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Abstract 

Background:  In this comparative study we evaluate the performance of four software tools: DNAstar-D (DESeq2), 
DNAstar-E (edgeR), CLC Genomics and Partek Flow for identification of differentially expressed genes (DEGs) using 
a transcriptome of E. coli. The RNA-seq data are from the effect of below-background radiation 5.5 nGy total dose 
(0.2nGy/hr) on E. coli grown shielded from natural radiation 655 m below ground in a pre-World War II steel vault. The 
gene expression response to three supplemented sources of radiation designed to mimic natural background, 1952 
– 5720 nGy in total dose (71–208 nGy/hr), are compared to this “radiation-deprived” treatment. In addition, RNA-seq 
data of Caenorhabditis elegans nematode from similar radiation treatments was analyzed by three of the software 
packages.

Results:  In E. coli, the four software programs identified one of the supplementary sources of radiation (KCl) to evoke 
about 5 times more transcribed genes than the minus-radiation treatment (69–114 differentially expressed genes, 
DEGs), and so the rest of the analyses used this KCl vs “Minus” comparison. After imposing a 30-read minimum cutoff, 
one of the DNAStar options shared two of the three steps (mapping, normalization, and statistic) with Partek Flow 
(they both used median of ratios to normalize and the DESeq2 statistical package), and these two programs identi-
fied the highest number of DEGs in common with each other (53). In contrast, when the programs used different 
approaches in each of the three steps, between 31 and 40 DEGs were found in common. Regarding the extent of 
expression differences, three of the four programs gave high fold-change results (15–178 fold), but one (DNAstar’s 
DESeq2) resulted in more conservative fold-changes (1.5–3.5). In a parallel study comparing three qPCR commercial 
validation software programs, these programs also gave variable results as to which genes were significantly regu-
lated. Similarly, the C. elegans analysis showed exaggerated fold-changes in CLC and DNAstar’s edgeR while DNAstar-
D was more conservative.

Conclusions:  Regarding the extent of expression (fold-change), and considering the subtlety of the very low level 
radiation treatments, in E. coli three of the four programs gave what we consider exaggerated fold-change results (15 
– 178 fold), but one (DNAstar’s DESeq2) gave more realistic fold-changes (1.5–3.5). When RT-qPCR validation compari-
sons to transcriptome results were carried out, they supported the more conservative DNAstar-D’s expression results. 
When another model organism’s (nematode) response to these radiation differences was similarly analyzed, DNAstar-
D also resulted in the most conservative expression patterns. Therefore, we would propose DESeq2 (“DNAstar-D”) as 
an appropriate software tool for differential gene expression studies for treatments expected to give subtle transcrip-
tome responses.
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Background
RNA sequencing (RNA-Seq) has a wide variety of appli-
cations in gene expression studies [1]. Since the discovery 
of RNA’s role as a key intermediate between the genome 
and the proteome, the quantification of gene expression 
based on the number of mRNA transcript reads is of 
great utility in gene expression studies [2, 3]. There are 
several software tools available and still in development 
for analysis of RNA-seq and for detection of differen-
tial expression, but there is no optimal analysis pipeline 
that can be used for all types of RNA-seq samples [4–7]. 
A successful RNA-seq study can be achieved by a good 
experimental design,  choosing the proper type of library, 
the appropriate  sequencing depth, and the number of 
replicates specific for the biological system of the study 
[8, 9]. The use of multiple biological replicates is critical 
for meaningful detection of differential gene expression 
[10, 11]. One challenge in comparing inter-lab results is 
that commercial transcriptome analyses packages have 
different options and parameters for transcript quantifi-
cation, normalization, and differential expression analy-
sis. In most RNA-seq experiments, the primary interest 
of the researcher is to find out differential gene expres-
sion between treatment and control groups. The general 
workflow of RNA-seq analysis includes 1. Quality con-
trol of the Next-Generation Sequencing (NGS) data (eg. 
adapter and low-quality trimming) 2. Mapping RNA-
seq to a reference genome where the genomic informa-
tion is available and 3. Quantification of the read count 
and detection of differentially expressed genes. In cases 
where a reference genome is not available, de novo tran-
scriptome assembly is performed and differential gene 
expression then analyzed [5, 7, 12–14]. Successful anal-
ysis of differential gene expression depends not only on 
experimental design but also on the selection of appro-
priate software/analysis tools. Several algorithms and 
statistical packages have been developed for analysis 
of differential expression of RNA-seq including edgeR, 
CLC and, DESeq2 [15–18]. However, there is not much 
information on which software tool, and which software 
options, are most suitable for differential expression of 
RNA-seq projects.

