
Lorenz et al. BMC Genomics          (2022) 23:444  
https://doi.org/10.1186/s12864-022-08654-x

RESEARCH

TSABL: Trait Specific Annotation Based Locus 
predictor
Kim Lorenz1,2, Christopher S. Thom1,2,3, Sanjana Adurty4 and Benjamin F. Voight1,2,5* 

Abstract 

Background:  The majority of Genome Wide Associate Study (GWAS) loci fall in the non-coding genome, making 
causal variants difficult to identify and study. We hypothesized that the regulatory features underlying causal variants 
are biologically specific, identifiable from data, and that the regulatory architecture that influences one trait is distinct 
compared to biologically unrelated traits.

Results:  To better characterize and identify these variants, we used publicly available GWAS loci and genomic anno-
tations to build 17 Trait Specific Annotation Based Locus (TSABL) predictors to identify differences between GWAS loci 
associated with different phenotypic trait groups. We used a penalized binomial logistic regression model to select 
trait relevant annotations and tested all models on a holdout set of loci not used for training in any trait. We were able 
to successfully build models for autoimmune, electrocardiogram, lipid, platelet, red blood cell, and white blood cell 
trait groups. We used these models both to prioritize variants in existing loci and to identify new genomic regions of 
interest.

Conclusions:  We found that TSABL models identified biologically relevant regulatory features, and anticipate their 
future use to enhance the design and interpretation of genetic studies.
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Background
Genome-wide association studies (GWAS) are a widely 
used method to identify genomic regions associated in 
a population with a phenotype of interest, and have suc-
cessfully detected thousands of loci across the human 
genome, each of which contains a set of linked vari-
ants that are potentially causal [1–16]. Unfortunately, 
identifying the specific causal variant(s) and underlying 
mechanism at associated loci is far more challenging, 
and for many genomic regions there exist more potential 
causal variants in credible sets than can be experimen-
tally tested [17–19]. While multi-ancestry fine-mapping 

can help to narrow the set of putative variants [20], this 
approach is limited to loci which share genetic architec-
ture and genetic variation across populations, and still 
may not resolve causal variant(s) within a locus. There-
fore, an orthogonal method for prioritizing variants in 
GWAS loci would be beneficial. Additionally, as more 
well-powered GWAS reveal more loci, a straightforward 
method to prioritize the likelihood of variants contribut-
ing to a specific disease will aid in locus discovery.

While pleiotropy is pervasive across the human 
genome [21], the contribution of individual variants 
depends on the biological relatedness of the traits under 
consideration. For example, the loci, causal genes, and 
variants associated with circulating plasma lipid levels 
might reasonably be expected to differ from those that 
modify electrocardiogram (ECG) traits, as the biologi-
cal basis for these traits involve different tissues (liver 
vs. heart), different physiologies (lipid metabolism and 
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trafficking vs. cardiac electric conductance), and differ-
ent genes (e.g., SORT1  [22] vs. NOS1AP  [23]). Presum-
ably, then, with sufficient association data and a diverse 
and dense collection of functional annotations across the 
genome, it might be possible to train a model to predict 
loci – and perhaps even variants – that relate to specific 
sets of traits relative to all others. Ideally, such a predic-
tor would learn and select biologically relevant annota-
tions from a set of all possible genomics features, thereby 
also providing informative hypotheses for why particular 
loci or variants are predicted to be “trait-relevant”. Cur-
rent methods to predict if a variant is likely functional for 
any trait (such as CADD [24], GWAVA [25], and Deep-
SEA [26]) provide a score based on likelihood of function 
across multiple (unrelated) phenotypes and diseases.

Previously, we built platelet and red blood cell models 
using those GWAS as positives and random matched 
genomic regions as controls [27]. While this was success-
ful, we found the models to not be trait selective. Here, 
we instead sought to develop a trait specific annotation 
based locus (TSABL) predictor which would discrimi-
nate loci associated with a specific trait (or collection of 
related traits) from all other complex trait associated loci 
identified by GWAS. We collected association results 
from 42 GWAS-scanned phenotypes [1–16], coarsely 
grouping them into 17 related trait groups to test and 
validate prediction models (Supplementary Table 1). We 
then applied a penalized binomial logistic regression 
model (LASSO) to each trait group using publicly availa-
ble genome wide features such as DNase hypersensitivity 
and histone or transcription factor ChIP-seq (Supple-
mentary Table 2), along with gene expression, phastCon 
score, and size of locus. The six successful TSABL models 
were able to separate regions associated with their trait 
group from other GWAS loci and identified sensible 
biological features for the phenotypes in focus. We then 
applied these models to fine mapping and locus discovery 
paradigms, both of which may lead to translationally rel-
evant trait-specific biological mechanisms.

Results
To develop our approach, we needed to define the set of 
traits, identify positive and negative loci for those traits, 
and obtain a collection of genomic features to discrimi-
nate between these labels. For traits to study, we focused 
on 42 phenotypes obtained from curated GWAS and 
the NHGRI-EBI GWAS catalog that we collapsed into 
17 related trait groupings (Methods, Supplementary 
Table  1). Using all GWAS lead variants identified, we 
first clumped variants into loci by linkage disequilibrium 
(using European LD R2 > 0.7). Next, for each trait group 
we defined positive loci as those which contained at least 
one variant with an associated P-value < 5 × 10–8 with at 

least one of the phenotypes in the trait group. Negative 
loci for each trait group were defined as those without 
any variant even modestly associated (P-value > 0.05) 
with one or more of the phenotypes in the trait group. 
We utilized genome-wide annotations from multiple 
public resources, including nearest gene tissue-specific 
expression and epigenomic features, tagging these fea-
tures across positive and negative examples if the features 
overlapped with any variant in the locus.

