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Abstract 

Background:  Genotypic information produced from single nucleotide polymorphism (SNP) arrays has routinely 
been used to identify genomic regions associated with complex traits in beef and dairy cattle. Herein, we assembled 
a dataset consisting of 15,815 Red Angus beef cattle distributed across the continental U.S. and a union set of 836,118 
imputed SNPs to conduct genome-wide association analyses (GWAA) for growth traits using univariate linear mixed 
models (LMM); including birth weight, weaning weight, and yearling weight. Genomic relationship matrix heritability 
estimates were produced for all growth traits, and genotype-by-environment (GxE) interactions were investigated.

Results:  Moderate to high heritabilities with small standard errors were estimated for birth weight (0.51 ± 0.01), 
weaning weight (0.25 ± 0.01), and yearling weight (0.42 ± 0.01). GWAA revealed 12 pleiotropic QTL (BTA6, BTA14, 
BTA20) influencing Red Angus birth weight, weaning weight, and yearling weight which met a nominal significance 
threshold (P ≤ 1e-05) for polygenic traits using 836K imputed SNPs. Moreover, positional candidate genes associated 
with Red Angus growth traits in this study (i.e., LCORL, LOC782905, NCAPG, HERC6, FAM184B, SLIT2, MMRN1, KCNIP4, 
CCSER1, GRID2, ARRDC3, PLAG1, IMPAD1, NSMAF, PENK, LOC112449660, MOS, SH3PXD2B, STC2, CPEB4) were also previ-
ously associated with feed efficiency, growth, and carcass traits in beef cattle. Collectively, 14 significant GxE interac-
tions were also detected, but were less consistent among the investigated traits at a nominal significance threshold 
(P ≤ 1e-05); with one pleiotropic GxE interaction detected on BTA28 (24 Mb) for Red Angus weaning weight and 
yearling weight.

Conclusions:  Sixteen well-supported QTL regions detected from the GWAA and GxE GWAA for growth traits (birth 
weight, weaning weight, yearling weight) in U.S. Red Angus cattle were found to be pleiotropic. Twelve of these 
pleiotropic QTL were also identified in previous studies focusing on feed efficiency and growth traits in multiple beef 
breeds and/or their composites. In agreement with other beef cattle GxE studies our results implicate the role of vaso-
dilation, metabolism, and the nervous system in the genetic sensitivity to environmental stress.
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Background
Implementation of genomic selection methods into 
breeding programs has catalyzed production profit-
ability within the beef cattle industry [1]. In addition to 
carcass and reproductive traits, the most commonly 
recorded traits for use in modern breeding programs are 
growth traits, such as birth weight, weaning weight, and 
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yearling weight. However, genomic selection on these 
traits should consider that low and high estimated breed-
ing values (EBVs) for birth weight have been found to be 
associated with reduced calf viability, and increased rates 
of dystocia events and perinatal mortality, respectively [2, 
3]. Therefore, while birth weight has been considered a 
production indicator and treated as a selection criterion 
to increase calf viability as well as other economically 
important traits, modern beef breeding programs and 
production systems generally strive to increase calving 
ease while also maximizing both weaning weight and 
yearling weight [1, 3–5].

For at least two decades, studies have sought to iden-
tify quantitative trait loci (QTL) influencing bovine 
growth, body weight, and aspects of stature, including 
both linkage and modern genome-wide association anal-
yses (GWAA); thereby underscoring the longstanding 
economic importance of efficient beef cattle production 
worldwide [6–12]. Moreover, QTL studies and modern 
genomic selection programs for economically impor-
tant traits have been directly enabled by the generation 
of the bovine genome assembly, development of the Illu-
mina Bovine SNP50 and 778K SNP arrays, and more 
recently, the demonstrated ability to accurately impute 
high-density genotypes, thereby enabling high-resolu-
tion analyses without the increased costs associated with 
direct genotyping [13–20]. Notably, several recent studies 
have established moderate heritability estimates for birth 
weight, weaning weight, and yearling weight in U.S. Gel-
bvieh, Angus, Limousin, Simmental, Hereford, and Red 
Angus beef cattle [20–25]. These studies also produce 
evidence for several relevant QTL and positional can-
didate genes; including orthologous genes LCORL and 
PLAG1 that affect both human and bovine height as well 
as pleiotropic QTL influencing feed efficiency, growth 
traits, and carcass traits across multiple U.S. beef breeds 
[6, 10, 12, 20, 26–31]. However, the movement of germ-
plasm (animals, semen, and embryos) across the U.S. in 
conjunction with the lack of tools to select for resilience 
to abiotic and biotic stressors has likely led to the loss of 
local adaptation in beef cattle [32]. Understanding gen-
otype-by-environment interactions will allow us to iden-
tify the genes and biological processes involved in local 
adaptation. Genotype-by-environment (GxE) GWAA 
have been used alongside GWAA with the intent of iden-
tifying GxE interactions with complex traits [20, 33–35]. 
GxE GWAA are important to the beef industry as they 
identify individual ecoregions that could benefit from 
genomic selection [20, 33, 34].

The objective of this study was to identify loci with 
direct and genotype-by-environment effects on growth 
traits. Herein, we used 15,815 geographically diverse 
U.S. Red Angus beef cattle in conjunction with a union 

set of 836,118 (836K) imputed SNP variants to conduct 
GWAA and produce marker-based heritability esti-
mates for birth weight, weaning weight, and yearling 
weight. Additionally, using thirty-year climate data and 
K-means clustering to assign all Red Angus beef cattle 
to discrete U.S. climate ecoregions, we estimated the 
significance of GxE interactions for birth weight, wean-
ing weight, and yearling weight [32]. The present study 
represents the largest, high-density, single breed report 
to date that includes both standard GWAA and GxE 
GWAA for birth weight, weaning weight, and yearling 
weight; which was facilitated by an industry-supported 
research framework that includes accurate imputation 
to high-density genotypes for large-sample analyses 
[14, 19, 20]. The results of this study are expected to aid 
existing beef breeding programs and production sys-
tems by identifying QTL that may be included in future 
genotyping assays and genomic selection programs.

Results and discussion
Heritability estimates for growth traits in U.S. Red Angus 
beef cattle
Marker-based heritability estimates (i.e., chip heritabil-
ity) were produced for birth weight, weaning weight, 
and yearling weight using standardized relatedness 
matrices (GS) with variance component analyses. Col-
lectively, moderate to high heritability estimates with 
small standard errors (SE) were estimated for birth 
weight (0.51 ± 0.01), weaning weight (0.25 ± 0.01), and 
yearling weight (0.42 ± 0.01), respectively (Table  1). 
Moreover, these moderate to high heritability estimates 
for birth weight and weaning weight are similar to those 
produced by another study conducted on Red Angus 
cattle (0.58 ± 0.01 and 0.29 ± 0.01, respectively) [36]. 
Likewise, genetic correlations between traits were also 
high (birth weight and weaning weight = 0.54 ± 0.01; 
birth weight and yearling weight = 0.50 ± 0.01; wean-
ing weight and yearling weight = 0.84 ± 0.01) (See 
Additional File 1).