In this study, we evaluate four commonly used RNA-
seq analysis tools: DNAstar-DESeq2 (DNAstar-D), 
DNAstar-edgeR (DNAstar-E), CLC genomic and 
Partek Flow [19–21] for identification of differentially 
expressed genes using a RNA-Seq library of E. coli. The 
RNA-seq samples used in this study are from an on-
going project on the biological effect of background and 

below-background radiation on organisms grown under-
ground at the Waste Isolation Pilot Plant (WIPP) in New 
Mexico, USA. To compare to this radiation-shielded 
treatment (0.2 nGy/hr), three sources of natural radiation 
were supplemented to “return” cells to normal levels of 
background radiation. The three natural sources of radia-
tion used were KCl (114.7 nGy/hr), and two sources of 
volcanic material, Tuff (207.5 nGy/hr) and Pozzolan (70.7 
nGy/hr). As discussed in previous publications [22, 23], 
these levels in the supplemented treatments are within 
normal background radiation levels. Bacterial cells were 
exposed to these four radiation treatments for 27.5  h 
while incubated underground at the WIPP site. The gene 
expression responses to these treatments are expected to 
be subtle since the three supplemented radiation sources 
were designed to mimic the low levels that all organisms 
are naturally exposed to (background) and then lower 
levels than that (below background). Thus, this RNA-Seq 
data set would represent a fairly small treatment effect. 
In addition, we also analyzed RNA-seq from a previously 
published C. elegans nematode [23] treated with similar 
radiation experiments (Minus vs KCL) and compared 
these two model organisms responses using 3 different 
software. Hopefully, the analysis presented here will have 
application to the analyses of other subtle but biologically 
important gene expression projects. Our previous results 
have documented that mammalian cells [24], and bac-
teria [22, 25] exhibit a stress response to the absence of 
normal levels of radiation.

Results
Comparison of the different software pipelines used
Figure  1 compares the different approaches used by 
the four software tools to map RNA reads to a genome, 
to normalize the data set and  to statistically analyze 
DEGs. Each program has analytical steps shared with 
some of the others, for example CLC and DNAstar-E 
share the same normalization step (Trimmed Mean of 
M-values (TMM)). The statistical calculation for dif-
ferential expression in the CLC software are based on 
General Linear Model with a negative binominal distri-
bution, similar to EdgeR or DESeq2 (https://​digit​alins​
ights.​qiagen.​com/). In the Partek Flow software, several 
normalization and differential expression statistic pack-
ages are optionally available including DESeq2 (https://​
www.​partek.​com/​partek-​flow/). In the DNAstar software 
tool, BioConductor’s DESeq2 and edgeR are two options 
for statistical analysis which have their own normaliza-
tion step using raw expression values of NGS to identify 
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differentially expressed genes (https://​www.​dnast​ar.​com/​
workf​lows/​rna-​seq/). In the CLC genomic software, the 
normalization method for differential gene expression 
is TMM. DESeq2 normalization methods use a scaling 
factor for a sample. DESeq2 calculates the ratio of read 
count to its geometric mean across all samples and the 
median of ratios is used for expression [16]. DESeq2 is 
specifically developed to find differential expressions 
between two conditions in studies where not many genes 
are differentially expressed [26]. TMM normalization 
method is used in DNAstar-E and CLC. After removal 
of the gene with the highest log expression ratio between 
samples, the weighted mean of log ratios between the 
compared sample is used as a scaling factor. TMM nor-
malization methods assumes that most of the genes are 
not differentially expressed. TMM considers sample RNA 
populations and is effective in normalization of samples 
with diverse RNA repertoires [27, 28]. Neither TMM or 
DESeq2 normalization consider library size and gene 
length. CLC has an optional RPKM (Reads Per Kilobase 
per Million mapped reads) normalization method, but it 
does not provide a statistical package for analysis of dif-
ferential expression studies. Similarly, Partek and DNA-
star give an option for RPKM normalization, but it’s 
primarily used for within-sample comparisons [29]. For 
these reasons, we did not apply RPKM normalization for 
this differential gene expression study.

Differential gene expression analysis
In total, 16 samples (4 replicates from each treatment) 
were sent for sequencing. Between 13.9 and 20.2 million 
raw reads of RNA-seq were obtained from each sam-
ple (Supplementary Table  1). Figure  2 shows the num-
ber of differentially expressed genes (DEGs) detected 
by the four software packages using a 1.5-fold cut off 
(A) or 2-fold cut off (B) all with statistical significance 
(FDR ≤ 0.05). The DEGs shown in the figure are the num-
bers of genes that are expressed differently in compari-
son to the cells grown in the absence of normal levels of 

radiation (the Minus, “M” treatment). The four software 
packages were in agreement in showing the cells grown 
in the KCl (“K”) irradiator had more than fivefold more 
DEGs compared to cells grown in the Tuff or Pozzolan 
irradiators (see the M vs. K comparisons in Fig.  2). As 
expected, the number of DEGs generally decreased 
at the 2-fold cutoff but the four software gave varying 
responses. For example, in the M vs K treatment, there 
was no change in number of differentially expressed 
genes after analyses by DNAstar-E and CLC, but the 
number of differentially expressed genes dropped from 
94 to 54 in DNAstar-D and decreased from 69 to 62 in 
Partek Flow when the twofold change cutoff was applied. 
Similar to M vs K treatment, in M vs Pozzolan (“P”) and 
M vs Tuff (“T”) treatments, there were no significant 
genes reported by DNAstar-D while the number of DEGs 
remained the same in DNAstar-E and CLC. In the Partek 
analysis, the number of DEGs dropped from 7 to 4 in M 
vs P and 5 to 4 in M vs T, respectively.