We then generated predictive models for each of the 17 
trait groups using a penalized binomial logistic regression 
model (LASSO) [28], using cross-validation for training 
and estimating final prediction accuracy on a holdout 
set not used in training any model (Methods, Supple-
mentary Fig. 1). We defined a model as informative if the 
area under the curve (AUC) was ≥ 0.7 and the difference 
between training and holdout AUCs was ≤ 0.02 (imply-
ing only a small level of overfitting). Based on these cri-
teria, models trained for autoimmune, electrocardiogram 
(ECG), lipid, platelet, red blood cell (RBC), and white 
blood cell (WBC) traits passed, and were the focus of fur-
ther investigation (Fig. 1a, Table 1).

To assess why these 6 traits produced successful mod-
els while the other 11 failed, we considered whether trait 
models with more loci with coding variants, more posi-
tive loci or more features were more predictive (Sup-
plementary Fig.  2). We found a significant relationship 
between percentage of loci containing coding variants 
and holdout set AUC, suggesting that even though our 
models are training on annotations we consider to be 
non-coding in nature, traits with more loci containing 
coding variants are easier for our models to predict. We 
did not find an obvious relationship between either num-
ber of loci used to train models or number of annota-
tions selected and holdout set AUC, suggesting that our 
inability to predict these traits is not based on limitations 
in availability of positive/negative examples or the total 
number of available features. The implication may be that 
the catalog of existing features available for modelling 
insufficiently captures differences between these other 11 
traits and the spectrum of complex traits more generally.

We considered two metrics of model specificity. First, 
trait specific models should be more informative for pre-
diction relative to functional variant prediction methods 
which were designed to be trait agnostic. For the trait 
groups we assembled, the holdout set AUCs for CADD, 
GWAVA, and DeepSEA were all close to 0.5, indicating 
that none were informative for discriminating amongst 
trait-associated GWAS loci (Fig.  1B, Table  1). Second, 
trait specific predictors should perform the best on the 
phenotype collections from which they were trained. 
Looking at comparative model performance, we observed 
that all six selected models were better at predicting their 
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own holdout set compared to others (Fig.  2, left panels 
and Supplementary Fig.  3). These results indicate that 
these six prediction models can discriminate between 
traits using GWAS loci alone, and that the power to make 
predictions is not due to intrinsic functionality of GWAS 
loci in general that would be captured by trait agnostic 
methods.

Given the pervasive nature of pleiotropy, we would 
expect that predictors for traits that are related to one 
another – but perhaps not so closely as to be grouped 
together – should be partially cross-predictive. We 
observed this to be true for the RBC model, which could 
be used to predict the platelet holdout set with an AUC 
of 0.79 (Fig. 2A, left panel). To rule out that this similarity 

was driven by loci that are positive for both traits, we 
removed all loci from the holdout set that were positive 
in both the “in-focus” trait (here, platelets) and any other 
model, then reassessed the holdout AUC for each model. 
Even after removing overlapping loci, the RBC model 
still predicted the platelet holdout set well, indicating 
the prediction accuracy is not driven by overlapping loci 
(RBC AUC of 0.76 on platelets holdout set; Fig. 2A, right 
panel). In contrast, the ECG model was the only one that 
predicted the ECG holdout set reasonably, while the 
autoimmune, lipids, platelets, RBC and WBC models all 
had AUC < 0.55 on the ECG holdout (Fig. 2B).

Looking at the annotations selected as important for 
our six successful models, we found them to be largely 

Fig. 1  Model AUCs. A Training vs Holdout AUCs. Dotted grey line shows equality. Selected models (holdout AUC ≥ 0.7) shown in green, unselected 
in purple. B Individual holdout AUC plots for selected models, compared to CADD (pink), GWAVA (cyan), DeepSEA (brown)
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in line with known trait biology (Fig.  3, Supplementary 
Fig.  4, Supplementary Table  3). All three blood traits 
(platelets, RBC, and WBC) selected mainly whole blood 
annotations that positively rank active regions (active 
histone marks, gene expression, and transcription fac-
tor (TF) binding) and negatively rank repressive histone 
marks (H3K9me3) (Fig.  3A, Supplementary Fig.  4B and 
C). By contrast, the ECG model selected only heart tis-
sue annotations (Fig.  3B), and the lipids model chose 
predominantly liver tissue features (Fig.  3C). We also 
identified features that distinguish these traits from each 
other. For example, only the models for the immune traits 
autoimmune and WBC selected spleen gene expression.

