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jujuba Mill.) and expression in response
to abiotic stress

Yaping Ma'?®, Yaru Han', Xuerui Feng', Handong Gao?*", Bing Cao' and Lihua Song'”

Abstract

Background: Elevated temperature and drought stress have substantial impacts on fruit quality, especially in terms
of sugar metabolism and content. 3-Amylase (BAM) plays a critical role in regulating jujube fruit sugar levels and abi-
otic stress response. Nevertheless, little is known about the regulatory functions of the BAM genes in jujube fruit.

Results: Nine jujube BAM genes were identified, clustered into four groups, and characterized to elucidate their
structure, function, and distribution. Multiple sequence alignment and gene structure analysis showed that all ZIBAM
genes contain Glu-186 and Glu-380 residues and are highly conserved. Phylogenetic and synteny analysis further
indicated that the ZjBAM gene family is evolutionarily conserved and formed collinear pairs with the BAM genes of
peach, apple, poplar, Arabidopsis thaliana, and cucumber. A single tandem gene pair was found within the ZjBAM
gene family and is indicative of putative gene duplication events. We also explored the physicochemical properties,
conserved motifs, and chromosomal and subcellular localization of ZiBAM genes as well as the interaction net-
works and 3D structures of ZiBAM proteins. A promoter cis-acting element analysis suggested that ZjBAM promoters
comprise elements related to growth, development, phytohormones, and stress response. Furthermore, a metabolic
pathways annotation analysis showed that ZjBAMs are significantly upregulated in the starch and sucrose metabolism,
thereby controlling starch-maltose interconversion and hydrolyzing starch to maltose. Transcriptome and gRT-PCR
analyses revealed that ZiBAMs respond positively to elevated temperature and drought stress. Specifically, ZiBAM],
ZjBAM?2, ZIBAM5, and ZiBAMG are significantly upregulated in response to severe drought. Bimolecular fluorescence
complementation analysis demonstrated ZjBAM1-ZJAMY3, ZjBAM8-ZjDPET, and ZjBAM7-ZjDPE1 protein interactions
that were mainly present in the plasma membrane and nucleus.

Conclusion: The jujube BAM gene family exhibits high evolutionary conservation. The various expression patterns
of ZIBAM gene family members indicate that they play key roles in jujube growth, development, and abiotic stress
response. Additionally, ZjBAMs interact with a-amylase and glucanotransferase. Collectively, the present study pro-
vides novel insights into the structure, evolution, and functions of the jujube BAM gene family, thus laying a founda-
tion for further exploration of ZjBAM functional mechanisms in response to elevated temperature and drought stress,
while opening up avenues for the development of economic forests in arid areas.
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Background

Chinese jujube (Ziziphus jujuba Mill.) is a small decidu-
ous tree in the family Rhamnaceae that originated in
China, where it has been domesticated for >7000years.
It is considered one of the oldest cultivated fruit trees in
the world and is a commercially important species [1-3].
In China, jujube has a cultivation area of ~2 million hec-
tares and an annual production of over 8 million tons,
accounting for the primary source of income for millions
of farmers [3, 4]. In addition, as a commercial crop, jujube
has been introduced to more than 48 countries, includ-
ing Korea, Iran, the United States, Australia, among other
countries [4—6]. Jujube is highly nutritious and has been
widely used as a food product and in traditional Chinese
medicine (TCM) for many years. The fruit contains a
variety of active components, including phenolics, fla-
vones, polysaccharides, vitamin C, triterpenoid acid, sap-
onins, a-tocopherol, and B-carotene [7, 8]. As such, it has
demonstrated effectiveness in blood nourishment as well
as in the treatment of different types of illnesses, includ-
ing spleen diseases, diarrhea, skin infection, fever, and
insomnia [7, 8]. Meanwhile, as a TCM it has exhibited
anti-inflammatory, anti-cancer, gastrointestinal protec-
tive, antioxidant, immunomodulatory, and hypoglyce-
mic properties [7, 9]. Moreover, owing to its outstanding
endurance and adaptability to drought, as well as barren
and salty soil, jujube is becoming increasingly prevalent
in arid and semiarid lands, where it is considered a super-
fruit due to these unique advantages [4].