Minus radiation vs KCl‑supplemented treatments
We now will focus on M vs K treatment for further analy-
sis throughout this paper because the number of DEGs 
were the highest in this comparison as reported by all 
four tested software/pipelines. Figure 3 shows the maxi-
mum fold change in DEGs observed in each software 
analysis comparing the M vs K treatments in E. coli (A) 
and C. elegans (B). The results demonstrated surprisingly 
large differences in the maximum fold-change reported 
by the four software packages. In E. coli, CLC had the 
highest fold-change DEG, up to 178-fold, with a total 16 
genes higher than tenfold, Partek’s highest fold-change 
was 25.9-fold (with a total 10 genes higher than tenfold) 
(data not shown), DNAstar-E’s highest was 27.4-fold (a 
total 12 genes higher than tenfold) while the highest fold 
change in DNAstar-D was 3.5- fold (Fig.  3A). Similarly, 
in C. elegans analysis, the highest foldchange in CLC is 
936.5-fold and 761.3-fold in DNAstar-E while 3.3-fold 
in DNAstar-D (Fig.  3B). When we consider the small 

Fig. 1  The different program mapping, normalization and statistical approaches used for each software pipeline used in this study
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Fig. 2  Cells were exposed to 4 treatments underground at WIPP: M = “Minus” radiation from cells grown in a steel vault, K = cells grown in a KCl 
Irradiator, P = cells grown in a Pozzolana irradiator and T = cells grown in a Tufo Irradiator. Detection of differentially expressed genes (DEG) with 
statistical significance (FDR ≤ 0.05) by four different software in E coli. A 1.5-fold cut-off  B 2-fold cut-off. Data includes all reads with no cut-off values

Fig. 3  The maximum fold-change value that was detected in E. coli A and C. elegans B by each software package is shown. Only the 1.5 fold 
regulated genes from the “Minus” radiation (M) vs. KCl-supplemented (K) treatments are shown. Data includes all reads with no minimum read 
cutoff as well as after 30 read cutoff
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differences in radiation dose rate among these treat-
ments, this observation among three software programs 
of greater than 25-fold regulated genes caused concern 
regarding this potentially exaggerated response. So, we 
further investigated these analyses by imposing a mini-
mum read number cutoff.

Read count cutoff in all 8 replicates
We were concerned about the surprisingly high fold-
changes of DEGs in three of the four software/pipelines, 
so we imposed a > 30 read count criterion on the data 
before analysis. Since there is not a standard read count 
cut-off, we examined greater than 30 read counts to make 
sure the data wasn’t being skewed by small read counts. 
So, we used only data that had greater than 30 reads in 
all eight replicates (4 reps from the Minus radiation and 
4 from the KCl-amended treatments) in E. coli and four 
replicates (2 reps from the Minus radiation and 2 reps 
from the KCl-amended treatments) in C. elegans. (Note 
that since we only used the Partek trial version, we had no 
opportunity to change cutoff values.) The total number of 
DEGs produced among different software were similar in 
E. coli (61–67) but variable in C. elegans (74–178) after 30 

read cutoff (Supplementary Fig. 1). Tables 1 and 2 shows 
the genes that met this criterion in the CLC and the two 
DNAstar sub-programs; please note that DNAstar-D and 
DNAstar-E have the same raw reads because they share 
the mapping program (SeqMan NGen) and the raw reads 
are shown before normalization. Table 1A also shows the 
fold change of the six genes that were maximally down-
regulated in the minus radiation M treatment compared 
to the KCl-supplemented treatment after we removed read 
counts less than 30 in all 8 replicates from E. coli. Table 1B 
shows the fold change of 13 genes after we removed reads 
counts less than 30 in all 4 replicates in C. elegans. Now, 
the CLC analysis resulted in maximum fold changes that 
were similar to the Partek and DNAstar-E pipelines. How-
ever, with these three programs showing between 10- and 
26-fold downregulation, none of these programs were as 
conservative as the DNAstar-D pipeline which averaged 
twofold downregulation in E. coli and threefold upregula-
tion in C. elegans (Table 1). After less than 30 reads have 
been removed, the fold change in CLC and DNAstar-E 
were greatly reduced but DNAstar-D was largely unaf-
fected, being consistently conservative, and this pattern 
was observed with both model organisms (Fig. 3).