We next used the framework of stratified LDScore 
regression [29] to evaluate if the scores emitted by our 
models could be used as an annotation to explain par-
titioned heritability. With our six added annotations 
derived from our six selected models, we tested 103 
annotations in total and so considered enrichments with 
P-value < 4.8 × 10–4 significant by Bonferroni correction. 
We found enrichment in GWAS for all successful mod-
els with summary statistics available (autoimmune, lipids, 
platelets, RBC, WBC) (Supplementary Table  4). To test 

whether this enrichment was driven by the lead GWAS 
SNPs that the models were based on, we also removed 
these lead GWAS SNPs and their LD proxies (EUR R2 
LD > 0.7) from the dataset and reassessed enrichment. 
We found that the lipids, platelets, and WBC models 
were significant in all individual phenotype association 
data, and the RBC model was significant for 3 of 4 phe-
notype GWAS (Supplementary Table 5). Perplexingly, the 
autoimmune model was not significant for any phenotype 
GWAS after lead SNPs were removed, but the related 
trait models for WBC and platelets were significant for 
all 3 autoimmune phenotype GWAS. We expect that the 
autoimmune trait group failed this test due to a lack of 
power, as it had the fewest positive loci of the tested suc-
cessful models. The enrichment we see in LDScore par-
titioned heritability demonstrates that our trait- and cell 
type-specific modeling approach can define target loci 
for related disease phenotypes, facilitating downstream 
validation and biological/mechanistic understanding.

Application—locus discovery
We next applied our six predictive models to all SNPs 
identified in phase III of the 1000 Genomes project. 

Fig. 2  Model AUCs on same holdout sets. Each panel shows the named holdout set: A Platelets and B ECG. AUCs for all six selected models are 
shown on all plots, with the left (All) plot having all loci in that holdout and the right (No Overlap) having only those loci not positive in multiple 
models
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From ~ 78 million scored SNPs, we predicted between 
7,366 and 485,424 trait associated SNPs per model 
that exceeded a FDR < 0.01 threshold (Supplementary 
Table  6). To find genes associated with these SNPs, we 
first identified the 436 to 2,137 genes overlapping these 
variants, of which 153 to 879 were outside of identified 
GWAS regions (defined as 1  MB window surrounding 
lead SNPs; Supplementary Table  6). For example, the 
lipids model identified 18,847 SNPs, with 458 overlap-
ping genes, of which 167 were outside known GWAS 

regions. While we found many SNPs near established 
GWAS variants, we were interested here in the regions 
not previously identified by GWAS analyses, and our 
models highlight several points of potentially interesting 
biology. For the lipids model, we identified a cluster of 
10 SNPs overlapping DHCR24, a known cholesterol bio-
synthesis gene [30], and a cluster of 63 SNPs overlapping 
PLIN2, a gene involved in lipid globule storage [31], both 
of which are reasonable biological candidates for lipid 
related phenotypes. For the platelets model, we identified 

Fig. 3  Selected Model Feature Coefficients. A Platelets, B ECG, and C Lipids model coefficients, sorted by tissue type and value. GE – Gene 
Expression
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a cluster of 8 SNPs overlapping JARID2, a gene known to 
be involved in hematopoiesis [32], and 7 SNPs overlap-
ping PXN, which is involved in immunity response [33], 
both of which may plausibly impact platelet phenotypes. 
Additionally, we found that FDR < 0.01 variants of the 
platelets, RBC, and WBC models were enriched for being 
within 25  kb of a newly published set of blood traits 
GWAS [34] (Supplementary Fig. 5).

To assess whether the trait associated SNPs mapped 
onto established biological knowledge, we used GREAT 
[35] analysis to examine both the human gene ontology 
(GO) biological process and mouse single knockout (KO) 
phenotypes associated with these SNPs. We used both 
the full set of trait associated SNPs and also removed all 
variants within 500 KB of identified GWAS regions (non-
GWAS variants) (Supplementary Table  7). For the full 
set of trait associated SNPs, all models returned mouse 
KO phenotypes consistent with our expectations. For 
example, mouse KOs for genes overlapping our auto-
immune associated SNPs are enriched for phenotypes 
such as “abnormal T cell morphology” and “decreased 
lymphocyte cell number.” GO biological processes were 
similarly consistent with expectations for autoimmune, 
ECG, lipids, and WBC trait models, while the platelets 
and RBC traits returned mostly generic results (for exam-
ple, “RNA processing”). The non-GWAS variants analy-
ses were similar, except that the lipids and RBC models 
did not return any results for either the mouse KO or GO 
biological processes analyses.

Application – fine mapping
Functional cellular follow-up studies require one to pri-
oritize GWAS loci, genes and variants within them that 
are likely causal. To assess the usefulness of our model 
scores for individual SNPs within GWAS loci, we identi-
fied SNPs in credible sets that exceed FDR thresholds of 
0.10, 0.25, or 0.50 of the relevant model for phenotypes 
where appropriate summary statistics were available 
(autoimmune, platelets, RBC and WBC, Table 2, Supple-
mentary Tables  8 and 9). At FDR 0.10, our models pri-
oritize a subset of SNPs of interest in 27% of multi-SNP 
credible sets; at FDR 0.25, 52% of credible sets see pri-
oritization. For many of these loci the number of SNPs 

highly prioritized is substantially less than the size of the 
credible set. For example, lead rs10486483 from Crohn’s 
Disease had a credible set of 85 variants, prioritizing 
using an FDR 0.10 threshold leads to a list of 3 variants to 
test; or lead rs2382817 in Inflammatory Bowel Disorder, 
where 5 variants were prioritized from a credible set of 
68. While a set threshold is useful for summarizing, it is 
not necessary in practice, and variants in a credible set 
can simply be ordered by their TSABL score for assess-
ment, facilitating immediate integration into functional 
follow up study pipelines.