Table 1  Variance component analysis with marker-based 
heritability estimatesa

a  h2 = Vg / (Vg + Ve)
b  Standard error
c  Genetic variance component
d  Environmental variance component

Trait h2 SEb of h2 Vg
c Ve

d

Birth Weight 0.51 0.01 31.82 29.88

Weaning Weight 0.25 0.01 533.62 1546.23

Yearling Weight 0.42 0.01 2087.39 2820.06
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GWAA for birth weight, weaning weight, and yearling 
weight in U.S. Red Angus beef cattle
The results of our 836K single-marker GWAA for birth 
weight are presented in Fig.  1; with detailed summary 
data for 19 QTL which met a nominal significance 
threshold for polygenic traits (P ≤  1e-05) described in 
Table  2 (Additional File 1) [71]. A comparison of birth 
weight QTL detected for U.S. Red Angus, Simmen-
tal, and Gelbvieh beef cattle as well as Holstein Jer-
sey crossbred dairy cattle, revealed overlapping signals 
on BTA6, BTA14, and BTA20, suggesting that these 
birth weight QTL are not breed-specific, but rather, 
are likely to be more generally involved in bovine spe-
cies growth processes (Table  S1; Additional  File  2) [9, 
20, 72]. Positional candidate genes detected via birth 
weight GWAA revealed previous associations with 
aspects of cattle growth, development, feed efficiency, 
and carcass traits (i.e., LCORL, LOC782905, NCAPG, 
PLAG1, LOC104975192, STC2, HERC6, LOC112449660, 
IMPAD1, SLIT2, LOC101905238, ARRDC3, LOC783392, 
CPEB4, MMRN1, SH3PXD2B, KCNIP4, GRID2, CCSER1, 
NSMAF, LOC107133116, ENC1, LOC112443028), as well 
as milk production (LOC101906669, TRNAG-UCC​), and 
immune response (SLURP1), as detailed in Table 2 [37–
70]. Notably, all but two lead SNPs (i.e., 6_37 Mb, 6_35 
Mb) were located in noncoding regions, which is con-
cordant with recent studies of feed efficiency and growth 
traits in beef cattle (Table  S1; Additional File 1, Addi-
tional File 2) [20, 31]. Additionally, a QTL was detected 
on BTA6 (42 Mb), but with less statistical support, and 

included the positional candidate genes LOC782172 and 
ADGRA3; which have previously been associated with 
U.S. Gelbvieh growth traits (Table S2; Additional File 2) 
[20]. The genomic inflation factor for P-value estimates 
obtained from the birth weight GWAA are presented in 
Table S3 (Additional File 2).

Single-marker GWAA (836K) for weaning weight in 
U.S. Red Angus beef cattle produced evidence for 14 QTL 
(P ≤ 1e-05), as defined by their lead SNPs (Table 3, Fig. 2; 
Additional File 1). Similar to a recent analysis of U.S. Gel-
bvieh beef cattle [20], the weaning weight QTL regions 
detected for U.S. Red Angus cattle suggest extensive plei-
otropy with birth weight, as would be expected due to 
high genetic correlations between the two traits [4]. This 
includes the shared positional candidate genes on BTA6 
(LCORL, LOC782905, HERC6, CCSER1, SLIT2, GRID2), 
BTA14 (LOC112449660), and BTA20 (LOC104975192, 
STC2, SH3PXD2B) (Table 2, Table 3, Table S1; Additional 
File 2). Additional positional candidate genes identified 
for weaning weight QTL include those associated with 
growth and development (FAM184B, LOC112447052, 
NSG2, LOC112449630, MOS, PENK, MIR3660, CETN3) 
(Table  3) [73–77]. All weaning weight QTL detected by 
GWAA were located in noncoding regions. An additional 
pleiotropic QTL was noted on BTA6 (42 Mb), but with 
less statistical support, which is the same QTL detected 
in the birth weight GWAA (Table  S2, Table  S4; Addi-
tional File 2). The genomic inflation factor for P-value 
estimates obtained from the weaning weight GWAA are 
displayed in Table S3 (Additional File 2).

Fig. 1  Birth weight QTL. Manhattan plot with -log10 P-values. Lead and supporting SNPs for QTL represented at or above the blue line (P ≤ 1e-05; 
−log10 P-values ≥ 5.00) for n = 15,815 U.S. Red Angus beef cattle. A summary of all markers passing the nominal significance threshold is presented 
in Table 2
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Table 2  Summary of QTL detected for birth weight in U.S. Red Angus cattle

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional Candidate Genes Lead SNP Location Scientific Precedence 
[reference]; organism; trait

6_38 67.949 −3.123 0.283 102 LCORL, LOC782905 Intergenic [20, 24, 26, 37–45]; Cattle; Birth, 
weaning and yearling weight, fat 
and protein percentage, carcass 
weight, fat thickness, dystocia, 
average daily gain and dry matter 
intake, hip height, ribeye area, 
calving ease, stature, feed intake 
and gain

6_37 47.734 −2.302 0.359 183 NCAPG Exond [20, 24, 39, 40, 42–45]; Cattle; 
Weaning and yearling weight, 
calving ease, dystocia, average 
daily gain, dry matter intake, fetal 
growth, daily feed intake, muscle 
growth

14_23 38.772 2.800 0.110 64 PLAG1 3’UTR​ [11, 20, 24, 26, 31, 46]; Cattle; 
Birth weight, mid-test metabolic 
weight, yearling and carcass 
weight, stature, milk protein yield, 
stature

20_05 31.330 1.815 0.436 100 LOC104975192, STC2 Intergenic [20, 24, 31, 40, 42, 47, 48]; Cattle; 
Birth, weaning and carcass 
weight, average daily gain, dry 
matter intake, stature, mature 
rate, mid-test metabolic weight

6_36 26.156 −2.267 0.219 63 HERC6 Intron [20, 40, 42, 49–51]; Cattle; Birth, 
weaning, and yearling weight, 
mature weight, average daily 
gain, dry matter intake, backfat 
thickness, conception rate, 
milk production traits, protein 
ubiquitination

14_24 25.908 2.143 0.113 80 LOC112449660, IMPAD1 Intergenic [20, 24, 26, 29, 31, 46]; Cattle; 
Birth, weaning, and yearling 
weight, calving ease, carcass 
weight, milk and protein yield, 
stature, stillbirth, body size, mid-
test metabolic weight