Table 1  Comparison of the highest fold change DEGs from E. coli (A) and C. elegans (B) observed in the different pipelines. Data 
includes only data with greater than 30 reads except for Partek which could not be adjusted

NS detected but not statistically significant

(A) Highest foldchange DEGs in E. coli

Gene Name Fold change
CLC Partek DNAstar-E DNAstar-D

gadA -26.80 -25.97 -26 -1.7

gadB -22.84 -23.54 -23 -2.5

asr -17.23 -17.86 -17 -1.6

adiA -16.58 -17.12 -17 -1.7

hdeB -10.80 -9.934 -11 -2.5

adiC -10.11 NS -10 NS

(B) Highest foldchange DEGs in C. elegans

Gene name Fold Change
CLC DNAstar-E DNAstar-D

msp-19 NS 20.8 2.1

col-81 14.6 14.4 1.6

col-139 14.4 13.7 1.7

col-129 13.6 13.5 1.5

col-133 6.3 5.8 NS

fat-7 5.7 5.3 3.3

asm-3 4.9 5.0 3.0

K08D12.6 3.3 3.3 NS

rol-8 - 5.1 - 4.2 -1.6

col-17 - 4.5 - 4.1 NS

sqt-2 - 4.4 - 4.3 -1.6

cpt-4 - 4.4 - 4.4 - 2.1

F33D4.6 - 4.4 - 4.3 - 1.7
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As mentioned above, we were only able to impose 
a 30-fold read cutoff on three of the programs, CLC, 
DNAStar-D and DNAStar-E. In E. coli, comparing CLC 
to the two “options” available in the DNAstar package, 
DNAstar-E uses the same normalization step (TMM) 
and they share more DEGs in common (43) than CLC vs 
DNAstar-D (34) which don’t share any steps in common 
(Fig. 4A). A total number of 32 DEGs were shared among 
these three softwares while 6 DEGs from DNAstar-E, 20 
DEGs from DNAstar-D and 16 DEGS from CLC were 
unique to each package (Fig. 4A). In C. elegans, only 35 
DEGs were commonly shared among the three software 
with 11 DEGs from DNAstar-D, 5 DEGs from DNAstar-
E and 81 DEGs from CLC were unique to each package 
(Fig. 4B). The Partek and DNAstar-D programs share two 
of the 3 steps, that is they both use median-of-ratios to 
normalize and DESeq-2 to statistically analyze the data 
and so it makes sense that they share the most DEGs in 
common (53, Fig.  5A). The second highest number of 
shared DEGs (45) was found as a result of DNAstar-D 
vs DNAstar-E analyses (Fig. 5B), which shared mapping 

but differed in normalization and statistics. The third 
highest number of shared DEGs (43) was found between 
CLC vs DNAstar-E which shared normalization but var-
ied in mapping and statistics (Fig. 5C). The fourth high-
est number of shared DEGs (40) was found in Partek and 
DNAstar-E where varying in mapping, normalization 
and statistic package between the two software (Fig. 5D). 
The fifth highest number of shared DEGs (34) was found 
in DNAstar-D vs CLC which varied mapping, normaliza-
tion and DEG statistic package (Fig.  5E). The CLC and 
Partek programs shared the least DEGs (31) in common 
(Fig. 5F).

We also checked raw reads of prospective reference 
genes using each software package. Raw gene reads 
of rrsA in CLC were considerably lower compared to 
DNAstar-E(edgeR) and DNAstar-D (DESeq2), which may 
be the results of mapping program differences among the 
programs (Supplementary Table  3). To determine the 
high, medium, and low expression from each pipeline, we 
looked at the raw counts of each software  package. We 
found that more than 400,000 gene reads in CLC was the 

Table 2  List of the number of raw reads of 8 replicates from (A) CLC, (B) DNAstar-E, (C) DNAstar-D after cutoff < 30 reads from E. coli . 
M1-4 = 4 reps from Minus radiation treatment, K1-4 = 4 reps from the KCl-amended treatment. (Note that since we only used the 
Partek trial version, we had no opportunity to change cutoff values.)

(A)

Name Fold change total gene 
reads_M1

total gene 
reads_M2

total gene 
reads_M3

total gene 
reads_M4

total gene 
reads_K1

total gene 
reads_K2

total gene 
reads_K3

total gene 
reads_K4

gadA -26 350 174 147 82 20385 2386 617 534

gadB -22 265 84 68 36 9767 1439 508 333

asr -17 5819 4929 909 150 2E+05 30951 11582 14226

adiA -16 866 256 242 124 24125 3282 682 780

hdeB -10 1223 351 568 112 16335 6740 2361 2789

adiC -10 1022 241 229 68 13876 2768 888 705

(B)