However, global climate change has markedly altered
environmental conditions for plant growth and function-
ing [10]. Elevated temperatures and drought stress have
significantly impacted the jujube fruit quality. Under
severe drought (40% of the field water holding capac-
ity) and elevated temperature interactive treatment, the
jujube fruit weight decreases by 29%, whereas the organic
acid content significantly increases and the soluble con-
tent decreases [11]. Moreover, elevated temperature
(2.5°C above normal temperature) significantly increases
the total sugar content, sugar-organic acid ratio, anthocy-
anins, flavonoids, and carotenoids contents. Meanwhile,
under drought stress, total sugar content and anthocya-
nin, flavonoid, and carotenoid contents are significantly
reduced, whereas the chlorophyll and organic acid con-
tents are increased [12, 13].

Sugar plays a vital role in the abiotic stress response of
the jujube. The key genes regulating the jujube fruit sugar
content are closely associated with sugar, organic acid,

and secondary metabolism pathways. One such gene is
BAM (B-amylase) [14]. BAMs (B-amylases; EC 3.2.1.2)
play central roles in starch degradation and gene regula-
tion by converting starch to maltose in multiple physi-
ological processes including growth, development, and
defense [15-17]. Indeed, BAM genes are ubiquitous in
bryophyte, seedless vascular plant, gymnosperm, and
angiosperm genomes [18]. The evolution of functional
analysis revealed that the novel BAM10 clade is absent in
Arabidopsis. Meanwhile, BAM4 controls starch metabo-
lism and is differentially regulated among various species
[19]. BAM genes also play pivotal roles in abiotic stress
tolerance by degrading starch and regulating soluble
sugar accumulation in response to cold stress [20-22].
Considering that BAM gene expression and BAM protein
activity are elevated in pear, blueberry, orange, tea tree,
potato, and poplar under cold stress [23-28], this gene
family may play key regulatory roles in jujube response to
abiotic stress.

Although we have observed that elevated temperature
and drought stress have significant effects on jujube fruit
quality, the underlying response mechanisms remain
unclear, particularly regarding the role of stress resist-
ance genes. Accordingly, in the present study, we identi-
fied and characterized nine ZjBAM genes in the jujube
genome and evaluated the network regulation of sugar
metabolism, as well as transcriptome and expression pat-
terns under elevated temperature and drought stress to
establish the jujube fruit response to abiotic stress. Fur-
thermore, the ZjBAMs protein-protein interaction net-
work was analyzed and further validated by bimolecular
fluorescence complementation (BiFC). The results of the
present study provide novel insights, which would be
helpful for future investigations, into the mechanisms by
which jujube BAM gene family members regulate sugar
metabolism in response to temperature, drought, and
other abiotic stresses.

Results

Identification and characterization of ZjBAM genes

in jujube

The HMMER and Pfam numbers (PF01373.19) were used
to search BAM protein sequences in the jujube genome
database and identify jujube BAM genes. The Expect (e)
cutoff was set to 0.0001 to remove redundant sequences.
Nine ZjBAM protein sequences were identified. The
conserved Glyco_hydro_14 domain was confirmed with
SMART and NCBI Batch CD-Search tools. The final gene



Ma et al. BMC Genomics (2022) 23:438

sequences identified were named ZjBAMI-ZjBAM9
(Table 1) based on the E-value order in the result of
the HMMER profile. ZjBAM9 was localized to chr 8,
ZjBAM?7 was localized to chr 10, ZjBAM2, ZjBAM3, and
ZjBAM4 were localized to chr 11, and ZjBAM]1, ZjBAMS,
and ZjBAMS8 were localized to chr 12. The position of
ZjBAMG6 could not be determined (Table 1).

