D)) in KEGG pathway analysis.

Fig. 2 Forest plots to demonstrate the univariate Cox regression analysis results between gene expression and the OS of melanoma patients
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Fig. 3 The 9-gene model in the train cohort prognostic analysis. A The risk score distribution in the train cohort. B the train cohort PCA analysis. 
C t-SNE plot the train cohort. D The distribution of OS in the train cohort. E The Kaplan–Meier survival OS analysis between the high-risk and 
low-risk group of the train cohort. F The analysis of AUC in ROC for risk signature at 1-, 2- and 3-year survival time in the train cohort
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The Immune‑related pathways and immune cells 
infiltration analysis
In order to explore the difference of immune-related 
function between risk groups of high and low, each 
patient was scored by ssGSEA analysis, and then ana-
lyzed the enrichment of immune-related pathways 
and immune cells by the score of each patient. In the 
train cohort, B cells, D8 + T cells, NK cells, Neu-
trophils, pDCs, T helper cells, Th1 cells, Th2 cells, 
Tfh, TIL, T reg along with other immune cell subsets 
between the two groups were significantly different 
and down-regulated in the immune-related pathway, 
in the high-risk group (adjusted P < 0.05, see Fig.  7 
(A)), Cytolytic activity, Inflammation-promoting was 
significantly down-regulated In the validation cohort, 
in the high-risk group (adjusted P < 0.05, Fig.  7 (B). 
the enrichment of Macrophage, Dendritic Cells (DCs) 
and Mast cells was different from that of train group, 
and the enrichment of remaining immune cells and 
the pathways of immune-related function was similar 
to that of train cohort (corrected P < 0.05, Fig.  7 (C) 
and (D)).

Verification of risk score model in GEO repository
Data from GSE65904 and GSE22153 are used as vali-
dation cohorts 1 and validation cohorts 2. By using 
our FRG based riskScore, the samples of the two veri-
fication cohorts are divided into high and low risk 
groups. The Kaplan–Meier survival analysis shows 
the difference in survival time between low and 
high-risk groups still significant in two verification 
cohorts. (Figure  8(A), P < 0.001 and (B), P < 0.05). The 
result of time-dependent ROC curves was display in 
Fig.  8(C/D) to evaluate the predictive performance of 
the model. The area under curve (AUC) reached 0.701 
at 1 year, 0.690 at 2 years, and 0.677 at 3 years for vali-
dation cohorts 1 and 0.977 at 1 year, 0.711 at 2 years, 
and 0.685 at 3 years for validation cohorts 2.

Genes expression levels in cell lines validation
In the 9 gene signatures, by qRT-PCR, we found that 
significant differences in the expression of ABCC1, 
ACSL4 and ALOX5 between normal skin cell lines and 
melanoma cell lines. Among them, the expression of 
ACSL4 and ALOX5 was up-regulated in normal skin cell 
lines (Fig. 9 (A) and (B), P < 0.05), along with the higher 

expression level of ABCC1 in melanocyte lines (Fig.  8 
(C), P < 0.05).

Discussion
In this study, we used the patients whose mRNA expres-
sion profiles and clinical data of 70% melanoma in the 
TCGA database as the train cohort and combined with 
60 FRGs to construct a model containing 9 FRGs to pre-
dict the prognosis of patients of melanoma. The remain-
ing 30% patients, data were used as the verification group 
to verify the model predictive function.