Name Fold change total gene 
reads_M1

total gene 
reads_M2

total gene 
reads_M3

total gene 
reads_M4

total gene 
reads_K1

total gene 
reads_K2

total gene 
reads_K3

total gene 
reads_K4

gadA -26 669 323 270 144 38573 4581 1227 999

gadB -23 561 201 161 94 21956 3104 1024 742

asr -17 11721 9846 1774 295 356439 60822 22952 28811

adiA -17 1724 496 479 246 48188 6568 1368 1569

hdeB -11 2154 620 1020 186 28362 11768 4096 4844

adiC -10 2044 465 452 135 27841 5547 1760 1392

(C)

Name Fold change total gene 
reads_M1

total gene 
reads_M2

total gene 
reads_M3

total gene 
reads_M4

total gene 
reads_K1

total gene 
reads_K2

total gene 
reads_K3

total gene 
reads_K4

gadA -1 669 323 270 144 38573 4581 1227 999

gadB -2 561 201 161 94 21956 3104 1024 742

asr -1 11721 9846 1774 295 356439 60822 22952 28811

adiA -1 1724 496 479 246 48188 6568 1368 1569

hdeB -2 2154 620 1020 186 28362 11768 4096 4844

adiC NS 2044 465 452 135 27841 5547 1760 1392
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highest expression while there was more than 900,000 
total reads counts in edgeR and DEseq2 (Supplemen-
tary Tables  4,  5,  6). It appears that most of the top fold 
changes found in the regulated genes were within the 
range of medium to low expression (Table 2).

RT‑qPCR analysis
Reverse transcription PCR is the standard method to 
validate transcriptome gene expression patterns, and so 

we analyzed 22 potential E. coli target genes by RT-qPCR 
(Supplementary Table 2). The target genes were selected 
based on DNAStar-D’s top fold-change genes which are 
statistically significant (FDR adjusted p-value < 0.05). 
We analyzed the RT-qPCR differential gene expres-
sion by using three different software programs, namely 
CFX (BioRad), qbase + (Biogazelle) and REST (Qiagen) 
that normalized gene expression using the reference 
genes, gyrA and rpoA. Similar to the four transcriptome 

Fig. 4  Shared DEGs comparing the “minus” radiation (M) vs KCl-supplemented (K) among three software/piplines with all reps that have more than 
30 reads in E. coli A and C. elegans B 

Fig. 5  Shared DEGs of E. coli between different software pipelines (30 reads cutoff for all except Partek). Pipeline components that are shared are 
shown in black text, components that differ are shown in red
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programs that yielded different results, the three RT-
qPCR programs gave different results from the same raw 
data. Among 22 genes tested, the REST program showed 
seven genes that were significantly regulated, while the 
CFX program and qbase + analysis showed no genes 
as statistically significant even though the fold-change 
are very similar among the three software (Table 3). It’s 
worth noting that the fold change observed in the RT-
qPCR analyses were most similar to the transcriptome 
results documented by DNAstar-D (Table  3); also note 
that these genes are different than the ones in Tables 1A 
and 2 because the genes in Table 3 were chosen to qPCR-
validate the transcriptome data. For C. elegans, the 
transcriptome data have been validated with qPCR in 
previous studies [23].

Discussion
Comparative studies of analysis of transcriptome by 
different software tools have been reported and differ-
ent softwares often give different results [6, 14, 30–33]. 

Researchers have to decide an appropriate software tool 
and pipeline based on their experimental requirements. 
In our study, we analyzed an E. coli RNA-seq using four 
different pipelines, DNAstar-D (DESeq2), DNAstar-
E(edgeR), CLC genomic and Partek Flow. The four soft-
ware programs gave contrasting results for differentially 
expressed genes.  DNAstar-D and Partek Flow would be 
expected to be the most similar because they both use 
the same statistical package (DESeq2) and normalization 
programs (TMM) for DEG analysis. These two programs 
did have the most DEGs in common, but nevertheless 
identified 14 and 16 genes that were unique to each pro-
gram. CLC and DNAstar-E used the same normalization 
step (TMM) and Partek and DNAstar-D used the same 
normalization (median of ratio). However, sharing normali-
zation between the two softwares did not give  similar detec-
tion of DEGs. Using different mapping programs (Partek’s 
Bowtie-2 vs DNAStar’s SeqMan NGen), had a strong influ-
ence on the extent of fold-regulation, averaging 18.9-fold in 
the case of Partek vs. 2-fold in the case of DNAStar-D.