6_39 21.788 −1.569 0.270 35 LOC782905, SLIT2 Intergenic [20, 24, 37, 40, 42, 52]; Cattle; 
Birth, weaning, and yearling 
weight, calving ease, carcass 
weight, average daily gain, dry 
matter intake, backfat thickness, 
ribeye area, hip height

7_91 17.095 1.339 0.263 70 LOC101905238, ARRDC3 Intergenic [24, 30, 31, 46, 53]; Cattle; Milk 
protein yield, chest width and 
bone quality, calving ease, 
average daily gain, growth and 
muscularity, birth, weaning, and 
yearling weight, ribeye area

20_06 15.122 −1.372 0.382 12 LOC783392, CPEB4 Intergenic [40, 48, 49, 54, 55]; Cattle; Fat 
percentage, dry matter intake, 
mature weight, conception rate, 
mRNA and protein expression in 
meiosis regulation

6_35 14.833 −1.305 0.317 32 MMRN1 Exone [24, 43, 56–58]; Cattle, human, 
sheep; Birth weight, dry matter 
intake, fetal growth, weaning 
weight, winter tolerance under 
metabolic stress response

6_40 14.409 2.002 0.060 47 SLIT2 Intron [20, 24, 40, 42, 59, 60]; Cattle, 
mouse; Birth, weaning, and year-
ling weight, calving ease, average 
daily gain, carcass weight, hip 
height, milk fat and protein, 
development of central nervous 
system
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Similar to a recent study of U.S. Gelbvieh growth 
traits [20], our GWAA for yearling weight in U.S. Red 
Angus beef cattle also identified positional candi-
date genes shared across all three investigated traits 
on BTA6 (LCORL, LOC782905, HERC6, SLIT2, and 
CCSER1), BTA14 (LOC112449660), and BTA20 (STC2 
and SH3PXD2B) (Table  4, Fig.  3, Table  S1; Additional 
File 1, Additional File 2). Evidence for pleiotropic QTL 
influencing birth weight (Table  2) and yearling weight 
(Table 4) was also noted via overlapping positional candi-
date genes for these traits on BTA6 (KCNIP4, MMRN1), 
BTA7 (LOC101905238, ARRDC3, LOC112447488, 

LOC112447489), BTA14 (PLAG1), and BTA20 
(LOC783392, CPEB4) (Table S1; Additional File 2). Like-
wise, a comparison of U.S. Red Angus QTL detected for 
weaning weight (Table  3) and yearling weight (Table  4) 
also revealed evidence for pleiotropic QTL influenc-
ing these traits via shared positional candidate genes 
on BTA6 and BTA14, including FAM184B and PENK, 
respectively. Positional candidate genes for QTL on 
BTA7, BTA20, and BTA21 which were only detected 
for yearling weight have been associated with general 
growth and development in Xenopus laevis (KCNIP1) 
[78], as well as bovine milk production (LOC112447488) 

a  Chromosome_Megabase
b  Minor Allele Frequency
c  Single Nucleotide Polymorphisms
d  Indicates a predicted nonsynonymous mutation Ile➔Met, exon 9
e  Indicates a predicted nonsynonymous mutation Gln➔His, exon 6

Table 2  (continued)

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional Candidate Genes Lead SNP Location Scientific Precedence 
[reference]; organism; trait

20_04 11.639 −1.088 0.438 12 SH3PXD2B Intron [24, 40, 61]; Cattle, human; Birth 
and weaning weight, carcass 
weight, fat thickness, calving 
ease, average daily gain, develop-
ment of eyes, heart, and bone

6_41 11.067 1.171 0.264 57 KCNIP4 Intron [20, 24, 38, 40, 42, 62, 63]; Cattle, 
human; Birth, weaning, and year-
ling weight, protein percentage, 
average daily gain, ribeye area, 
carcass weight, milk fatty acid 
composition, potassium channel 
activity

6_32 9.335 0.985 0.325 57 GRID2 Intron [40, 42, 46, 64]; Human, cattle; 
Mammalian nervous system 
mediation, dry matter intake, 
average daily gain, birth weight, 
milk fat yield

6_34 8.662 −1.095 0.285 14 CCSER1 Intron [20, 49, 58, 65]; Cattle, human, 
sheep; Birth and weaning weight, 
conception rate, regulator of 
mitosis, feed intake

14_25 6.648 0.805 0.311 41 NSMAF, LOC107133116 Intergenic [20, 24, 29, 31, 40, 47, 59, 66, 67]; 
Cattle, human; Birth, weaning, 
and yearling weights, calving 
ease, carcass weight, average 
daily gain, dry matter intake, hip 
height, stature, backfat thickness, 
ribeye area, lean meat yield, 
stillbirth, residual feed intake, 
immune system response

20_07 6.424 0.725 0.378 26 ENC1, LOC112443028 Intergenic [49, 68, 69]; Cattle, mouse; Con-
ception rate, residual feed intake, 
development of nervous system

14_22 5.827 −1.153 0.068 15 LOC101906669, TRNAG-UCC​ Intergenic [11, 40, 41]; Cattle; Average 
daily gain, hip height, protein 
percentage

14_02 5.239 0.762 0.124 5 SLURP1 3’UTR​ [49, 54, 70]; Rat, cattle; Immune 
response, protein, fat and milk 
yield, fat and protein percent-
age, number of breedings until 
conception
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Table 3  Summary of QTL detected for weaning weight in U.S. Red Angus cattle

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional Candidate 
Genes

Lead SNP Location Scientific Precedence 
[reference]; organism; trait

6_38 25.669 −10.153 0.283 66 LCORL, LOC782905 Intergenic [20, 24, 26, 37–45]; Cattle; 
Birth, weaning and yearling 
weight, fat and protein per-
centage, carcass weight, fat 
thickness, dystocia, average 
daily gain and dry matter 
intake, hip height, ribeye 
area, calving ease, stature, 
feed intake and gain

6_37 21.575 −8.352 0.328 121 FAM184B Intron [20, 24, 39, 40, 42]; Cat-
tle; Weaning and yearling 
weights, calving ease, 
dystocia, average daily gain, 
dry matter intake, daily feed 
intake

20_05 21.392 −7.859 0.444 94 LOC104975192, STC2 Intergenic [20, 24, 31, 40, 42, 47, 48]; 
Cattle; Birth, weaning and 
carcass weight, average 
daily gain, dry matter intake, 
stature, mature rate, mid-test 
metabolic weight

6_36 16.846 − 9.442 0.219 30 HERC6 Intron [20, 40, 42, 49–51]; Cattle; 
Birth, weaning, and yearling 
weight, mature weight, 
average daily gain, dry matter 
intake, backfat thickness, 
conception rate, milk produc-
tion traits, protein ubiquit-
ination

6_35 11.962 −5.632 0.356 26 LOC112447052 Intron [24, 40, 43, 56]; Cattle; Birth 
weight, dry matter intake, 
fetal growth, weaning weight