In the above two cohorts, the patients’ survival time 
in the high-risk group was significantly shorter than 
that in the group of low-risk. Analysis with Functional 
enrichment showed that the differences were mainly 
because of cytokine-cytokine receptor interaction and 
immune response-related pathways. Besides, immune-
related functions and immune cell infiltration in the 
group of high-risk were remarkably lower than those in 
the group of low-risk. A signature model consisting of 9 
ferroptosis genes, acyl-CoA synthetase long-chain fam-
ily member 4(ACSL4), 5-Lipoxygenase (ALOX5), met-
allothionein (MT)-1G and Zinc finger E-box-binding 
homeobox  1 (ZEB1) as protective genes, ATP synthase 
membrane subunit c locus 3 (ATP5MC3), ChaC glu-
tathione specific gamma-glutamylcyclotransferase 1 
(CHAC1), citrate synthase (CS), acetyl-CoA carboxylase 
alpha (ACACA), ATP binding cassette subfamily C mem-
ber 1 (ABCC1) as risk genes. Ferroptosis is a regulatory 
necrotic cell death controlled by glutathione peroxidase 
4(GPX4), and the overexpression of ACSL4 will reduce 
the expression of GPX4. Moreover, ACSL4, a member 
of the long-chain acyl-CoA synthase family, can induce 
ferroptosis by oxidizing arachidonic acid [16, 17]. There-
fore, ACSL4, a proferroptotic gene, plays a crucial role 
in cells ferroptosis process. Sebastian Doll et  al. found 
that ACSL4 knockout cells showed significant resistance 
to ferroptosis, and reexpression of ACSL4 enabled cells 
to regain sensitivity to ferroptosis [18]. Jing Cheng et al. 
observed that solafenib increased cell viability by reduc-
ing siRNA-mediated ACSL4 silencing, suggesting that 
ACSL4 may protect glioma cells and inhibit their prolif-
eration via activating a ferroptosis pathway [16]. It can be 
concluded that the high expression level of ACSL4 can 
lead more tumor cells to ferroptosis. As shown in our 
prognostic model, the HR value of ACSL4 is less than 
1, which means that it is a protective gene, the higher 

Fig. 4 The prognostic model validation in the validation cohort. A The risk score distribution of in the validation cohort. B the validation cohort 
PCA analysis. C the validation cohort T-SNE plot. D The OS distribution in the validation cohort. E The Kaplan–Meier survival OS analysis between 
the high-risk group and low-risk group in the validation cohort. F The risk signature AUC in ROC analysis for 1-, 2- and 3-year survival time in the 
validation cohort

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Fig. 5 Independent prognostic signature presented by risk score for melanoma. The univariate and multivariate Cox regression OS analyses results 
in the validation cohort (B/D) and in the train cohort (A/C)

Fig. 6 The results of functional analyses. The barplot graph for the result of GO enrichment analysis for the train cohort (A) and the validation 
cohort (B). The barplot graph for the result of KEGG pathway analysis for the train cohort (C) and the validation cohort (D)
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its expression level brings the better the patients’ possi-
ble prognosis. It is worth mentioning that in José Pedro 
et  al. pointed out that ASCL4 may activate and attract 
immune cells to clear ferroptosis tumor cells by sending 
signals such as “find me” and “eat me” to immune cells by 
participating in ferroptosis tumor cells, and put forward 
the related conjecture that the loss of these signals may 
lead to immune evasion of tumor cells [19]. ALOX5 is an 
iron-containing non-heme dioxygenase, which seems a 
key enzyme in the synthesis of leukotriene and also can 
be used to catalyze the peroxidation of polyunsaturated 

fatty acids [20]. Ferroptosis could be irritated by lipid 
peroxidation to mediate inflammation-related cell death 
[21], and ALOX5 plays a crucial role in both wire death 
and inflammation [22]. Previous study found that inhibi-
tion of ALOX5 expression could decrease ferroptosis in 
nerve cells derived from hemorrhagic stroke mice [22]. 
Faronato et al. [23] and Miess et al. [24] thought that the 
expression of ALOX5 in clear cell renal cell carcinomas 
deficient in von Hippel-Lindau (VHL) gene was greatly 
increased, which may be that this kind of cancer cell 
needs more eicosanoids synthesized through ALOX5 

Fig. 7 Differences of immune-related pathways and immune cells infiltration between groups of high- risk and low- risk. ssGSEA scores of 16 
immune cells (A) and ssGSEA scores of 13 immune-related functions (B) in the train group. ssGSEA scores of 16 immune cells (C) and ssGSEA scores 
of 13 immune-related functions (D) in the validation group. ns: not significant; ∗: P < 0.05;∗∗: P < 0.01; ∗∗∗: P < 0.001
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expression to promote local inflammatory response. In 
the prognostic model of melanoma patients with FRGs 
created by Xu and Chen [25], ALOX5 also formed their 
5 gene signature as an indispensable member, and it was 
confirmed that its expression can be used as an inde-
pendent prognostic factor to predict the OS of patients. 
Metallothioneins (MTS) is a protein that is highly 
expressed under the influence of different environmen-
tal stressors and is closely related to heavy metal detoxi-
fications and antioxidants. The up-regulation of MT-1G 
expression can increase the drug resistance of tumor cells 
to sorafenib by inhibiting ferroptosis [26]. However, Sun, 
X et  al. found that sorafenib can activate Nrf2 through 
the cystathionase pathway leading to the expression of 