Discussion
This approach is limited by both the GWAS data 
and genome wide features available. Surprisingly, we 
were unable to adequately model some complex traits 
(Table  1). However, we expect that additional genomic 
features will improve some models; for example, in the 
dataset used for this analysis there are 642 annotations 
from blood tissue but only 31 from bone (Supplemen-
tary Table  2) and it seems likely that part of the reason 
the height model was not well specified is that it lacked 
key genomic annotations relevant to bone growth. Addi-
tionally, the rapidly expanding repertoire of single cell 
data sets may better parse complex tissue types (e.g., pan-
creas) and capture data relevant to rare cell types that are 
underrepresented in current datasets. Future studies will 
be designed to incorporate these data types, which are 
only currently emerging.

We selected a modelling strategy to allow for improved 
biological interpretability, but this presumably comes at 
a cost of accuracy. We intentionally selected a variety of 
traits with very different underlying physiology, and we 
found that the traits well described by our models are 
linked largely to single cell types, namely blood, liver, or 
heart. We do not successfully model traits such as Body 
Mass Index (BMI) or Type 2 Diabetes (T2D), both of 
which involve many tissues and have disease subtypes 
that are not well captured in current GWAS analyses 
[36–38]. We expect that analyzing these phenotypes as a 
single cohort may serve to obfuscate rather than clarify, 
and anticipate that incorporating more granularity in 

Table 2  Credible set improvements

Trait Maximum number 
of SNPs per locus

Average number 
of SNPs per locus

Number of loci 
with a credible 
set

Number of loci with 
a multi-SNP credible 
set

Fraction of loci with 
prioritized SNPS at 
FDR < 0.25

Fraction of loci with 
prioritized SNPS at 
FDR < 0.10

autoimmune 108 18 237 218 0.48 0.29

platelets 86 11 951 692 0.54 0.24

RBC 209 12 789 615 0.52 0.27

WBC 197 13 762 583 0.50 0.31
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phenotypes (type of T2D or severity of BMI, for example) 
will improve model performance.

Pleiotropy presents another challenge to our modeling 
approach, but is inherently captured in any genomic data 
set. It is plausible that more sophisticated approaches 
with this in mind might be anticipated to improve per-
formance (e.g., multi-label classification). Moreover, 
approaches that captured uncertainty around labelled 
examples (e.g., “noisy” labels) might also be helpful to 
address these challenges as well as expand the use of both 
positive and negative examples. Additional processing 
of genome wide features, both to account for correlation 
and to reduce the feature space prior to model building 
(e.g., stability selection) may also improve results.

An important limitation to acknowledge concern-
ing our locus discovery and fine mapping applications 
is that both are applied to variant level data, while our 
models were trained on locus level data that incorporates 
feature overlaps from multiple variants within a locus. 
While ideally we would train a model on individual vari-
ants before applying it to individual variants, the reality 
of GWAS data means that the pool of validated causal 
variants is still inadequate to this task. Identifying causal 
variants from other sources introduces additional sources 
of bias which we judged to be larger than that introduced 
by shifting from locus to variant.

A logical point of comparison for TSABL is to another 
strategy used for fine mapping or locus discovery. The 
most similar is the fGWAS method, which is designed 
to jointly consider GWAS and genomic annotations 
[39]. The main distinction between these models is that 
fGWAS considers trait loci compared to all regions of the 
genome (regardless of their association with a complex 
trait) while TSABL specifically uses established GWAS 
loci as the negative set. In practice, what this means is 
that TSABL models found differences between traits, 
rather than annotations that may be held in common 
between all GWAS loci. While both approaches are use-
ful, identifying trait specific annotations will allow for 
the translation of GWAS loci into functional biological 
hypotheses, facilitating disease treatment and variant-
based drug discovery.

Conclusions
With current pitfalls in fine mapping and locus discov-
ery, our approach can distinguish amongst complex trait-
related groups applied to 17 sets of traits. Our modeling 
process, built using publicly available GWAS and anno-
tation data, selects and outputs features and variants 
relevant to underlying disease biology. These models 
predict differences between traits that currently avail-
able SNP ranking schemes do not, and the overlaps we 
see among models are consistent with known biological 

links between the traits assessed. Our modelling strategy 
makes no assumptions about number of causal variants 
in a GWAS locus, is expandable to include new genome 
wide features as they are developed, and can be applied 
to locus discovery problems or to prioritization after 
fine-mapping for functional validation efforts.

Methods
General data sources and analysis
All chromosome:position coordinates given in this 
paper refer to genome build hg19. We downloaded 
refseq gene exon coordinates for build hg19 from 
ENSEMBL [40] at http://​grch37.​ensem​bl.​org/​bioma​rt/ 
on 10/24/17, and used the extreme exon boundaries as 
gene boundaries. We assessed annotations for rsIDs of 
interest using ANNOVAR version 2016Feb01 [41] and 
regulomeDB [42].

GWAS trait grouping
Full listing of GWAS phenotypes included in each of 
the 17 trait groups are found in Supplementary Table 1. 
We grouped GWAS together based on known biological 
links. The traits that include multiple GWAS analysis are 
autoimmune, blood pressure, electrocardiogram (ECG), 
lipids, platelets, red blood cell (RBC), type 2 diabetes 
(T2D), and white blood cell (WBC), For autoimmune, 
we used the five most correlated traits (psoriasis, Crohn’s 
disease, ulcerative colitis, Behcet’s disease and ankylosing 
spondylitis) in an analysis of autoimmune disease corre-
lation [43] plus inflammatory bowel disorder due to its 
similarity to ulcerative colitis and Crohn’s disease [10]. 
For T2D, we also included fasting glucose and fasting 
insulin results from the NHGRI-EBI catalog, under the 
reasoning that either or both are used in the clinical diag-
nosis of T2D. For the remaining trait groups, all GWAS 
phenotypes included were assessed in the same paper 
and are highly correlated.