20_06 10.817 − 5.963 0.385 7 NSG2 3’UTR​ [40, 48, 49, 54, 73]; Cattle, 
mouse; Fat percentage, dry 
matter intake, mature weight, 
conception rate, synapse 
formation and maintenance

14_23 10.334 7.667 0.110 47 LOC112449630, MOS Intergenic [11, 20, 24, 26, 46]; Cattle; 
Birth, yearling and carcass 
weights, milk protein and fat 
yield, stature

6_34 8.719 − 5.723 0.286 21 CCSER1 Intron [20, 49, 58, 65]; Cattle, human, 
sheep; Birth and weaning 
weight, conception rate, 
regulator of mitosis, feed 
intake

6_39 8.370 −5.285 0.270 21 LOC782905, SLIT2 Intergenic [20, 24, 37, 40, 42, 52]; Cattle; 
Birth, weaning, and yearling 
weight, calving ease, carcass 
weight, average daily gain, 
dry matter intake, backfat 
thickness, ribeye area, hip 
height

20_04 8.218 −4.810 0.438 12 SH3PXD2B Intron [24, 40, 61]; Cattle, human; 
Birth and weaning weights, 
carcass weight, fat thickness, 
calving ease, average daily 
gain, development of eyes, 
heart, and bone
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a  Chromosome_Megabase
b  Minor Allele Frequency
c  Single Nucleotide Polymorphisms

Table 3  (continued)

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional Candidate 
Genes

Lead SNP Location Scientific Precedence 
[reference]; organism; trait

14_24 6.670 6.144 0.099 31 PENK, LOC112449660 Intergenic [20, 24, 26, 29, 31, 46, 74]; 
Cattle, rat; Birth, weaning, 
and yearling weights, calving 
ease, carcass weight, milk 
and protein yield, stillbirth, 
body size, mid-test metabolic 
weight, bone development

6_40 5.810 6.922 0.060 5 SLIT2 Intron [20, 24, 40, 42, 59, 60]; Cattle, 
mouse; Birth, weaning, and 
yearling weight, calving ease, 
average daily gain, carcass 
weight, hip height, milk fat 
and protein, development of 
central nervous system

7_90 5.781 −5.278 0.097 5 MIR3660, CETN3 Intergenic [42, 49, 75–77]; Cattle, 
human, mice; Birth and 
yearling weights, conception 
rate, cell proliferation control, 
insulin response, cell regula-
tion, centriole duplication 
and mitosis in embryonic 
development

6_32 5.366 4.287 0.277 26 GRID2 Intron [40, 42, 46, 64]; Human, cattle; 
Mammalian nervous system 
mediation, dry matter intake, 
average daily gain, birth 
weight, milk fat yield

Fig. 2  Weaning weight QTL. Manhattan plot with -log10 P-values. Lead and supporting SNPs for QTL represented at or above the blue line 
(P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 15,620 U.S. Red Angus beef cattle. A summary of all markers passing the nominal significance threshold is 
presented in Table 3
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Table 4  Summary of QTL detected for yearling weight in U.S. Red Angus cattle

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional Candidate 
Genes

Lead SNP Location Scientific Precedence 
[reference]; organism; trait

6_38 48.689 −24.991 0.282 87 LCORL, LOC782905 Intergenic [20, 24, 26, 37–45]; Cattle; 
Birth, weaning and yearling 
weight, fat and protein per-
centage, carcass weight, fat 
thickness, dystocia, average 
daily gain and dry matter 
intake, hip height, ribeye 
area, calving ease, stature, 
feed intake and gain

6_37 36.517 −19.339 0.328 173 FAM184B Intron [20, 24, 39, 40, 42]; Cat-
tle; Weaning and yearling 
weights, calving ease, 
dystocia, average daily gain, 
dry matter intake, daily feed 
intake

20_05 34.429 −18.105 0.441 116 STC2 Exond [20, 24, 31, 40, 42, 47, 48]; 
Cattle; Birth, weaning and 
carcass weight, average 
daily gain, dry matter intake, 
stature, mature rate, mid-test 
metabolic weight

6_36 25.670 −21.048 0.219 49 HERC6 Intron [20, 40, 42, 49–51]; Cattle; 
Birth, weaning, and yearling 
weight, mature weight, 
average daily gain, dry matter 
intake, backfat thickness, con-
ception rate, milk production 
traits, protein ubiquitination

6_39 19.104 −14.508 0.271 45 LOC782905, SLIT2 Intergenic [20, 24, 39, 42, 44, 54]; Cattle; 
Birth, weaning, and yearling 
weight, calving ease, carcass 
weight, average daily gain, 
dry matter intake, backfat 
thickness, ribeye area, hip 
height

14_23 16.513 17.008 0.116 47 PLAG1 3’UTR​ [11, 20, 24, 26, 31, 46]; Cattle; 
Birth weight, mid-test meta-
bolic weight, yearling and 
carcass weight, stature, milk 
protein yield, stature

20_06 15.250 −12.790 0.390 24 LOC783392, CPEB4 Intergenic [40, 48, 49, 54, 55]; Cattle; 
Fat percentage, dry matter 
intake, mature weight, 
conception rate, mRNA and 
protein expression in meiosis 
regulation

6_40 13.214 −11.340 0.276 69 KCNIP4 Intron [20, 24, 42, 56, 59, 60, 63, 
66]; Cattle, mouse, human; 
Birth, weaning, and yearling 
weights, calving ease, mature 
weight, average daily gain, 
carcass weight, hip height, 
post-weaning weight, liver 
weight, potassium channel 
function

6_35 12.635 −11.427 0.315 40 MMRN1 Exone [24, 43, 56–58]; Cattle, 
human, sheep; Birth weight, 
dry matter intake, fetal 
growth, weaning weight, 
winter tolerance under meta-
bolic stress response
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(Table  4, Fig.  3, Table  S1; Additional File 2) [46]. Col-
lectively, two of the 16 lead SNPs (20_05 Mb, STC2; 
6_35 Mb, MMRN1) noted for yearling weight QTL were 
located within coding regions (Table  4). Interestingly, 
STC2 has previously been associated with body size, 
feed efficiency, and growth in cattle [20, 24, 31, 40, 42, 
47]; whereas MMRN1 has been associated with growth, 
feed efficiency, and metabolic stability during weather 
stress in cattle (Table 4, Table S1; Additional File 1, Addi-
tional File 2) [24, 43, 56–58]. Despite less statistical sup-
port overall, the QTL on BTA6 at 42 Mb (i.e., LOC782172 

and ADGRA3) was detected for birth weight, weaning 
weight, and yearling weight in the Red Angus GWAA 
(Table  S2, Table  S4, Table  S5; Additional File 2); as was 
the QTL on BTA6 at 32 Mb (Table 2, Table 3, Table S5; 
Additional File 2), and the QTL at BTA7 at 91 Mb 
(Table 2, Table 4, Table S5; Additional File 2). Finally, it 
should be noted that a pleiotropic QTL was also detected 
on BTA7 at 90 Mb for both weaning weight and year-
ling weight; albeit with less overall statistical support 
(Table  3, Table  S5; Additional File 2). Genetic correla-
tions estimated for all growth traits are summarized in 

a  Chromosome_Megabase
b  Minor Allele Frequency
c  Single Nucleotide Polymorphisms
d  Indicates a predicted nonsynonymous mutation Pro➔Ala, exon 2
e  Indicates a predicted nonsynonymous mutation Gln➔His, exon 6