MT-1G in liver cells. Nevertheless, inhibiting the expres-
sion of MT-1G will enhance the metastatic tumor activ-
ity of sorafenib against hepatoma [27]. In conclusion, 
MT-1G may become a new target for anti-tumor therapy 
in the future. ZEB1 is known as an epithelial marker to 
down-regulate the expression of e-cadherin to affect 
the epithelial-mesenchymal transition and thus partici-
pate in the invasion and metastasis of tumor cells [28]. 
Lee and his team tested the results of ferroptosis induc-
ers induction in HNC cell lines or EMT inhibition and 
rat neoplasm graft models, found that overexpression of 
ZEB1 may enhance the neoplasm cells sensitivity to fer-
roptosis, and it absolutely was additionally confirmed 
in animal models that the neoplasm volume within the 

Fig. 8 The Kaplan–Meier survival OS analysis between the high-risk and low-risk group of the validation cohort 1 (A) and validation cohort 2 (B). 
The analysis of AUC in ROC for risk signature at 1-, 2- and 3-year survival time in the validation cohort 1 (C) and validation cohort 2 (D)



Page 12 of 15Chen et al. BMC Genomics          (2022) 23:245 

overexpression group was considerably reduced com-
pared with the control group [29]. ATP5G3 encodes a 
fractional monetary unit of mitochondrial membrane 
ATP synthase, that catalyzes ATP synthesis throughout 
organic process. ATP5G3 was found to be up-regulated 
three days when the prevalence of secondary craniocere-
bral injury to accelerate ferroptosis of cells [30]. CHAC1, 
a γ-glutamyl cyclotransferase, which inhibits ferroptosis 
by enhancing the degradation of glutathione [31, 32]. In 
the research and exploration of Wang et al., finally found 
that Artesunate may increase the expression of CHAC1 
through the ATF4-CHOP pathway, thereby rising the 
sensitivity of Burkitt’s cancer cells to ferroptosis [33]. CS 
will catalyse the synthesis of change state from oxalace-
tate, And gives material for carboxylic acid synthesis thus 
on provide needed macromolecule precursors for macro-
molecule peroxidation caused by ferroptosis [34]. Erastin 
is one of the small molecules that can induce ferropto-
sis [35]. Dixon et al. found that silencing CS can signifi-
cantly reduce ferroptosis induced by Erastin [5]. ACACA 
mainly acts on the first stage of fatty acid synthesis, and 
is one of the rate-limiting enzymes that regulate fat and 
metabolism, and plays a vital role in the tumor cells sur-
vival [36]. In addition, knockout of ACACA could inhibit 
drug-induced cell ferroptosis [37]. Meanwhile, AMPK 
pathway could be activated to inhibit its downstream 
ACACA, subsequently slowing down lipid accumulation 
and ferroptosis [38]. The expression of ABCC1 can be 
positively regulated by the antioxidant transcription fac-
tor Nrf2  [39]  to regulate the process of cell ferroptosis. 
Cao et  al. down-regulated the expression of ATP bind-
ing cassette (ABC)-family transporter multidrug resist-
ance protein 1 (MRP1). This prevents glutathione from 

flowing out of the cells and effectively inhibits ferroptosis 
[40]. In melanoma, the synergistic effect of ABCC1 and 
glutathione S-transferase M1 can also make tumor cells 
resistant to vincristine [41].