GWAS loci identification & processing
We downloaded the NHGRI-EBI GWAS catalog v1.0 
2019–06-20 from https://​www.​ebi.​ac.​uk/​gwas/​docs/​
file-​downl​oads on 06/21/19 and processed GWAS 
results by removing the following associations:

1)	 with no listed P-value or a P-value > 5e-8
2)	 with no rsID listed or multiple rsIDs listed
3)	 listed as on the X chromosome, no chromosome, or 

multiple chromosomes
4)	 with descriptions indicating they were interaction 

effects with another locus
5)	 located in the HLA region (chr6:29,670,261–

33,104,175; hg19 coordinates)

http://grch37.ensembl.org/biomart/
https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
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Remaining associations were grouped by rsIDs, result-
ing in 53,640 variants.

We also included lead variants from GWAS for specific 
phenotypes associated with our 17 trait groups, regard-
less of their inclusion in the GWAS catalog (autoimmune 
[3, 10], breast cancer [14], birthweight [6], bone mineral 
density [15], body mass index [8], blood pressure [11], 
coronary artery disease [4], electrocardiogram [5], height 
[8], lipids [12], age at menarche [9], platelets [1], red 
blood cells [1], schizophrenia/bipolar disorder [2], type 
2 diabetes [13], white blood cells [1], and waist hip ratio 
adjusted for BMI [16]; Supplementary Table 1). Literature 
curated GWAS variants were processed in the same way 
as catalog variants so that our input was a list of variant 
rsIDs.

For all variants, we identified hg19 positions using 
Ensembl biomart [40], and removed variants if they could 
not be assigned a position. We identified loci of interest 
by collecting all variants with R2 ≥ 0.7 to a GWAS vari-
ant in European 1000 genomes phase III [44] data using 
PLINK 1.90Beta4.5 [45]. Variants were considered part 
of a locus if they had R2 ≥ 0.7 with any other variant in 
the locus. Final variant list includes 715,404 variants 
assigned to 32,713 loci and can be found in Supplemen-
tary Table 10.

Feature identification and processing
Gappedpeak files for histone ChIP-seq experiments and 
the “hotspot.fdr0.01.broad” files for DNase assays were 
downloaded on 02/10/16 from the consolidated epige-
nomes section of the Roadmap Epigenomics Project [46] 
portal. Uniform DNase files were downloaded 03/28/16 
from http://​hgdow​nload.​cse.​ucsc.​edu/​golde​nPath/​hg19/​
encod​eDCC/​wgEnc​odeAw​gDnas​eUnif​orm/. Homo sapi-
ens FAIRE, transcription profiling by array, and ChIP-seq 
data were downloaded 01/06/16 from the ENCODE [47] 
project portal. We included data as provided for experi-
ment accession numbers with a single file, and used the 
intersection if multiple files were provided. For transcrip-
tion profiling by array data, we selected data labeled as 
“filtered transcribed fragments” if available. For ChIP-seq 
files, if the experiment accession had a file labeled “opti-
mal idr threshold” or “replicated peaks” we used that 
file. For histone data, if both broadpeak and narrowpeak 
files were available, we created gappedpeak files. If only 
one peak type was available, we included that file. For all 
ChIP-seq targets that were not histones, narrowpeak files 
were used if available and broadpeak files otherwise.

Feature overlaps with GWAS loci were identified using 
bedtools2v2.25.0 intersect [48]. For a given locus, a fea-
ture was coded as 1 if any variant in the locus overlapped 
the feature, and a 0 if not. For indel variants, overlap was 
counted only with the start position of the variant.

To build the features for tissue-specific gene expres-
sion, we utilized previously calculated t-statistics for 
specific expression [49]. The nearest gene to each locus 
was determined as the gene containing a correspond-
ing tissue-specific expression t-statistic with a start 
position nearest to the locus center. The locus was 
assigned a 1 in a tissue if the nearest gene had a t-sta-
tistic ranking in the top ten percent for that tissue and 
a 0 otherwise, creating 53 tissue-specific nearest gene 
expression features.

We downloaded 100way phastCon [50] scores for the 
human genome on 04/26/16 from http://​hgdow​nload.​
soe.​ucsc.​edu/​golde​nPath/​hg19/​phast​Cons1​00way/ and 
used the bigWigAverageOverBed [51] tool from the 
UCSC toolkit to extract scores for single SNPs. We use 
the highest variant 100way phastCon score as the score 
for the locus.

Finally, we counted the number of variants in a locus 
and included normalized variant number as a possible 
feature.

The complete list of 2305 ENCODE and Roadmap Epi-
genomics features, nearest gene tissue specific expres-
sion, phastcon, and variant count used in this paper is 
found in Supplementary Table 2. Tables used for model-
ling are provided as Supplementary Tables 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44.