Table 3  Comparison of fold change (Minus vs KCL-supplemented treatment) RT-qPCRs and Transcriptomes of E. coli. Please note that 
the genes analyzed for this validation study are based on DNAstar-D regulated genes since we found it to be the most conservative 
pipeline. The transcriptome data shown are ≥ 1.5 fold cutoff

gyrA and rpoA were used as reference gene

Yellow highlight = Statistically significant, p value ≤0.05

Target Fold change

RT-PCR Transcriptome

REST CFX Qbase+ DNAstar-D DNAstar-E CLC Partek

sodA 1.6 1.4 1.4 1.9 2.8 2.7 3.0

yhiD -1.2 -1.3 -1.3 -2.7 -5.5 -5.5 -5.7

zrsA 1.1 1.0 1.0 ND ND ND ND

citF -1.4 -1.5 -1.5 -2.2 -8.5 -8.4 -8.6

cysH -1.1 -1.2 -1.2 -3.4 -5.8 -5.7 -5.2

hycF -1.0 -1.0 -1.0 -2.0 -4.5 -4.8 -4.2

appA -1.2 -1.3 -1.3 -2.2 -7.5 -7.5 -7.7

mdtF -1.0 -1.1 -1.1 -3.4 -6.7 -6.7 -6.9

ydhW -1.2 -1.3 -1.3 -2.3 -3.8 -3.5 -3.8

cheY 1.4 1.5 1.3 1.6 1.6 1.5 1.6

motA 1.6 1.4 1.4 1.7 1.8 1.7 1.8

napA 1.4 1.3 1.3 2.3 9.1 9.1 8.7

fhuA 1.9 1.6 1.6 2.1 3.4 3.2 3.1

fliZ 1.7 1.5 1.5 2.1 2.4 2.4 2.4

gadC 1.4 1.3 1.3 -2.5 -16.9 -16.9 -16.7

nirB 2.5 2.2 2.2 2.1 4.8 4.6 4.4

cyoC 4.3 3.9 3.9 2.2 5.0 5.0 5.5

efeO 1.5 2.3 2.2 1.9 3.0 2.9 3.0

hyaB 2.0 1.7 1.7 -2.1 -7.8 -7.7 -7.5

cysI -1.2 -1.3 -1.3 -2.5 -5.5 -5.7 -6.0

slp -1.7 -2.0 -2.0 -2.1 -12.8 -12.8 -12.8

mdtF -1.1 -1.1 -1.1 -2.5 8.0 -6.7 -6.9
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Another important factor is the minimum number of 
reads used: when there was no minimum limit set, pro-
grams like CLC reported 178-fold change as its maxi-
mum, but when a 30-read-cutoff was used, this was 
lowered to a 25-fold maximum. Even with this more 
modest 25-fold maximum (which was similar to Partek 
and DNAstar-E software), we still did not consider this 
reliable considering our expected results of the small 
effects of these very low radiation treatments. As dis-
cussed in the introduction, the radiation levels of our 
supplemental sources of radiation (ranging from 71–208 
nGy/hr) are near average levels of gamma (95 nGy/hr, 
Kendall et  al. 2014) [34]. These background levels were 
compared to the below background treatment of 0.2 
nGy/hr., and so we wouldn’t expect large fold-changes 
from these low level radiation treatments. Additionally, 
in other bacterial transcriptome studies, we’ve observed 
maximum fold changes of less than five [22, 35] in these 
reduced radiation studies. Nevertheless, these biological 
responses to the deprivation of natural levels of radiation, 
though relatively small, are consistent and statistically 
significant [22–25, 35].

One of the criteria to have a reliable RNA-seq analy-
sis is having enough biological replicates [11]. In the E. 
coli study, we used four independent biological repli-
cates from each treatment and control, but we still got 
different numbers of DEGs with different softwares. 
In our experiment with these low radiation treat-
ments and based on our previous results [22, 24, 35], 
we expected small changes in gene expression patterns. 
Hence, we think the maximum fold change of 3.5 from 
the  DNAstar-D  pipeline is the most realistic result, 
in contrast to the other programs’ 20–25-fold differ-
ences  in expression. Zhang et  al. 2014 also observed 
edgeR to be less conservative (specifically it gave more 
false positives) than DESeq, which gave less false posi-
tives [14]. Seyednasrollah et el. 2015 reported DESeq 
as the safest choice because it yielded low rates of false 
positive with more consistent detection of DEGs than 
edgeR which was more variable [33]. Schaarschmidt 
et  al. 2020 also reported that differential gene expres-
sion analysis of the data from model plant Arabidopsis 
thaliana by CLC resulted in strong divergence, with 
up to 50% more differentially expressed genes identi-
fied compared to DESeq2 [32]. These results are con-
sistent with our data here reporting the number of 
DEGs detected in CLC (114) were twice that in DESeq2 
(57) (Fig.  2 B). In order to further test these interpre-
tations, we have re-analyzed a previously published 
data set incubating the Caenorhabditis elegans nema-
tode under similar radiation deprived conditions [23], 
and we observed very similar results in terms of which 

pipelines gave conservative (DNAStar-D) vs exagger-
ated fold-changes (CLC and DNAstar-E).

