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Abstract 

Background:  The collection of circRNAs mostly focused on their sequence composition such as protein/miRNA 
binding motif, and/or regulatory elements such as internal ribosome entry site. However, less attention was paid to 
subcellular localization. CircVIS aimed to provide a collection of circRNAs with information of subcellular compart‑
ments and also integrated the circRNA entries from previous circRNA databases.

Results:  A collection of circRNAs from public circRNA databases and de novo identification were annotated accord‑
ing to subcellular localizations including nucleoplasm, chromatin-associated parts, cytoplasm and polyribosome. All 
circRNAs were aligned to a selected major transcript, and if presence, the circRNA-derived open reading frame with 
annotation of functional domain were compared to its parental protein. The results showed that distinct circRNAs 
may exert their molecular and cellular functions in different subcellular compartments. The web service is made freely 
available at http://​lab-x-​omics.​nchu.​edu.​tw/​circV​IS.

Conclusions:  CircVIS allows users to visualize the alignment between a given circRNA and its most relevant reference 
transcript along with information of subcellular localization.

Keywords:  Circular RNA, Subcellular localization, Reference transcript, Coding circRNA, Backsplice, Polysome, 
Polyribosome, Chromatin-associated
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Background
Circular RNA (circRNA) is a novel class of single 
stranded regulatory RNA molecules with covalently 
enclosed ends by 3’, 5’-phosphodiester bond formed 
through backsplicing which takes place between a down-
stream splice donor and an upstream splice acceptor. 
Recent studies using next generation sequencing and 

computational analyses have revealed widespread exist-
ence of circRNAs in animals and many other organisms 
[1–3].

CircRNAs play various roles such as transcrip-
tional activation, post-transcriptional modulation, 
translation and protein interaction in different sub-
cellular compartments [4–8]. For those circRNAs 
regulating gene expression network through interac-
tion with miRNAs [9–13], the majority of these circR-
NAs resides in cytoplasm to regulate the availability 
of miRNAs bound to mRNA molecules. For example, 
more than 75% of circular RNA originated from exon 
8–10 of CCDC66, which interacted with miR-33b, 93 
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and 185, were found in the cytoplasm [11]. In con-
trast, it was reported that circRNAs modulating tran-
scriptional activation associate with genomic DNA in 
nuclei. A few intron-retained circRNAs reside in the 
nuclei and associated with promoter region of tar-
get genes [5]. Nevertheless, an exonic circRNA from 
gene FLI1 modulating DNA methylation in promoter 
regions also localized in the nuclei [14]. These exam-
ples demonstrated that subcellular localizations of a 
given circRNA may provide clues to their molecular 
functions. Pioneer studies have made great contri-
bution dissecting and archiving these relationships 
among miRNAs, circRNAs and associated pathologi-
cal phenotypes [15–18]. However, the studies investi-
gating the biological functions of circRNAs are largely 
limited to the function of miRNA sponge [19–21], and 
thus how to explore alternative molecular functions of 
circRNA become a critical task.

In this study, we analyzed and categorized circRNAs 
according to their subcellular localizations, aiming to 
provide more insight to interpret how circRNAs may 

exert their biological functions in distinct subcellu-
lar compartments. We also integrated potential coding 
region(s) along with functional domains of circRNA-
derived open reading frames in a visual presentation 
platform.

Implementation
Data retrieval and processing
The archived circular RNA coordinates were downloaded 
from circBase [22] and circRNADb [23] while raw data 
of RNA sequencing were directly downloaded from SRA 
and converted to fastq by using SRA tool kit (v 2.9.1). 
The dataset ‘SRP083953’ was used for ribosomal RNA-
depleted cytoplasmic, nucleoplasmic and chromatin-
associated RNA [24], while ‘SRP114807’ (all available 
fractions), ‘SRP139916’ (with cycloheximide treatment) 
and ‘SRP233220’ were used for polysome fractions [25, 
26]. The read sequences were then aligned to reference 
genome (Homo sapiens GRCh38.92) using Burrows-
Wheeler Aligner. For bisulfite treatment-derived samples 

Fig. 1  The schematic illustration of circRNA annotation tool. RNA sequencing data compatible with circRNA analysis from distinct subcellular 
compartments were retrieved from GEO/SRA databases (top-left corner). The coordinates of backsplicing junction were extracted by using CIRI2. 
The previously archived circRNA information were downloaded from circBase and circRNADb (top-right). Both sources of data were re-annotated 
by using gene information from Ensembl database. Each backsplicing junction was mapped to a selected representative reference transcripts 
according to conservation/number of exon/length of transcripts and alignment to exon junctions. CircRNAs will be displayed along with their 
reference transcript (bottom-left) and/or with the coding region from their parental genes (bottom-right)
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(SRP233220), reads were aligned to the same reference 
genome with C converted to T or G converted to A. The 
resultant Sequence Alignment/Map files were then pro-
ceeded to CIRI2 (Fig. 1) [27].