GO and KEGG enrichment analysis showed that the 
difference in expression between groups was mainly 
related to tumor microenvironment, and the enrichment 
of signaling pathway of immune response-activating 
cell surface receptor, transduction of immune response-
activating signal and cytokine-cytokine receptor interac-
tion pathway were the most significant. We can find that 
cAMP signal pathway is highly enriched in these differ-
entially expressed genes. Arumugham et  al. found that 
cAMP can regulate T cell activation and immune synap-
tic assembly to regulate the immune process [42]. These 
three immune-related pathways have also been found to 
be enriched in lung adenocarcinoma [43], testicular can-
cer [44], glioblastoma [45], and other tumors and can be 
used to predict the prognosis of patients. Although the 
specific mechanism of their role in melanoma needs to 
be further studied, we think that they have great poten-
tial as indicators for predicting the prognosis of patients 
with melanoma. We found that there was a significant 
difference in immune cell infiltration between the group 
of high- and low-risk. The immune cell infiltration in 
the group of low-risk was higher than that in the group 
of high-risk, including CD8+T cell and DCs. DCs were 
found to accumulate large amounts of lipids and poly-
unsaturated fatty acids in tumor patients, which led to 
a decline in their ability to present antigens and unable 
to fully stimulate activated CD8+T cell [46, 47]. In vitro 
experiments conducted by Matsushita et  al. also con-
firmed that CD8+T cells can increase the specific lipid 

Fig. 9 Differences of Genes Expression Levels in Normal Skin and melanoma Cell Lines Validated by qRT-PCR. Relative expression levels of A ACSL4, 
B ALOX5, and C ABCC1 between normal skin cell line and melanoma cell line. ns: not significant; ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001
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peroxidation of ferroptosis by releasing interferon-γ and 
increase the occurrence of ferroptosis, thus improving 
the effect of immunotherapy [48]. This phenomenon 
may be due to the releasing signal molecules such as 
interferon-γ by DCs and CD8+T cells to activate fer-
roptosis [49]. The level of immune cell infiltration in the 
high-risk group is significantly lower than that in the low-
risk group, indicating that the tumor cells in the high-
risk group are less sensitive to ferroptosis. In accordance, 
Friedmann Angeli et al. also found that tumor cells with 
ferroptosis release arachidonic acid as an immune activa-
tor to obtain drug resistance and immune evasion from 
other tumor cells [19].

In this study, the risk value calculated after the 
establishment of the model is a reliable independent 
prognostic index. Compared with the conventional 
prognostic indexes such as “age”, “gender”, “tumor 
stage” and “ESTIMATE score”, the risk score created by 
the above nine gene expression can better predict the 
survival of patients, which also confirms that the gene-
based expression signal can accurately predict the prog-
nosis of patients with melanoma. However, this study 
also has some limitations. First of all, the clinical infor-
mation in TCGA database is incomplete, especially the 
lack of treatment-related information. Secondly, the 
prognostic prediction model constructed in this study 
is based on retrospective data, and no prospective clini-
cal studies have been carried out to verify the model. 
Garg et  al. proposed a prognostic signature consisting 
of 121 metastasis-related genes to predict the progno-
sis of patients with melanoma [50]. But unfortunately, 
none of them appeared in both their and our signa-
tures. Ubellacker et  al. found that a high level of fer-
roptosis inhibitor glutathione peroxidase 4 (GPX4) may 
be the reason for the earlier lymphatic metastasis of 
melanoma, but interestingly it appears also not in the 
metastasis-related gene signature constructed by Garg 
et al. Whether the genes or ferroptosis-related genes in 
our signature are related to the risk of metastasis is the 
focus of our next work and research. Since our prog-
nostic model is based on ferroptosis-related genes, as 
mentioned in our Discussion section above, the ferrop-
tosis behavior of tumors is closely related to immune 
infiltration and immune pathway, there may be some 
overlap between ESTIMATE score and riskScores to 
evaluate immunity. More specific forms of interaction 
between the two may need to be further verified and 
studied in other databases. However, at this stage, we 
still believe that the nine genes signature proposed in 
this research has the capacity to accurately predict the 
patients’ prognosis with melanoma and provide a new 
direction for new treatment strategies.

Conclusions
In conclusion, our research shows that the ferropto-
sis genes expression is related with the progression of 
patients of melanoma. We combined the ferroptosis 
gene expression of patients with clinical data to con-
struct a signature containing 9 genes to accurately fore-
cast the melanoma patients’ prognosis of. The research 
also revealed the close relationship between immune 
function and ferroptosis related genes through analy-
sis of immune cell infiltration and immune-related 
functions.
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