Table 4  (continued)

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional Candidate 
Genes

Lead SNP Location Scientific Precedence 
[reference]; organism; trait

6_34 12.607 −12.734 0.286 36 CCSER1 Intron [20, 49, 58, 65]; Cattle, human, 
sheep; Birth and weaning 
weight, conception rate, 
regulator of mitosis, feed 
intake

14_24 12.459 14.915 0.102 42 PENK, LOC112449660 Intergenic [20, 24, 26, 29, 31, 46, 74]; 
Cattle, rat; Birth, weaning, 
and yearling weights, calving 
ease, carcass weight, milk 
and protein yield, stillbirth, 
body size, mid-test metabolic 
weight, bone development

20_04 10.984 −10.008 0.442 25 SH3PXD2B Intron [24, 40, 61]; Cattle, human; 
Birth and weaning weights, 
carcass weight, fat thickness, 
calving ease, average daily 
gain, development of eyes, 
heart, and bone

6_41 10.036 8.987 0.486 41 KCNIP4 Intron [20, 24, 38, 40, 42, 62, 63]; Cat-
tle, human; Birth, weaning, 
and yearling weight, protein 
percentage, average daily 
gain, ribeye area, carcass 
weight, milk fatty acid com-
position, potassium channel 
activity

6_33 9.693 −9.134 0.299 6 CCSER1 Intron [24, 49, 65]; Cattle, human; 
Carcass weight, fat thickness, 
conception rate, regulator of 
mitosis

7_91 8.726 8.879 0.240 39 LOC112447488, 
LOC112447489, 
LOC101905238, ARRDC3

Intergenic [24, 30, 31, 46, 53]; Cattle; Milk 
protein yield, chest width 
and bone quality, calving 
ease, average daily gain, 
growth and muscularity, 
birth, weaning, and yearling 
weight, ribeye area

20_03 8.002 7.171 0.472 6 KCNIP1 Intron [78]; Frog, zebrafish; Develop-
ment of neural plate, associ-
ated with cardiac myocytes
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Additional File 1. The genomic inflation factor for year-
ling weight GWAA is reported in Table  S3 (Additional 
File 2). Genomic inflation factors (λ) larger than 1 are 
expected for well-powered studies of polygenic traits [79, 
80], reflecting the large number of genomic loci influenc-
ing variation in these traits.

GxE GWAA for birth weight, weaning weight, and yearling 
weight in U.S. Red Angus beef cattle
To investigate GxE interactions in relation to birth 
weight, weaning weight, and yearling weight in U.S Red 
Angus beef cattle, we conducted additional single-marker 
(836K) analyses. All analyses included a variable for U.S. 
geographic ecoregion of origin, which was generated via 
K-means clustering using thirty-year climate data and 
treated as an interaction term, as previously described 
[20, 32, 72]. GxE GWAA for birth weight produced evi-
dence for three interactions on BTA26 and BTA22 inter-
acting with two ecoregions (Table  5, Fig.  4; Additional 
File 1). Positional candidate genes identified by GxE inter-
actions for birth weight have been previously associated 
with cattle feed efficiency (PRKG1, LOC531679, SEC61G, 
and NEK10) (Table S1; Additional File 2) [81–87]. Addi-
tionally, PRKG1 is involved in vasodilation (Table 5) [82]. 
Notably, only one interaction detected by GxE GWAA 
for birth weight was identified as a coding variant (Addi-
tional File 1). More specifically, the lead SNP within the 
positional candidate gene NEK10 encodes a nonsynony-
mous mutation in exon 2 (Ser → Thr). Four additional 
interactions were also noted with less statistical support, 

as described in Table  S6 (Additional File 2). Genomic 
inflation factors for P-value estimates obtained from GxE 
GWAA for birth weight are presented in Table S7 (Addi-
tional File 2).

GxE GWAA for weaning weight in U.S. Red Angus beef 
cattle produced evidence for six significant interactions; 
thereby implicating positional candidate genes related 
to growth and development (DNAJC12), milk produc-
tion (LOC112447568, TRNAE-UUC, LOC112447164, 
COX18), carcass traits (LOC112447496, LOC112447497, 
LOC782092), cellular proliferation and metabolism 
(SIRT1), and feed efficiency (LCLAT1), as defined by 
relevant lead SNPs (Table 6, Table S1, Fig. 5; Additional 
File 2) [88–109]. Additionally, positional candidate genes 
identified on BTA28 (DNAJC12 and SIRT1) have been 
associated with bovine maturity rate, milk production, 
and meat quality traits [46, 48, 91]; as well as promoting 
cellular proliferation and regulation in humans and mice 
[90, 92]. Interestingly, interactions on BTA7 (101 Mb) 
and BTA6 (88 Mb) revealed previous associations with 
aspects of bovine heat stress and thermotolerance, and 
both showed significant GxE interactions in the U.S. 
Desert Ecoregion (Table  6; Additional File 1) [89, 104, 
105]. All interactions identified in the GxE GWAA for 
weaning weight in Red Angus cattle were located in non-
coding regions (Table 6; Additional File 1). Sixteen addi-
tional interactions with less overall statistical support 
are noted in Table S8, with only one lead SNP encoding 
a nonsynonymous change within the positional candi-
date gene ANKK1 (Table S8; Additional File 1, Additional 

Fig. 3  Yearling weight QTL. Manhattan plot with -log10 P-values. Lead and supporting SNPs for QTL represented at or above the blue line (P ≤ 1e-05; 
−log10 P-values ≥ 5.00) for n = 12,388 U.S. Red Angus beef cattle. A summary of all markers passing the nominal significance threshold is presented 
in Table 4
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File 2). Genomic inflation factors for P-value estimates 
obtained from a GxE GWAA for weaning weight are 
summarized in Table S7 (Additional File 2).