Identification of circRNA representative transcript
The information of host genes and transcripts were 
extracted by comparison between circRNA coordinates 
and gene annotation (Homo sapiens GRCh38.92). Tran-
scripts matched to circRNA coordinates were further 
ranked by the presence of Consensus Coding Sequence 
(CCDS), number of exons, offset to known exon junction 
and commonness among circRNAs.

Analysis of opening reading frame of circRNAs
The potential ORFs of circRNA sequence were consid-
ered beyond its original length. According to the times 
of ORFs crossing backsplice junction, ORFs were classi-
fied to 0-crossing (0C), 1-crossing (toward 5’ or 3’: 1C5’, 
1C3’), 2 crossings (2C) and endless crossing (edlsC) 
(Fig. 2). The zero-crossing ORFs are indistinguishable to 
ORFs in parental RNAs (Fig. 2, left), while 1C5’ or 1C3’ 
are ORFs with novel sequences in either N- or C-termi-
nus. In a similar fashion, 2C ORFs would be expected to 
have novel sequences at both ends (Fig. 2, right). In some 
cases, endless crossing takes place, generating an ORF 
with infinite length.

Data visualization
The circRNA isoforms, corresponding host gene and 
information of the paired backsplicing exons were inte-
grated and presented by using ‘ggplot2’ [28]. The circR-
NAs with open reading frame were extracted and aligned 
with the protein sequence of their parental gene. The 
functional annotation of the given protein was retrieved 

and presented by using functions adapted from ‘drawPro-
teins’ with modifications [29].

Results
Genome‑wide recollection of circular RNAs with distinct 
subcellular localizations
The comparison of the records between databases is 
important for biologists to design their experiments. Due 
to the incompatibility of accession ID, it is not intuitive 
to know whether a given circRNA in one database is pre-
sent in the other. Our annotation pipeline assigned each 
circRNA a major reference transcript along with a pair of 
exons for backsplice, making comparison and communi-
cation easier. The results of comparison between circBase 
and circRNADb using our annotation pipeline demon-
strated the feasibility of comparison. The pioneer databases 
of circRNA, circBase and circRNADb, shared 14 thousand 
circRNA entries, and there are 67 thousand circBase-spe-
cific and 17 thousand circRNADb-specific entries respec-
tively. In comparison with circBase and circRNADb, the 
RNA-seq data we analyzed revealed additional unique 
11,858 circRNAs which were not archived previously. 
Furthermore, we identified circRNAs residing in distinct 
subcellular localization. Our analyses revealed that the 
majority of circRNAs resides in cytoplasm based on HeLa 
and HCT116 cell-lines (Fig. 3B, cytoplasm and polysome, 
11,585, 82.48%). Only limited number (524, 3.73%) of cir-
cRNAs locates in nuclei and/or associated with chroma-
tin according to data from HeLa cells (Fig. 3B). Of special 
note, a previous study has found that depletion of particu-
lar proteins may impair the nuclear export of circRNAs in 
a size-dependent manner [30]. It will be worthwhile to fur-
ther validate the correlation between the cellular distribu-
tion of circRNAs and these proteins.

Fig. 2  The analysis of ORFs in circular RNAs. The possible ORF organization were illustrated. The ORFs not crossing backsplicing junction were 
denoted ‘0−crossing’ (left). ORFs crossing backsplicing junctions (once) toward 5’ or 3’ will generate novel N terminal or C terminal sequences. 2C 
denoted the ORFs crossing backsplicing junction twice. In some cases, circRNA generates ORF crossing backsplicing junction infinite times. Grey 
circle denotes the absence of a feature (novel sequence or infinite ORF) while green circle denotes the presence of the feature
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CircRNAs have great diversity of splicing pattern
To better compare all backsplice junctions from a single 
gene using minimal number of reference transcript, we 
integrated coordinates of backsplice junction, representa-
tive reference transcript, the pair of exons for backsplice, 
subcellular location and accession numbers of alternative 
circRNA databases (Fig. 4A). Furthermore to have better 
insight to this diversity, a proper visual aid is required to 
observe an overall exon usage for a given circRNA on a 
representative transcript. We integrated the annotations 
of Ensembl transcripts (red track) and circRNAs (blue 
or green track) in a single transcript plot (Fig.  4B). Cir-
cRNAs with predicted open reading frames can be eas-
ily identified. From the example of gene ‘PTP4A2’, the 
transcript ENST00000647444 had 9 pairs of backsplicing 
exons while ENST00000602725 and ENST00000532001 
had 2 and 1 respectively. Obviously, one reference tran-
script can’t fit to all pairs of backsplicing exons. In addi-
tion, potential ORFs were aligned with parental proteins 
with functional features (Fig.  4C). While the functional 
domains were shown on the top of the reference pro-
tein, the circRNA-derived ORFs were aligned to the 
parental protein and shown at the bottom. This visual 

presentation will provide more information for biologists 
to evaluate what circRNAs may potentially modulate the 
functions of parental protein.