Finally, we also tested RT-qPCR gene expression 
analysis programs to validate the transcriptome data, 
but two programs (CFX and qbase +) gave one result 
and another (REST program) differed. This is another 
example of different software tools giving different 
results from the same data. The differing results from 
the three RT- qPCR analyses programs likely come 
from the different statistical approaches used among 
the three softwares. The CFX and qbase + gene expres-
sion analysis is based on student t-tests [36], while the 
REST program analysis is based on an integrated ran-
domization and bootstrapping method [37]. Neverthe-
less, the extent of fold-changes observed in the REST 
program validation analysis was most closely related to 
the DNAstar-D results.

Conclusions
This study highlights the importance of examining, after 
DEG analysis is complete, the actual  raw gene reads in 
order to avoid focusing on regulated genes that are  sta-
tistically significant but biologically meaningless. When 
we excluded reads less than 30 counts, it eliminated bio-
logically spurious data and allowed us to focus on salient 
results. It is difficult to say which workflow step (map-
ping, normalization, and statistical analysis) is the most 
important among the three steps because typically more 
than one step is varied between the programs. In the one 
comparison which only varied in one step (DNstar-D 
and Partek), mapping strongly influenced the extent of 
regulation as measured by fold-change. Comparing two 
programs at a time, DNAstar-D vs DNAstar-E and CLC 
vs DNAstar-E in which two steps varied, gave surpris-
ingly very similar numbers of DEGs in common (45 and 
43, respectively, Fig. 5B and C). Analyses of these 43–45 
genes indicate the actual gene IDs were very similar 
(71–76%). Sharing statistic and normalization methods 
between DNAstar-D and Partek gave the highest number 
of DEGs but differences in mapping caused high varia-
tion in fold-changes. Sharing normalization gave only 43 
DEGs, while normalization and statistics sharing gave 
53 DEGs (Fig. 5A, 5C). This suggests the importance of 
the statistical step that influenced the higher number of 
DEGs.

We note the following points in summary: 1. The fold-
changes identified using the DESeq2 option of DNAstar 
aligned with the RT-qPCR validation results. 2. This 
pipeline yielded more conservative results that were 
consistent with previous work [22, 35] and consist-
ent with expectations that the treatments would only 
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evoke relatively small differences in expression patterns. 
3. Compared to the other software approaches tested 
here, DNAstar-D resulted in the  expected conservative 
gene expression patterns in two very different model 
organisms (bacteria vs. nematode). And so, we consider 
DNAstar-D as the most conservative program for data 
sets in which treatment differences are expected to be 
small. We are hopeful these results with low-level but 
biologically significant expression patterns will help other 
researchers  to choose appropriate transcriptome soft-
ware pipelines as well as to  distinguish between  using 
default parameters or imposing  cut-off values to more 
accurately analyze their data.

Methods
E. coli culture conditions
A minus 80℃ frozen glycerol stock of Escherichia coli 
K-12 (ATCC 10,798) was struck on TGY agar plates and 
incubated at 30 °C for 1 day. Four separate colonies from 
the agar plate were inoculated into four TGY broths 
(2 mL) in 15 mL tubes and incubated at 30  °C 250 rpm 
for 2  days. Then 20 µL of cultures were transferred to 
fresh TGY broth media (2 mL) and incubated overnight 
at 30  °C 250 rpm. After 16–18 h of incubation, the cul-
tures were transported to WIPP and two of the biological 
replicates were refrigerated in a Surface lab until use the 
next day, and two of the reps were diluted 25 µL /10 mL 
of fresh TGY. The diluted cultures (1.5 mL) were trans-
ferred into the top 6 wells of four 24-well plates (MID-
SCI, St. Louis, MO) and incubated at 30 °C 250 rpm. The 
cells incubated 24 h underground at WIPP which repre-
sented a pre-incubation before the cells were transferred 
again to initiate a 3.5-h incubation. Plate counts and opti-
cal densities were measured at time-zero and after 3.5 h 
and cells were harvested for RNA (see below). The pro-
cess was repeated with the other two biological replicates 
of cells which had been refrigerated for 24 h. In this way, 
four biological replicates were carried out in this experi-
ment. The 24-well plates were incubated underground 
at WIPP in four Peltier incubators (Sheldon Lab model 
SR13P) under the following conditions: 1. In a 15.2 cm-
thick vault made from pre-World War II steel, and in 3 
plastic box irradiators that surrounded cells with 14  kg 
of KCl, or 12.8  kg of Pozzolan or 10.8  kg of Tuff. Con-
sidering the 27.5 h exposure to the radiation treatments, 
the gamma doses in each of these treatments were: 0.2 
nGy/hr (5.5 nGy total dose) in the vault, and 114.7 nGy/
hr (3154 nGy total dose), 70.7 nGy/hr (1944 nGy total 
dose) and 207.5 nGy/hr (5706 nGy total dose) in the 
KCl, Pozzolan and Tuff irradiators. See Castillo 
et al. 2018 for further description of the radiation fields 
at WIPP.