We conducted a final GxE GWAA for yearling weight 
in U.S. Red Angus beef cattle and found evidence for five 
interactions which met a nominal significance thresh-
old for polygenic traits (P ≤  1e-05), as summarized in 
Table 7 and Fig. 6 (Additional File 1) [71]. The positional 
candidate genes corresponding to each interaction have 
been associated with cellular proliferation and differ-
entiation (EDNRB, POU4F1, and DNAJC12), bovine 
development (PARD3B, NRP2, and SIRT1), neural devel-
opment (PARD3B and NRP2), and carcass traits (ZHX3) 
(Table 7, Table S1; Additional File 2) [110–125]. All lead 
SNPs defining GxE associations for yearling weight via 
GWAA were located in noncoding regions. Positional 
candidate genes underlying an  interaction detected on 
BTA28 at 24 Mb (i.e., DNAJC1 and SIRT1) strongly sug-
gest that pleiotropic GxE interactions exist with respect 
to weaning weight (Table 6) and yearling weight (Table 7) 
for U.S. Red Angus beef cattle. Moreover, pleiotropic 

GxE interactions for weaning weight and yearling weight 
were also detected on BTA8 at 15 Mb, and on BTA27 at 
39 Mb, including positional candidate genes LINGO2, 
LOC112447774, and PSD3 (Tables S8-S9; Additional File 
2), but with less overall statistical support. All pleiotropic 
associations detected for U.S. Red Angus beef cattle are 
summarized in Table  S1 (Additional File 2). Genomic 
inflation factors for P-value estimates obtained from a 
GxE GWAA for yearling weight are displayed in Table S7 
(Additional File 2).

Conclusions
Herein, we present evidence for pleiotropic QTL result-
ing from traditional GWAA influencing birth weight, 
weaning weight, and yearling weight in U.S. Red Angus 
beef cattle, and further confirm the involvement of 
genomic regions on BTA6 from 34 to 41 Mb and BTA14 
from 23 to 25 Mb in various aspects of bovine growth, 
feed efficiency, carcass traits, and stature across breeds. 
Additionally, the results from our GWAA and GxE 
GWAA for birth weight, weaning weight, and yearling 

Table 5  Summary of GxE interactions detected for birth weight in U.S. Red Angus cattle

a  Chromosome_Megabase
b  Minor Allele Frequency
c  Single Nucleotide Polymorphisms
d  Significant for U.S. Arid Prairie Ecoregion
e  Significant for U.S. High Plains Ecoregion
f  Indicates a predicted nonsynonymous Ser➔Thr, exon 2

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional Candidate 
Genes

Lead SNP Location Scientific Precedence 
[reference]; organism; trait

26_07d 7.340 1.350 0.457 9 PRKG1 Intron [49, 62, 81, 82]; Cattle, human, 
mouse; Conception rate, milk 
fatty acid, and dry matter 
intake, vasodilation

22_01e 6.910 −1.082 0.277 9 LOC531679, SEC61G Intergenic [46, 83–85]; Cattle, human; 
Milk fatty acid, milk protein 
percentage, metabolic body 
weight and feed efficiency, 
essential for translocation of 
polypeptides to the ER, role 
in ER stress response, tumor 
cell growth

22_02e 5.945 0.951 0.346 5 NEK10 Exonf [46, 84, 86, 87]; Human, cattle; 
Mitotic response to UV-stress, 
ciliogenesis in development, 
metabolic body weight, milk 
protein percentage

Fig. 4  Birth weight genotype-by-environment interactions. Manhattan plots with -log10 P-values for U.S. Desert Ecoregion (a), U.S. Southeast 
Ecoregion (b), U.S. High Plains Ecoregion (c), U.S. Arid Prairie Ecoregion (d), U.S. Foothills Ecoregion (e), U.S. Forested Mountains Ecoregion (f), U.S. 
Fescue Belt Ecoregion (g), and U.S. Upper Midwest and Northeast Ecoregion (h). Lead and supporting SNPs for interactions represented at or 
above the blue line (P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 15,815 U.S. Red Angus beef cattle. A summary of all markers passing the nominal 
significance threshold is presented in Table 5

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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weight in U.S. Red Angus beef cattle provide compelling 
comparative evidence for at least 35 statistically well-
supported associations segregating across multiple cattle 
breeds; including three U.S. Red Angus growth associa-
tions that were previously detected for mid-test meta-
bolic weight, two QTL previously detected for average 

daily gain in U.S. SimAngus and Hereford beef cattle, 
and 11 U.S. Red Angus growth associations also detected 
in U.S. Gelbvieh beef cattle. Examination of GxE GWAA 
associations for U.S. Red Angus growth traits revealed 
ecoregion-specific positional candidate genes with sug-
gested pleiotropy for genes DNAJC12, and SIRT1 for 

Table 6  Summary of GxE interactions detected for weaning weight in U.S. Red Angus cattle

a  Chromosome_Megabase
b  Minor Allele Frequency
c  Single Nucleotide Polymorphisms
d  Significant for U.S. Desert Ecoregion
e  Significant for U.S. Upper Midwest & Northeast Ecoregion
f  Significant for U.S. Foothills Ecoregion

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional Candidate 
Genes

Lead SNP Location Scientific Precedence 
[reference]; organism; trait

7_101d 6.537 19.526 0.216 14 LOC112447568, TRNAE-UUC​ Intergenic [46, 47, 49, 81, 88, 89]; Cattle, 
yeast; Milk fatty acid, stature, 
milk fat yield, and conception 
rate, protein homeostasis and 
heat stress adaptation

28_24e 6.213 −6.627 0.404 5 DNAJC12, SIRT1 Intergenic [46–48, 81, 83, 84, 90–93]; 
Cattle, human; Milk fatty 
acids, milk fat and protein 
yield, milk fat and protein 
percentage, body measure-
ments and meat quality, 
stature, birth weight, calving 
ease, maturity rate, cell 
proliferation, senescence in 
response to cellular stress

7_99d 5.746 15.175 0.296 5 LOC112447496, 
LOC112447497

Intergenic [46, 49, 88, 94, 95]; Cattle; 
Shear force, milk fat yield, and 
conception rate associations

11_69f 5.550 118.159 0.051 7 LCLAT1 Intron [11, 40, 83, 96–98]; Mouse, 
cattle; Mitochondrial struc-
ture and function, fatty acid 
oxidation, energy metabo-
lism, obesity and diabetes 
association, metabolic body 
weight, milk fatty acid and 
protein composition, fatty 
acid associations

6_88d 5.532 42.188 0.014 5 LOC112447164, COX18 Intergenic [46, 49, 84, 99–105]; Cattle, 
human; Milk, and protein 
yield, conception rate, mito-
chondrial biogenesis, oxygen 
consumption process regu-
lated to adapt to changing 
environmental conditions

5_78f 5.509 −117.747 0.031 7 LOC782092 3’UTR​ [62, 106–109]; Cattle; Tender-
ness association, pregnancy 
rate, stayability, milk fatty acid