Discussion
CircRNA is a class of regulatory molecules with diverse 
functions. Most of studies focused at its miRNA bind-
ing capacity in the cytoplasm. There are a few online 
resource designing for dissecting this function. For 
example, both starBase and circAtlas collected the 
interactions between circRNAs and miRNAs using 
either CLIP data or bioinformatic prediction while 
ACT classified the potential sponging activity through 
common target gene analysis [12, 17, 31]. In addition, 
predicted IRES and ORF information were archived 
in circRNADb and circAtlas [23, 31]. Nevertheless, 
CircInteractome archived the potential RNA-binding 
proteins associated with circRNA [32]. These annota-
tions are extremely useful to promote functional stud-
ies for dissecting the particular downstream genes of 
circRNAs. However, the fact that overwhelming num-
ber of miRNA binding sites and ubiquitous presence of 
IRES/ORFs in databases of circRNA hinder the precise 

Fig. 3  Genome-wide recollection of circRNAs. A A Venn diagram showed the overlapping unique entries among three datasets. The raw entries 
from circBase and circRNADb were preprocessed by selection of best representative transcript and paired exons for inter-database comparison. 
B The numbers of backsplicing events extracted from RNA-seq data using RNA collected from different cellular fractions were shown as a Venn 
diagram. In addition to the RNA isolated from the cytoplasmic and nuclear fractions, the chromatin fraction was defined as the insoluble parts of 
the nuclear lysate while the ‘polysome’ came from the heavy fractions of the sucrose gradient for polysome profiling
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Fig. 4  CircRNA isoform presentation. A The table shows details of the given circRNA including the origin of circRNA, Ref transcript, the pair of exon 
M/N for backsplice taking place from the representative transcript. The column of subcellular info shows ‘green’ if a given circRNA is identified in 
corresponding different subcellular compartments. Similarly, if ORF is predicted, the column of ‘cORF’ (circORF) shows green. The last two columns 
indicate in which database (DB) the given circRNA was archived (cBase: circBase; cRNADb: circRNADb). B Results of circRNA isoform presentation. 
The representative transcripts are showed in red tracks. A subset of circRNAs are aligned to the upper track (ENST00000647444) while others fit to 
ENST00000602725 or ENST00000532001. Green track: CircRNAs predicted to have ORF; Blue track: circRNA predicted not to have ORF. C CircRNAs 
with ORFs aligned to its protein with annotated domains. ORFs from different transcripts are color-coded. Paired exons of backsplicing exons are 
labeled at the end of gene symbol
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application of this information in biological researches. 
Thus, additional information has to be added to facili-
tate the analysis prior to experimental design.

The regulatory molecules exert their molecular 
functions in the corresponding subcellular compart-
ments. For example, transcriptional factors such as 
‘estrogen receptors’ (ERα and ERβ) or members of 
‘signal transducer and activator of transcription’ (e.g. 
STAT3) have to translocate to nuclei to modulate the 
transcriptional activity of their target genes. In con-
trast, the majority of miRNAs and the associated 
AGO2 protein complexes resides in cytoplasm to tar-
get mRNA. Adherent to this concept, we hypothesized 
that the subcellular compartment where the circR-
NAs reside may provide extra information to predict 
or interpret their molecular functions. For example, 
circZNF609 [4], one of the best studied coding circR-
NAs was shown in polysome fraction in our analysis 
while circCCNB1 which modulates CDK1 activity [33] 
in nuclei was identified in nuclear fraction, suggest-
ing that the information of subcellular localization 
indeed coincides with molecular functions in some 
cases. However, the limitation came from the variety 
of samples analyzed. First, there were limited number 
of available datasets compatible for circRNA analysis 
from multiple cell-lines. The majority of RNAseq data 
were from polyA-enriched samples, and/or oligo-dT-
based library construction. Either one renders the cir-
cRNA analysis impossible. Second, there were limited 
number of RNA sequencing datasets available from 
subcellularly fractionated samples. Thus, the absence 
of circRNA in certain compartments will require fur-
ther experimental evaluation.

Conclusions
Our circRNA annotation platform not only provides a 
unique information about the subcellular location, but 
also a straightforward presentation and nomenclature. 
The integrative information is much improved compared 
to these pioneer databases (Table 1), and will serve as an 
alternative hub for circRNA studies.

Availability and requirements
Project name: circVIS
Project home page: http://​lab-x-​omics.​nchu.​edu.​tw/​
circV​IS
Operating system(s): Platform independent (Web-
based service)
Programming language: Perl 5 and R 3.5.0
Other requirements: Not applicable
License: GNU GPL; non-academic user: license needed

Datasets used
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circRNADb:http://​reprod.​njmu.​edu.​cn/​cgi-​bin/​circr​
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Table 1  The comparison to other circRNA databases

● : available; −: not available; Δ.: incomplete

circVIS circBase circRNADb circAtlas

circRNA coordinates hg38 hg19 hg19 hg19/hg38

Query using Gene symbol ● ● ● Δ

Paired exon info ● − Δ −

Representative transcript ● ● ● −

To other Db ● − − −

ORFs ● − Δ ●

Subcellular locations ● − − −

Visual aid ● Δ − ●

Isoform presentation ● ● − −
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