The physicochemical properties of the nine ZjBAM
proteins were analyzed. The CDS lengths were in the
range of 1602-2112bp, and the protein lengths were
in the range of 533-703 aa. The molecular formulas
of the predicted ZjBAM proteins indicated that their
elemental composition primarily included C, H, N, O,
and S. Their molecular weights and isoelectric points
were in the ranges of 59.2-79.22kDa and 5.12-8.77,
respectively. Their aliphatic indices were in the range of
68.63—82.3; hence, most were thermostable. According
to the instability calculations and GRAVY, all proteins
except ZjBAM1, ZjBAM3, and ZjBAM?7 were unstable
(>40), and all were hydrophilic (<0). ZjBAM1, ZjBAM3,
ZjBAMS5, and ZjBAM6 were localized to microbodies,
ZjBAM?2 and ZjBAM?7 were localized to the cytoplasm,
ZjBAM9 was localized to the mitochondria, and ZjBAM4
and ZjBAMS8 were localized to the nuclei (Table 1).

Conserved domain alignment, motif, and structural
analyses of ZjBAM gene family

The phylogenetic tree, conserved domains and motifs,
and exon-intron structures of the ZjBAM gene family
were combinatorically constructed. The nine different
ZjBAM gene sequences were used to plot a phylogenetic
tree. ZjBAM3, ZjBAM4, ZjBAMS8, and ZjBAM?7 were
clustered into group I, ZjBAMI and ZjBAM2 were
clustered into group II, ZjBAM9Y was in group III, and
ZjBAMS and ZjBAMG6 were clustered into group IV
(Fig. 1a). Each gene contained a Glyco_hydro_14 con-
served domain at the positions shown in Fig. 1b. Ten
conserved motifs and 20 amino acid residues were iden-
tified using MEME. All genes contained motifs 1-9 and
were localized to a conserved domain region (Fig. 1b).

To characterize and elucidate the structural diversity
of the ZjBAM genes, we analyzed the gene exon-intron
structures using the Gene Structure Display Server
program (Fig. 1c). The structural analysis revealed
that the coding regions of all ZjBAM genes were inter-
rupted by 2-9 introns, and all members of each group
had similar structures. Group I had the most introns
(nine in ZjBAM4 and ZjBAMS, eight in ZjBAM3, and
six in ZjBAM?) followed by groups II and IV. ZjBAM]I,
ZjBAM?2, ZjBAMS, and ZjBAMG6 each contained three
introns, while ZjBAM?9 in group III had only two (Fig. 1c).
An analysis of the intron-exon structure showed that
the ZjBAM gene family was evolutionarily conserved.
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Multiple sequence alignments of the ZjBAM amino
acids disclosed that the Glyco_hydro_14 domain and the
catalytic residues Glu-186 and Glu-380 were highly con-
served across all gene family members (Fig. 1d).

Phylogenetic analysis of ZjBAM genes

Ninety BAM genes from Z.jujuba, apple (Malus domes-
tica), poplar (Populus trichocarpa), cucumber (Cucumis
sativus), peach (Prunus persica), and Arabidopsis thali-
ana were used to construct a phylogenetic tree (Fig. 2).
These genes were classified into groups I, II, and III, and
each of these was further divided into two subgroups.
ZjBAM1 was assigned to subgroup 2, ZjBAM3, ZjBAM4,
and ZjBAMS8 to subgroup 3, ZjBAM?7 to subgroup 4,
ZjBAM?2 and ZjBAMO9 to subgroup 5, and ZjBAMS5 and
ZjBAMG6 to subgroup 6 (Fig. 2). The BAM genes in jujube,
apple, poplar, cucumber, peach, and A. thaliana were
expanded into the foregoing groups and subgroups. This
indicates that these genes may have similar functions in
the growth and development.

Chromosomal localization, tandem duplication,

and cis-acting element analyses of the ZjBAM gene family
The chromosomal position of the identified ZjBAM
genes was determined with the Mapchart software.
Eight ZjBAM genes were located on four chromosomes
in Z. jujuba (Fig. 3a). These included ZjBAM9 on chr 8,
ZjBAM?7 on chr 10, ZjBAM?2, ZjJBAM3, and ZjBAM4 on
chr 11, and ZjBAMS, ZjBAM1, and ZjBAMS on chr 12. A
tandem gene pair (ZjBAM3 and ZjBAM4) was detected
with the MCScanX tool and was recognized as a marker
on chr 11 (Fig. 3a, green highlight). The Ka/Ks ratio
between ZjBAM3 and ZjBAM4 was <1.0; this indicates
that the gene pair probably underwent strong purifying
selection for retention.