(See figure on next page.)
Fig. 5  Weaning weight genotype-by-environment interactions. Manhattan plots with -log10 P-values for U.S. Desert Ecoregion (a), U.S. Southeast 
Ecoregion (b), U.S. High Plains Ecoregion (c), U.S. Arid Prairie Ecoregion (d), U.S. Foothills Ecoregion (e), U.S. Forested Mountains Ecoregion (f), U.S. 
Fescue Belt Ecoregion (g), and U.S. Upper Midwest and Northeast Ecoregion (h). Lead and supporting SNPs for interactions represented at or 
above the blue line (P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 15,620 U.S. Red Angus beef cattle. A summary of all markers passing the nominal 
significance threshold is presented in Table 6
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Fig. 5  (See legend on previous page.)
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weaning weight and yearling weight. Similar to previous 
GWAA and GxE GWAA on U.S. Gelbvieh and Simmen-
tal beef cattle, significant GxE associations detected for 
birth weight, weaning weight, and yearling weight in U.S. 
Red Angus cattle were not overlapping; thereby suggest-
ing that although the majority of the main effect QTL 
were conserved between breeds, GxE interactions were 
not conserved. In agreement with previous GxE and local 
adaptation results in beef cattle, we find GxE effects asso-
ciated with vasodilation and neural development. Iden-
tification of pleiotropic growth QTL and breed specific 

GxE interactions may potentially serve to benefit beef 
breeding programs across diverse U.S. climates via crea-
tion of region-specific genomic predictions. Moreover, 
the results of this study further demonstrate that impu-
tation to a union set of high-density SNPs (i.e., 836K) 
can directly facilitate future studies at a fraction of the 
cost associated with direct genotyping; thus providing a 
research framework that directly enables large-scale anal-
yses for economically important livestock species, and 
the potential for identifying causal variants via genome 
sequence-level imputed genotypes.

Table 7  Summary of GxE interactions detected for yearling weight in U.S. Red Angus cattle

a  Chromosome_Megabase
b  Minor Allele Frequency
c  Single Nucleotide Polymorphisms
d  Significant for U.S. Foothills Ecoregion
e  Significant for U.S. Forested Mountains Ecoregion
f  Significant for U.S. Upper Midwest & Northeast Ecoregion

Chr_Mba -log10 P-value Regression Beta MAFb Supporting 
SNPsc

Positional 
Candidate 
Genes

Lead SNP Location Scientific Precedence [reference]; 
organism; trait

12_54d 6.173 207.987 0.027 5 EDNRB, POU4F1 Intergenic [24, 40, 49, 81, 101, 110–115]; Mouse, cat-
tle, human; Neural crest cell proliferation, 
milk fatty acid, residual feed intake, dry 
matter intake, conception rate, wean-
ing weight, vasodilation, neural cell fate 
specification, cardiac development

2_93d 6.002 −204.602 0.021 46 PARD3B Intron [40, 116–118]; Mouse, cattle; Neuro-
genesis and cortical development, cell 
proliferation and differentiation, dendritic 
spine formation, average daily gain

2_94d 5.957 −203.686 0.034 15 NRP2 Intron [40, 46, 119–121]; Mouse, cattle; Neural 
development and formation of the central 
and peripheral nervous systems, vascular 
development, average daily gain, milk fat 
yield

13_70e 5.833 11.315 0.295 6 ZHX3 Intron [88, 94, 122–125]; Rat, human, cattle; 
Development of nephritic syndrome, 
regulation of metabolism, weaning 
weight, shear force, tenderness response 
to stress, scrotal circumference, herd life, 
rump fat thickness, conception rate

28_24f 5.258 −9.747 0.470 7 DNAJC12, SIRT1 Intergenic [46–48, 81, 83, 84, 90–93]; Cattle, human; 
Milk fatty acids, milk fat and protein yield, 
milk fat and protein percentage, body 
measurements and meat quality, stature, 
birth weight, calving ease, maturity rate, 
cell proliferation, senescence in response 
to cellular stress

Fig. 6  Yearling weight genotype-by-environment interactions. Manhattan plots with -log10 P- values for U.S. Desert Ecoregion (a), U.S. Southeast 
Ecoregion (b), U.S. High Plains Ecoregion (c), U.S. Arid Prairie Ecoregion (d), U.S. Foothills Ecoregion (e), U.S. Forested Mountains Ecoregion (f), U.S. 
Fescue Belt Ecoregion (g), and U.S. Upper Midwest and Northeast Ecoregion (h). Lead and supporting SNPs for interactions represented at or 
above the blue line (P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 12,388 U.S. Red Angus beef cattle. A summary of all markers passing the nominal 
significance threshold is presented in Table 7

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Methods
Birth weight (n = 17,320; in 5803 contemporary groups), 
weaning weight (n = 17,306; in 6478 contemporary 
groups), and yearling weight (n = 13,648; in 4809 contem-
porary groups) phenotypes were obtained from the Red 
Angus Association of America for animals with geno-
types. These animals had 2102 unique sires and 12,124 
unique dams. Analyzed animals were born from 1975 
to 2017. Phenotypes were pre-adjusted by Red Angus 
Association of America for age of animal and age of the 
dam (i.e., 205-day weight for weaning weight). Pheno-
types were further adjusted using the mmer() function 
in the sommer package v3.9.3 in R v3.5.2 [126, 127] to 
account for contemporary group effects using contem-
porary group IDs supplied by Red Angus Association of 
America. Details regarding Red Angus contemporary 
groups are summarized in Additional File 1. Birth weight 
and weaning weight were adjusted for maternal effect 
using pedigree files provided by the Red Angus Associa-
tion of America. Discrete climate ecoregions were desig-
nated for each individual using K-means clustering with 
three continuous climate variables (mean temperature in 
Fahrenheit, precipitation in inches, and elevation in feet) 
gathered from the PRISM climate dataset from thirty 
years of normalized records [128]. The pamk function in 
conjunction with the kmeans algorithm in the fpc (Flex-
ible Procedures for Clustering) [129] package and the 
RStoolbox package [127, 130] in R assigned every four 
kilometer (km) square of the continental U.S. to one of 9 
clusters, denoted as ecoregions. These designated ecore-
gions consist of the Upper Midwest & Northeast, Fescue 
Belt, Rainforest, Forested Mountains, High Plains, Foot-
hills, Desert, Southeast, and Arid Prairie. Animals were 
assigned to ecoregions by breeder zip-code as recorded 
in the U.S. Red Angus Association of America herdbook 
[32]. If the breeder’s zip-code overlapped with two or 
more ecoregions, the animal was filtered from further 
analysis.