Benchmarking scores
We downloaded CADD [24] scores for 1000 genomes 
phase 3 variants from http://​cadd.​gs.​washi​ngton.​edu/​
downl​oad on 02/25/16. We downloaded GWAVA [25] 
scores on 02/25/2016 from ftp://​ftp.​sanger.​ac.​uk/​pub/​
resou​rces/​softw​are/​gwava/​v1.0/​annot​ated/​GWAVA_​
db_​csv.​tgz and used tss_score for all analyses. For both 
CADD and GWAVA, a higher score indicates a greater 
probability of functionality, so if the downloaded data-
base had multiple scores for a position, we used the 
highest score provided. If they did not have a score for a 
position, it was set to 0. We use the highest variant score 
as the locus score for both CADD and GWAVA.

We used the standalone deepSEA-0.94 [26] program 
to get deepSEA scores for our variants. Unlike the pre-
vious scores, a smaller e value corresponds to a greater 
probability of functionality, so we use the lowest variant 
deepSEA score as the score for the locus. For comparison 
purposes, we subtract this value from 1 so that it is on the 
same scale as the other metrics.

Building models
In order to accurately compare models across traits on 
independent holdout sets, we wanted to ensure that our 
holdout sets would not contain loci used for training, 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgDnaseUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgDnaseUniform/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons100way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons100way/
http://cadd.gs.washington.edu/download
http://cadd.gs.washington.edu/download
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/annotated/GWAVA_db_csv.tgz
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/annotated/GWAVA_db_csv.tgz
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/annotated/GWAVA_db_csv.tgz
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and vice versa. Therefore, we used the following schema 
to divide loci (Supplementary Fig.  1). We considered a 
locus as being positive for a trait if at least one variant 
in the locus was associated with the trait and negative 
otherwise. We separated all loci into 2/3 training and 1/3 
holdout. This separation was done semi-randomly, with 
the following conditions enforced: 1) for each trait, main-
tained a 2/3 train, 1/3 holdout ratio for positive loci, and 
2) maintained native distribution of variant count in loci 
(for example if there were 60 loci containing 10 variants 
each, 40 were assigned to training and 20 to holdout). 
Furthermore, we removed any locus with > 1000 variants 
(1 locus removed). In this way we created a separate set 
of holdout loci that were not used to build any of the trait 
models and so could be used to compare model predic-
tions across traits.

For each trait, we processed the training and hold-
out sets to identify positive and negative loci. First, 
we identified positive loci where at least one variant 
had P-value < 5 × 10–8 with a phenotype in the trait 
group. From the remaining loci, we removed those 
with P-value < 0.05 in the associated GWAS (if sum-
mary statistics were available – no removals for ECG 
or psoriasis GWAS were possible) to create a nega-
tives pool. Finally, we used only positive loci where 
we could match 6 (5 for height) negative loci with 
similar locus variant counts: within 10 of a locus with 
variant count < 100 or within 50 of a locus with vari-
ant count >  = 100. This ensured that our positive and 
negative locus pools were roughly matched for locus 
size. Using these processed positive and negative locus 
sets for each trait, we built models using the glmnet28 
package in R, using binomial logistic regression with 
LASSO regularization and maximizing the AUC. The 
feature pool included 2305 ENCODE and Epigenome 
Roadmap annotations, 53 tissue-specific nearest gene 
expression annotations, the 100way Phastcon score, 
and normalized variant number. We used tenfold cross 
validation to select lambda.s1e, performed 15 trials of 
model building, and selected the median training AUC 
model as the trait model for analysis. We reasoned 
that selecting the median model preserved the goal of 
running multiple trials of cross validation modelling – 
reducing overfitting and bias due to data imbalances.

Model analysis
General model performance was assessed using the 
ROCR package [52] in R on the holdout data & com-
pared to the GWAVA, CADD, and DeepSEA predictors. 
We considered a model successful if the holdout AUC 
was > 0.7 and the difference between training and testing 
AUC was < 0.02; this includes models describing autoim-
mune, ECG, lipid, platelet, RBC, and WBC traits. Trait 

specific model performance was assessed by comparing 
the six selected model predictions on each holdout set. 
FDR thresholds used in further analysis were calculated 
from holdout datasets only.

Due to the nature of GWAS, there are loci tagged as 
positive across multiple traits. It is possible that these loci 
were driving the correlation between models for different 
traits. To test this, we removed all loci that are positive in 
the holdout set for the trait of interest and any other well 
modeled trait, creating a non-overlapping holdout set. 
We then compared ROC plots of the prediction of dif-
ferent models on the all and no overlap holdouts (Fig. 2, 
Supplementary Table 1).

Genome wide SNP scores
Used 1000 genomes phase III downloaded on 
03/03/2016 from ftp://​ftp.​1000g​enomes.​ebi.​ac.​uk/​
vol1/​ftp/​relea​se/​20130​502/. Removed all variants 
that were not SNPs or that did not have rsID, leav-
ing 78,017,615 SNPs. Calculated scores for individual 
SNPs via bedtools intersect using bed files used to 
make models, and recalculated gene expression anno-
tation using single SNPs instead of loci. We then iden-
tified SNPs  with FDR ≤ 0.01 for each model, excluding 
all SNPs used as positives in model building (Supple-
mentary Table 6).