A 1500bp upstream of each ZjBAM gene family
was selected as a promoter region and searched with
PlantCARE. The predicted cis-elements were classified
mainly as core cis-regulatory-, growth and develop-
ment-related-, phytohormone-responsive-, and stress-
responsive elements (Fig. 3b). Each ZjBAM member
contained a typical core promoter element TATA-box
and an enhancer element CAAT-box, which enhances
gene expression. The AAGAA-motif was found in
ZjBAMI and ZjBAM?2. The light-responsive element
MRE was identified in the ZjBAM9 promoter. MBSI
is a flavonoid biosynthetic gene-regulating element
occurring in the ZjBAM4 promoters. O2-site is a zein
metabolism-regulating element in the ZjBAM9 and
ZjBAM?7 promoters. The DNA synthesis ribonucleo-
tide reductase enzyme element MYB and the phytohor-
mone-responsive element MYC were observed in the
ZjBAM1, ZjBAM?2, ZjBAMS5, ZjBAM7, ZjBAMS, and
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Fig. 1 Bioinformatics analyzes of ZiBAM genes family. a Phylogenetic evolution of ZiBAM genes family. b Conserved domain and motif analysis
of ZIBAM genes family. ¢ Gene structure analysis of ZiBAM genes family. d Multiple sequence alignment of ZjBAM family amino acid, blue shading
indicates highly conservative substitutions. Red box represents the two catalytic residues Glu-186 and Glu-380
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ZjBAM9 promoters. The phytohormone-responsive
elements ARE, GARE-motif, ABRE, ERE were iden-
tified in the ZjBAM7, ZjBAMI, ZjBAMY, ZjBAM4
promoters, respectively. STRE, W, and WRE3 are envi-
ronmental stress-responsive elements and were found
in the ZjBAM3 and ZjBAM 1 promoters (Fig. 3b).

Intragenomic and intergenomic collinearity analysis

Intergenomic synteny analysis revealed different linear
relationships among jujube chromosomes. A total of
1645 collinear gene pairs were detected in the intra-
chromosomal and interchromosomal regions; how-
ever, there was no collinearity among ZjBAM family
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Fig. 2 Phylogenetic tree of 90 BAM genes from Ziziphus jujuba, apple (Malus domestica), poplar (Populus trichocarpa), cuacumber (Cucumis sativus),
peach (Prunus persica), and Arabidopsis thaliana, created with MEGAX using the neighbor-joining method

members (Fig. 4). Intergenomic collinearity was ana-
lyzed to investigate genetic divergence and gene dupli-
cations of the BAM genes among jujube and peach,
apple, poplar, A. thaliana, and cucumber. Five ZjBAM
gene family members were collinear with five peach
BAM genes and eight apple BAM genes (Fig. 5a; Table
S1). In addition, three ZjBAM gene family mem-
bers were collinear with five poplar BAM genes, and
two were collinear with two A. thaliana BAM genes
(Fig. 5b; Table S1). Similarly, three ZjBAM gene fam-
ily members were collinear with three cucumber BAM
genes (Fig. 5¢; Table S1). A comparative genomic analy-
sis showed that the BAM family genes were more col-
linear between jujube and apple, peach, and poplar than
between jujube and A. thaliana and cucumber. Hence,
duplicated genes might have been altered or lost during
the evolution of the different species.