Genotypes from 22,932 U.S. Red Angus cattle were 
provided by Neogen GeneSeek (Lincoln, NE, U.S.A). 
The ARS-UCD1.2 Bos taurus assembly [131] was used 
for SNP positions. The genotypes underwent filter-
ing using PLINK 1.9 to remove individuals with call 
rates < 0.90 on an assay-by-assay basis (i.e., GeneSeek 
GGP-LDv3, GeneSeek GGP-LDv4, GeneSeek GGP-
90KT, GeneSeek GGP-HDv3, GeneSeek Bovine-
GGP-F250, Illumina Bovine SNP50, and Illumina HD 
778K), removal of variants with call rates < 0.90 and 
Hardy-Weinberg Equilibrium (HWE) P-values <  1e-20 
to exclude poorly genotyped loci [132]. Only autoso-
mal chromosomes were utilized in these analyses. The 
remaining 22,457 individuals and associated genotypes 

were then merged and phased using PLINK and Eag-
leV2.4, respectively [133]. Phased haplotypes for 8622 
diverse individuals genotyped using the Illumina HD 
(778K SNPs; Illumina, San Diego, CA) and 28,114 indi-
viduals genotyped using the Bovine-GGP-F250 (250K 
SNPs; GeneSeek, Lincoln, NE) were used as a multi-
breed reference panel for imputation in minimac4 as 
previously described [19, 134]. The 22,457 Red Angus 
genotypes from various assays were imputed for all 
markers contained on the two high-density research 
chips in this multi-breed reference panel. A total of 
6642 cattle had only genotype information, thus pro-
viding 15,815 individuals with 836,118 markers each 
(ARS-UCD1.2) to be utilized as the final dataset for 
GWAA and GxE GWAA. Minimac4 reported imputed 
dosage genotypes to account for any potential uncer-
tainty during imputation processes, as previously 
described [19, 134].

Imputed genotypes (836K markers) and the adjusted 
phenotypes for Red Angus cattle were used to conduct uni-
variate linear mixed model GWAA for birth weight (15,815 
individuals), weaning weight (15,620 individuals), and year-
ling weight (12,388 individuals) using the program 
GEMMA. Prior to the execution of all GWAA, GEMMA 
filtered all SNP loci as follows: MAF (< 0.01 excluded), poly-
morphism (monomorphic SNPs excluded), and Hardy-
Weinberg Equilibrium (HWE; P-values < 0.001 excluded), 
thereby producing genotypic sets of 675,115 SNPs for birth 
weight, 675,060 SNPs for weaning weight, and 674,493 
SNPs for yearling weight. Genomic relationship matrices 
(Gs) were computed with the imputed genotypes in 
GEMMA to control for dependence between samples due 
to relatedness. The linear mixed models implemented in 
GEMMA also estimate the proportion of variance 
explained (PVE) by the genomic relationship matrix. The 
PVE is also referred to as “chip heritability” [135]. The uni-
variate linear mixed model implemented for GWAA can be 
generally specified as: y = Wα + xβ + u + ϵ; where y is a 
n-vector of quantitative traits (i.e., birth weight, weaning 
weight, and yearling weight) for n-Red Angus individuals, 
W is an n x c matrix of specified covariates (i.e., fixed 
effects) including a column of 1s, α is a c-vector of corre-
sponding coefficients including the intercept, x is an n-vec-
tor of SNP genotypes, β is the effect size of the SNP, u is an 
n-vector of random effects, and ϵ represents an n-vector of 
errors [20, 135]. Additionally, u ∼ MVNn(0, λτ−1Κ) and 
ϵ ∼ MVNn(0, τ−1I), where MVN denotes multivariate nor-
mal distribution, τ−1 is the variance of the residual errors, λ 
is the ratio between the two variance components, Κ is the 
n x n genomic relatedness matrix, and I represents an n x n 
identity matrix [20, 135]. Specifically, GEMMA performed 
a Wald test using -lmm 1 as follows: FWald = β̂2

V β̂
 , tests 
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the variance for β̂ [20, 135]. Under the null hypothesis, the 
Wald test statistics (FWald) come from an F(1, n − c − 1) dis-
tribution [20, 135]; with GEMMA producing marker-based 
REML estimates and corresponding P-values. For all GxE 
GWAAs, discrete geographic ecoregion (i.e., the environ-
mental variable) was specified as an interaction term using 
the -gxe command. GxE GWAA were computed using  a 
mixed model which can be generally specified as: y = Wα + 
xsnpβsnp + xenvβenv + xsnp × xenvβsnp × env + u + ϵ; where y is an 
n-vector of quantitative traits (i.e., birth weight, weaning 
weight, and yearling weight) for n-Red Angus individuals, 
W represents an n x c matrix of specified covariates, α is a 
c-vector of corresponding coefficients including the inter-
cept, xsnp represents an n-vector of SNP genotypes, βsnp is 
the effect size of the SNP, xenv is an n-vector of membership 
in a single ecoregion, βenv represents the fixed effect of the 
ecoregion, βsnp × env is the estimated interaction between 
SNP genotype and ecoregion, u is an n-vector of random 
effects, and ϵ is an n-vector of errors [20, 135]. As above, 
u ∼ MVNn(0, λτ−1Κ) and ϵ ∼ MVNn(0, τ−1I). Each discrete 
ecoregion was compared against the remaining U.S. dataset 
using binary (0, 1) coding as an environmental variable with 
one exception; the Rainforest ecoregion had insufficient 
sample size for GxE GWAA, and thus eight separate GxE 
GWAA were computed (Additional File 1). GEMMA eval-
uated the alternative hypothesis for each interaction 
(H1 : βsnp × env ≠ 0) in comparison to the null hypothesis 
(H0 : βsnp × env = 0) using linear mixed models while control-
ling for population stratification, SNP main effect, and envi-
ronmental effect while examining the interaction effect of 
each ecoregion [20, 135]. Single-marker P-value results 
produced by GEMMA using the -lmm 1 and -gxe com-
mands were further adjusted using chi-squared test statis-
tics divided by a constant for additional genomic control 
[37, 136]. Adjusted P-value results were utilized to produce 
Manhattan plots using the manhattan command in R [137]. 
All SNPs meeting the nominal significance threshold 
(P ≤ 1e-05) were rounded to the nearest Mb and strongly 
supported QTL were defined by ≥  5 significant SNP loci 
with MAF ≥ 0.01 (i.e., a lead SNP plus four or more addi-
tional supporting SNPs within the same rounded Mb) [31, 
71]. Additional QTL were also noted with less overall statis-
tical support in Tables S2, S4-S6, and S8-S9; thereby repre-
senting QTL defined by ≥ 2 but ≤ 4 SNP loci which met 

the nominal significance threshold (P ≤ 1e-05) within the 
same rounded Mb (Additional File 2). Positional candidate 
genes were implicated by location of the lead SNP. Genomic 
inflation factors (λ) were estimated using observed and 
expected P-values via regression for all GWAA and GxE 
GWAA in R [80, 138, 139]. The proportion of variance 
explained (PVE) by bovine SNPs was estimated as previ-
ously described [140]. Genetic correlations were estimated 
using the multivariate approach implemented in GEMMA 
[135, 141], as previously described [142].
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