To calculate enrichment in the most recent blood 
traits GWAS [34], we used the fGWAS [39] platform. We 
downloaded the multi-ancestry MR-MEGA summary 
statistics for RBC, HCT, MCV, RDW, Neutro, Mono, 
Baso, Eosin, PLT and MPV phenotypes from http://​www.​
mhi-​human​genet​ics.​org/​en/​resou​rces/ on 08/13/21. 
We filtered these results to remove variants at the same 
genomic coordinates, keeping the most common variant 
and calculated nearest distance to an FDR < 0.01 variant 
in the corresponding TSABL model (RBC: RBC, HCT, 
MCV, RDW; WBC: Neutro, Mono, Baso, Eosin; platelets: 
PLT, MPV). We ran fGWAS using distance intervals of 
25, 50 and 500 kb (ranging from most to least stringent) 
and found 25 kb to have the best enrichment for all phe-
notypes (Supplementary Fig. 5).

We used the Genomic Regions Enrichment of Anno-
tations Tool (GREAT) [35] to interpret these scores 
using version 4.0.4 found at http://​bejer​ano.​stanf​
ord.​edu/​great/​public/​html/​index.​php. SNPs with 
FDR < 0.01 as described above were submitted using 
the whole genome as background to assess genomic 
enrichment. We found that the tool did not function 
if more than 150,000 SNPs were submitted, so for 
datasets with > 150,000 SNPs (ECG, WBC), a random 
subset of 150,000 was submitted. To assess if enrich-
ments changed when variants linked to known GWAS 
variants were removed, we removed any variants 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
http://www.mhi-humangenetics.org/en/resources/
http://www.mhi-humangenetics.org/en/resources/
http://bejerano.stanford.edu/great/public/html/index.php
http://bejerano.stanford.edu/great/public/html/index.php
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within 500 KB of a lead GWAS hit for the trait, again 
submitting a random 150,000 if the SNP list exceeded 
(ECG) this threshold. For all analysis, we recorded the 
GO biological processes and mouse single KO pheno-
type results. We note that the analyses that returned 
no results were all assessing < 7,000 SNPs, and expect 
that they failed due to having too few input regions. 
Full lists of variants and results can be found in Sup-
plementary Table 7.

Credible sets
We used available summary statistics (Supplementary 
Table  1) to calculate credible sets for GWAS of inter-
est. We limited our analysis to loci used for modelling 
where the lead SNP was present in the summary statis-
tic data (this eliminated ECG, for which no summary 
statistics were available, and lipids, which was missing 
summary statistics for many lead variants). We iden-
tified variants of interest within a 1  MB window sur-
rounding lead SNPs, limiting to variants with R2 ≥ 0.5 
to the lead variant in European 1000 genomes phase III 
[44] data using PLINK 1.90Beta4.5 [45] These variants 
were assessed using R package corrcov [53] to create 
95% confidence interval credible sets (Supplementary 
Table  8). To calculate percentage of credible sets our 
models reduce SNP number for, at each FDR thresh-
old we found the number of credible sets where that 
threshold yielded at least 1, but less than the maximum 
number of SNPs and divided by the number of credible 
sets with more than 1 SNP.

LDSC partitioned heritability
Downloaded LD Scores v2.2, plink files, weights, and 
other necessary files from https://​data.​broad​insti​tute.​
org/​alkes​group/​LDSCO​RE. Added 6 annotations cor-
responding to 0–1 normalized SNP scores, one per 
trait model (autoimmune, ECG, lipids, platelets, RBC, 
WBC) to V2.2 annot files. Removed 11,608 SNPs on 
chromosome 12 containing ssIDs instead of rsIDs from 
both annot and plink files. Recalculated LD Scores [29] 
using new annot files as per https://​github.​com/​bulik/​
ldsc/​wiki/​LD-​Score-​Estim​ation-​Tutor​ial. Partitioned 
heritability for 20 relevant GWAS (Supplementary 
Table  4) as per https://​github.​com/​bulik/​ldsc/​wiki/​
Parti​tioned-​Herit​abili​ty. For models with some GWAS 
summary statistics (autoimmune, lipids, platelets, RBC, 
WBC), we also removed SNPs in LD R2 > 0.7 with lead 
SNPs (Supplementary Table  45) from both annot and 
plink files, then recalculated LD Scores and repar-
titioned heritability to test how much heritability is 
driven by lead SNPs (Supplementary Table 5).

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​08654-x.

Additional file 1: Table S1. Trait Groups. Phenotypes and how we 
grouped them into traits. Columns are Trait, Trait abbreviation, phenotype, 
GWAS citation, Number of Lead SNPs included from Citation, and Sum-
mary Statistic availability.

Additional file 2: Table S2. List of Features. All 2305 features used to build 
models. Columns are Feature Name, Source, Type, Sample, and Tissue. 

Additional file 3: Table S3. Full Coefficient_Names. Features returned by 
TSABL models. Columns are Identifier, Type, Mark, Name, autoimmune, 
ECG, lipids, platelets, RBC, WBC; the last 6 columns contain the coefficient 
values for the named model.

Additional file 4: Table S4. LDSC. Results of LDSC partitioned heritability 
analysis; each tab is named as trait_phenotype where trait indicates the 
trait group modeled and phenotype the specific GWAS phenotype. 

Additional file 5: Table S5. LDSC no lead r2. Results of LDSC partitioned 
heritability analysis where all SNPs with LD R2 > 0.7 have been removed 
from the analysis; each tab is named as trait_phenotype where trait 
indicates the trait group modeled and phenotype the specific GWAS 
phenotype.