Sugar metabolism regulation by ZjBAM gene family
members and expression profiles in the transcriptome
Transcriptome analysis of the various propagation
modes of ‘Lingwuchangzao’ jujube demonstrated that
the BAM gene was significantly upregulated during
starch and sucrose metabolism [14]. A KEGG pathway
analysis disclosed that BAM mainly regulates starch-
maltose interconversion, starch hydrolysis to malt-
ose, and maltose degradation to glucose. When large
amounts of starch accumulate, BAM hydrolyzes starch
into maltose and thence to glucose. It also directly
hydrolyzes starch to glucose. The latter is then trans-
formed to UDP-glucose which participates in sucrose
formation. UDP-glucose enters different metabolic
pathways including amino sugar and nucleotide sugar
metabolism and glycolysis metabolism (Fig. 6a).
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Fig. 3 Chromosomal distribution and Cis-acting elements analysis of ZjiBAM family. a Chromosomal localization of eight ZiBAM gene family
members, the green box represents a pair of tandem genes ZjBAM3 and ZjBAM4. b Promoter cis-acting element of ZjBAM genes

The transcriptome data for various treatment condi-
tions were used to analyze jujube BAM gene expres-
sion levels (Tables S2 and S3). ZjBAM family members
were clustered for the grafting (Y]) and root tiller (YG)
propagation modes of the ‘Lingwuchangzao’ jujube
fruit transcriptome [14]. The expression of ZjBAM?2
and ZjBAM9 was substantially upregulated in both the
propagation modes (Fig. 6b). ZjBAM family members

were also classified for the fruit transcriptome at differ-
ent developmental stages under elevated temperature
and drought stress. The expression levels of ZjBAM4,
ZjBAM?7, ZjBAMI, and ZjBAMY9 were markedly lower
than those of ZjBAM5, ZjBAM6, ZjBAM3, ZjBAM?2, and
ZjBAMS (Fig. 6¢). The expression pattern analysis indi-
cated that the ZjBAM?2 and ZjBAM9 responded posi-
tively to sugar regulation under both ‘Lingwuchangzao’



Ma et al. BMC Genomics (2022) 23:438

Page 8 of 21

3l0)

Chr3

Chré

Fig. 4 Intergenomic synteny relationship between the ZiBAM genes in the jujube genome. Red and blue lines indicate the collinear gene pairs
within intrachromosomal and interchromosomal, respectively

jujube propagation modes, whereas ZjBAMS, ZjBAMS,
ZjBAM3, ZjBAM?2, and ZjBAMS responded to elevated
temperature and drought stress.

Expression patterns of ZjBAM genes under elevated
temperature and drought stress

Based on the results of the transcriptome expression
profiles analysis, nine ZjBAM genes were selected for
quantitative reverse transcription-polymerase chain

reaction (qQRT-PCR) analysis at different jujube plant
growth stages under elevated temperature and drought
stress (Fig. 7). The expression patterns of the foregoing
ZjBAM genes were similar at all three growth stages (51,
S2, and S3). In response to severe drought stress, expres-
sion of ZjBAMI, ZjBAM2, ZjBAMS, and ZjBAM6 was
significantly (p <0.05) downregulated at S1 (T1D3) but
significantly (p <0.05) upregulated at S2 and S3 (Fig. 7a,
b, e-g). In response to elevated temperature (T2D1),
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Fig. 5 Synteny analysis of the BAM genes among jujube, apple (Malus domestica), poplar (Populus trichocarpa), cucumber (Cucumis sativus), peach
(Prunus persica), and Arabidopsis thaliana. a Collinear BAM family gene pairs between peach and jujube and between jujube and apple. b Collinear
BAM family gene pairs between poplar and jujube and between jujube and A. thaliana. ¢ Collinear BAM family gene pairs between jujube and

expression of ZjBAM3 was significantly (p <0.05) upreg-
ulated at all three growth stages, and that of ZjBAM?2
and ZjBAM6 was significantly (p <0.05) downregulated
in S2 but significantly (p <0.05) upregulated at S1 and
S3 (Fig. 7b, f). Moreover, under T2D1, the expression
of the ZjBAMI, ZjBAM4, and ZjBAMY was signifi-
cantly (p<0.05) upregulated at S1 but downregulated
at S2 and S3 (Fig. 7a, d, i). Under T2D2, the expression
of ZjBAM3 was significantly (p <0.05) upregulated at all
three stages (Fig. 7c), whereas that of ZjBAMS, ZjBAME,
ZjBAMS8 was significantly (p <0.05) upregulated only at
S1 (Fig. 7e, f, h). However, under both elevated tempera-
ture and drought stress (T2D3), ZjBAM3 and ZjBAMS8