RNA collection and sequencing
On the 2’nd day of incubation underground, exponential 
phase (3.5 h) cultures of E. coli was harvested as follows: 
1  mL of RNA protect solution was added into 0.5  mL 
of culture and kept at room temperature for 5 min after 
mixing well. Cell pellets were harvested by centrifugation 
at 12,000 rpm for 5 min. The supernatant was decanted, 
and the pellet was kept at -20  °C. RNA was extracted 
from the cell pellet using an RNA isolation kit (RNeasy@ 
Mini Kit, QIAGEN) according to manufacturer’s instruc-
tion. The quantity and quality of RNA was evaluated by 
Nano drop and by running on agarose gel electrophore-
sis. The total RNA samples were sent for sequencing at 
Novogene (Sacramento, CA). For E. coli library construc-
tion, rRNA was removed using the Ribo-Zero kit that 
leaves mRNA. First, mRNA was fragmented randomly 
by adding fragmentation buffer, then the cDNA was 
synthesized by using mRNA template and random hex-
amers primer, after which a custom second-strand syn-
thesis buffer (Illumina), dNTPs (dUTP, dATP, dGTP and 
dCTP), RNase H and DNA polymerase I were added to 
initiate the second-strand synthesis. This was followed by 
purification by AMPure XP beads, terminal repair, poly-
adenylation (for bacteria), sequencing adapter ligation, 
size selection and degradation of second-strand U-Con-
tained cDNA by the USER enzyme. The strand-specific 
cDNA library was generated after the final PCR enrich-
ment. Library concentration was first quantified using 
a Qubit 2.0 fluorometer (Life Technologies), and then 
diluted to 1 ug/µl before checking insert size on an Agi-
lent 2100 and quantifying to greater accuracy by quanti-
tative PCR (Q-PCR) (Library activity > 2 Nm). Qualified 
libraries were sequenced on an Illumina Nova Seq 6000 
Platform (Illumina, San Diego, CA, USA) using a paired-
end 150 run (2 × 150 bases).

Data analysis
For the transcriptome analyses, CLC Genomic Work-
bench 12.2 (Qiagen Bioinformatics, Germantown, 
MD, USA) was used. All RNA Seq data were screened 
for False Discovery Rate (FDR), and were accepted if 
FDR < 0.05 [38]. Raw RNA sequences were trimmed, 
aligned, and mapped against the reference genome of 
E. coli K-12 MG1655 (NC_000913.3) in CLC program 
with the following parameters: 2 maximum mismatches, 
90% minimum similarity fraction, and 10 maximum 
hits per read for mapping [39]. The raw RNA-seq were 
also analyzed by DNAStar (Madison, Wisconsin, USA) 
with SeqMan N Gen (version 17.2.1.61) and Partek Flow 
(Partek Inc., St. Louis, MO, USA). Other than using a 
30-base read cutoff as indicated, default parameters of 
each software tool was used for all RNA-seq analyses. 
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A summary of the different software pipelines is shown 
in Fig. 1. The raw RNA sequences obtained in this study 
were deposited at NCBI database (Accession number 
PRJNA787903). We also obtained RNA-seq (NCBI acces-
sion no. PRJNA631208) from our previous studies about 
C. elegans nematode response to low background radia-
tion [23]. The experiments were conducted in two bio-
logical replicates for each treatment (Minus) as well as 
control (KCL). The raw RNA-seq were analyzed based on 
the materials and methods above using three programs: 
CLC, DNAstar-E (edgeR) and DNAstar-D (DESeq2). We 
don’t have access to Partek as we used only trial version.

RT‑qPCR
The validity of differential expression was verified by 
using RT-qPCR for direct comparison with RNA Seq. 
The qPCR reactions (10 uL) were performed in tripli-
cate using iTaq Universal One-Step RT-qPCR kit (Bio-
Rad, Hercules, CA, USA) with 0.5  μM of each primer 
(Supplementary Table  2), and 1  ng of total RNA as 
template. First cDNA was synthesized by reverse tran-
scription at 50 °C for 10 min followed by reverse tran-
scriptase inactivation at 95  °C for 1  min. The reaction 
was directly followed by PCR amplification as follows: 
40 cycles of denaturation: 30 s at 95 °C; annealing: 30 s at 
55 °C; and extension: 30 s at 72 °C. The final PCR step was 
30 s at 96 °C followed by 5 s at 60 °C and the PCR reaction 
was stopped by a constant temperature of 4 ℃. The rela-
tive expression of the target genes was calculated using 
gyrA and rpoA as reference genes and using the efficiency-
corrected REST model [37], CFX Maestro software ver-
sion 2.2 (BioRad) and qbase + version 3.3 [36]. The gyrA 
and rpoA genes were chosen using reference gene selec-
tion tool CFX Maestro software version 2.2 (BioRad). 
For each comparison, four biological replicates and three 
technical replicates were used for all calculations.
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