Additional file 6: Table S6. Locus Discovery. High scoring SNPs from 
discover analysis. First tab is summary of SNP numbers by trait, remaining 
tabs are individual lists per trait.

Additional file 7: Table S7. GREAT Analysis. Results of GREAT analysis. 
Tab A contains all SNPs submitted, separated by trait. Tab B contains the 
same SNP lists, but with SNPs adjacent to GWAS loci removed. Tab C is a 
summary of the analysis results. Tabs D-AA are individual analysis results 
as labeled.

Additional file 8: Table S8. Credible Sets. Credible sets and credible 
set reductions calculated using TSABL models. Each tab is a separate 
phenotype. Columns include SNP reductions at 0.5, 0.75, 0.9, 0.95, and 
0.99 thresholds.

Additional file 9: Table S9. Credible Sets Summary. A summary of results 
presented in Table S8, including total SNP counts across all tested pheno-
types and totals grouped by trait.

Additional file 10: Table S10. All SNPs. All SNPs used in any model 
building. The first three columns contain SNP information: Group, rsID, and 
hg19 chromosome and position. Remaining columns indicate trait model. 
For each SNP-model combination, table notes if SNP was Not Used, used 
as training negative, used as training positive, used as holdout negative, or 
used as holdout positive.  

Additional file 11: Table S11. Autoimmune testing. 

Additional file 12: Table S12. Autoimmune training. 

Additional file 13: Table S13. BC testing. 

Additional file 14: Table S14. BC training. 

Additional file 15: Table S15. Birthweight testing. 

Additional file 16: Table S16. Birthweight training. 

Additional file 17: Table S17. BMD testing. 

Additional file 18: Table S18. BMD training. 

Additional file 19: Table S19. BMI testing. 

Additional file 20: Table S20. BMI training. 

Additional file 21: Table S21. BP testing. 

Additional file 22: Table S22. BP training. 

Additional file 23: Table S23. CAD testing. 

Additional file 24: Table S24. CAD training. 

Additional file 25: Table S25. ECG testing. 

https://data.broadinstitute.org/alkesgroup/LDSCORE
https://data.broadinstitute.org/alkesgroup/LDSCORE
https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial
https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
https://doi.org/10.1186/s12864-022-08654-x
https://doi.org/10.1186/s12864-022-08654-x
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Additional file 26: Table S26. ECG training. 

Additional file 27: Table S27. Height testing. 

Additional file 28: Table S28. Height training. 

Additional file 29: Table S29. Lipids testing. 

Additional file 30: Table S30. Lipids training. 

Additional file 31: Table S31. Menarche testing. 

Additional file 32: Table S32. Menarche training. 

Additional file 33: Table S33. Platelets testing. 

Additional file 34: Table S34. Platelets training. 

Additional file 35: Table S35. RBC testing. 

Additional file 36: Table S36. RBC training. 

Additional file 37: Table S37. S_BD testing. 

Additional file 38: Table S38. S_BD training. 

Additional file 39: Table S39. T2D testing. 

Additional file 40: Table S40. T2D training. 

Additional file 41: Table S41. WBC testing. 

Additional file 42: Table S42. WBC training. 

Additional file 43: Table S43. WHRadjBMI testing. 

Additional file 44: Table S44. WHRadjBMI training. 

Additional file 45: Table S45. LDSC SNPs removed. Lists of SNPs removed 
between Table S4 and Table S5.

Additional file 46: Supplementary Figure 1. Model Building Flow Chart. 
To build models using GWAS loci, we grouped lead variants by LD, then 
split into training and holdout sets semi-randomly, enforcing an even dis-
tribution of positive loci and maintaining the distribution of variant counts 
between the sets. For modelling, we included only positive loci which 
had a sufficient number of negative loci with similar locus variant count, 
which was enforced in both training and holdout sets. After models were 
built, they were assessed by building ROC plots in the holdout sets. Sup-
plementary Figure 2. Holdout AUCs vs # Selected Features and # Groups 
used for Training. Model AUC in holdout set plotted against A) number 
of features selected by the model B) number of positives groups used for 
training C) % total groups containing a coding variant and D) % training 
groups containing a coding variant. Panels C and D include a linear model 
best fit line as well as significance. In all panels, models which passed 
selection criteria (AUC ≥ 0.7, AUC change between training and holdout 
≤ 0.02) are green while models which were not selected are purple. 
Supplementary Figure 3. Model AUCs on same holdout sets. Each panel 
shows the named holdout set: A) Autoimmune, B) Lipids, C) Red Blood 
Cells and D) White Blood Cells. AUCs for all six selected models are shown 
on all plots, with the left (All) plot having all loci in that holdout and the 
right (No Overlap) having only those loci not positive in multiple models. 
Supplementary Figure 4. Selected Model Feature Coefficients. A) Auto-
immune, B) Red Blood Cells, and C) White Blood Cells model coefficients, 
sorted by tissue type and value. GE – Gene Expression. Supplementary 
Figure 5. Enrichment of FDR < 0.01 SNPs within 25kb of GWAS variants. 
GWAS tested for platelets model: mean platelet volume (MPV) and platelet 
count (PLT); for RBC model: hematocrit (HCT), mean corpuscular volume 
(MCV), red blood cell count (RBC), and red cell distribution width (RDW); 
for WBC model: basophil count (BAS), eosinophil count (EOS), monocyte 
count (MON) and neutrophil count (NEU).
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