expression levels increased significantly (p <0.05) at all
three growth stages (Fig. 7c, h), and ZjBAM1, ZjBAM?2,
ZjBAM4, ZjBAMS, ZjBAM6, and ZjBAMY9 were sig-
nificantly (p<0.05) upregulated at S1 (Fig. 7a, b, e, f,
i). Hence, these nine ZjBAM gene family members
responded positively to temperature, drought, and the
interactive effects during jujube fruit development; they
play a pivotal role in response to abiotic stress.

Protein-protein interaction network analysis and validation
of ZjBAM family genes

A network was constructed using the STRING data-
base to investigate protein-protein interactions between
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ZjBAMs and A.thaliana proteins (Fig. 8a). A comparative
genomic analysis of the jujube and A.thaliana genomes
was performed with OrthoVenn2. A total of 12,139 genes
pair orthologs were identified in jujube-A. thaliana
(Fig. 8b). The ZjBAM family genes were used to retrieve
the BAM genes among the A.thaliana orthologs. Seven
BAM genes matched between the two plants (Table S4).
Finally, a total of 47 proteins, including seven ZjBAM
proteins, were identified at a medium confidence score
of 0.400 (Table S4), and a protein-protein interaction net-
work revealed their interactions (Fig. 8a). Furthermore,
at a high confidence score (>0.900), ZjBAM1, ZjBAM?2,
ZjBAM3, ZjBAM 4, ZjBAM7, and ZjBAMS8 were found
to interact with five, four, three, three, two, and four

jujube proteins, respectively (Table S5). These results
help elucidate the function of ZjBAM genes.
Furthermore, based on the functional annotation of
seven jujube-A. thaliana BAM orthologs (Table S6),
ZjBAMI1-CTBMY is involved in cold resistance, regu-
lates the accumulation of maltose and circadian regu-
lation starch degradation. ZjBAM?7-BAMSG6 regulates in
cellulose biosynthetic, carbohydrate metabolism, poly-
saccharide catabolism, and response to plant growth
stages. ZjBAMS8-BMY2 which is repressed in the plant
structure and growth stages, is involved in carbohy-
drate metabolism. Hence, these three genes of ZjBAM1,
ZjBAM?7, and ZjBAMS8 were selected as key genes for
further protein interaction and functional analysis.
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Combined with the screening results with a high con-
fidence interaction score (Table S5), three interaction

proteins pairs—ZjBAM1 (Zj.jz015515046)-ZjAMY3
(Zj.jz040083023), ZjBAM7 (Zj.jz013313009)-ZjDPE1
(Zj.jz018223043), and ZjBAMS8 (Zj.jz040841049)-

ZjDPE1 (Zj.jz018223043)—were used to validate the
protein-protein interactions by BiFC. The target genes,
ZjBAMI1, ZjAMY3, ZjBAM?7, ZjBAMS, and ZjDPEI
(Fig. Sla-e), were amplified using primers (Table S7).
The pCAMBIA1300YNE plasmid was constructed and
verified using double enzyme digestion, followed by

sequencing (Shaanxi Breeding Biotechnologies Co.,
Ltd., Shaanxi, China) validation (Fig. S1f-j). Then, the
recombinant plasmid was transformed into the Agro-
bacterium strain GV3101 and validated using colony
PCR (Fig. S1k-o). Finally, the fusion plasmid constructs
were generated and temporarily expressed in tobacco
mesophyll cells to examine the yellow fluorescent sig-
nal. The results indicated that the ZjBAMI1-ZjAMY3
(Fig. 9a, d, e, ) and ZjBAMS-ZjDPE1 (Fig. 9c, d, h, i)
protein interactions were present in the plasma mem-
brane and nucleus, whereas ZjBAM7-ZjDPE1 (Fig. 9b,
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