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Fig. 2 Precision-sensitivity of variants called in real data. In response to an increasing variant quality (QUAL) threshold, SNPs derived from published
WGBS data are compared to those derived from established benchmark datasets for A A. thaliana (Cvi-0) and B human (NA12878). Software with
the epi- prefix are intended for conventional DNA sequencing libraries but in this case run after preprocessing with the double-masking procedure.
True and false positives are evaluated based on both the substitution context and the estimated genotype

GATK3.8 UnifiedGenotyper (Fig. 3), however there is a
drop in precision driven in each case by an influx of false
positives. When in silico bisulfite conversion is instead
applied directly to the WGS alignments, thus eliminat-
ing variation due to the alignment of bisulfite-treated
reads, the differences in false positives are reduced for
each tool. All software demonstrate an appreciable perfor-
mance, with GATK3.8 achieving the highest raw number
of both true and false positives, followed by Freebayes and

then Platypus, for both WGS and WGBS data. The total
number of false positives derived from in silico WGBS
alignments however represent only 1.0%, 3.8% and 4.3% of
the total, unfiltered calls for those same tools respectively,
when discounting the fraction shared in the equivalent
WGS data.
The overall balance between precision and sensitivity

can be evaluated using the harmonic mean, to denote
the F1 score, which can be compared between differ-
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Fig. 3 ROC-like comparisons in real and simulated data. In response to an increasing variant quality (QUAL) threshold, SNPs derived from real WGS
data are compared to those derived from equivalent WGBS data after in silico bisulfite conversion of either reads or alignments, followed by
preprocessing with the double-masking procedure, in A. thaliana (Cvi-0). The real WGBS dataset from Figure 2A is also displayed alongside in each
panel for comparison. Panels show results from conventional software A Freebayes, B GATK3.8 and C Platypus (default mode). True and false
positives are evaluated based on both the substitution context and the estimated genotype
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ent software and data types (Table 1). With in silico
WGBS reads, the optimal F1 scores for GATK3.8, Free-
bayes and Platypus were identified at 0.8508, 0.8039 and
0.7709, respectively, with a corresponding QUAL thresh-
old of 80, 41 and 27. The overall best-performing tool
was therefore GATK3.8, achieving 0.8685 sensitivity and
0.8338 precision at the optimal level, followed by Free-
bayes with 0.7335 sensitivity but a higher precision of
0.8894. Freebayes performed more similarly between the
in silico WGBS reads and the real WGBS dataset, how-
ever, suggesting it may account better for differences in
library composition and layout. Platypus performs bet-
ter overall in default mode, despite an optimal precision
level of 0.9436 for WGS and 0.8991 for WGBS data with
assembly-mode enabled (not shown). The reduced over-
all performance due to lower sensitivity may in-part arise
due to the need to set a pre-emptive threshold for Platy-
pus at BQ≥0 (-minBaseQual=0), following the double-
masking procedure, to avoid over-filtering regions during
local assembly.
When considering only those variants called by

GATK3.8 UnifiedGenotyper, the relative fraction of true
and false positive variants shared between each dataset,
before and after filtering according to GATK best-
practices (described in Supplementary Table S3), helps to
further decompose the factors mainly responsible for the
differences observed with WGS and WGBS data (Fig. 4).
For example, among the unfiltered true positives the
majority of variants are similar and shared between all
datasets, with a smaller, secondary, sub-fraction shared
only among the real WGS data and both simulatedWGBS
datasets (paired-end, ∼62X). After filtering, the num-
ber of true positive variants are reduced mainly in the
real WGBS dataset (single-end, ∼34X), suggesting that
variable sequencing library composition is driving these
differences. Upon further inspection, the filter on Stran-
dOddsRatio (SOR) appeared to be excluding the majority
of true positive variants filtered out in the real WGBS
data, likely as a result of an indirect strand-specificity
imposed on potential variant calls by the double-masking

Table 1 Optimised F1 scores in A. thaliana (Cvi-0). In comparison
to the reference SNPs obtained from 1001 genomes consortium
data, scores are derived when using real WGS and WGBS data,
alongside in silico WGBS data derived from the WGS reads and
alignments, respectively

Real data in silico

WGS WGBS reads alignments

GATK3.8 0.9189 0.8177 0.8508 0.9069

Freebayes 0.8247 0.7670 0.8039 0.8247

Platypus (default) 0.7423 0.7026 0.7709 0.7935

Platypus (assembly) 0.6378 0.5980 0.6449 0.6509

procedure. When filtering the true positives in the same
manner from the real WGBS dataset in the NA12878
human line (Fig. 2B; paired-end, ∼46X), however, these
variants were only reduced by ∼13%. With some low-
coverage libraries it might therefore be prudent to relax
the SOR filter when seeking to obtain confident calls from
WGBS data. The false positives, on the other hand, are
reflected primarily in the real WGBS dataset and the
artificial dataset simulated from real WGS reads (subse-
quently aligned as a WGBS library). Here, it is the variant
confidence metrics (i.e. QUAL and QualByDepth) which
are driving the differences after filtering. Taken together
this further suggests that the influx of false positives rela-
tive to real WGS data are driven primarily by differences
in both alignment and library composition, both of which
have a direct influence on variant calling.
This indirect strand-specificity imposed on poten-

tial variant calls by the double-masking procedure can
be expected to reduce the available sequencing depth
required to make confident calls for potential polymor-
phisms involving thymine, in comparison to WGS data.
In the equivalent, in silico WGBS library derived from
WGS reads, this would seem to manifest predominately
as a relative decrease in variant confidence metrics on
true positive SNPs (Supplementary Fig. S2). The number
of true positive variants that would fail the recommended
hard-filtering thresholds (QUAL<30 or QD<2.0), how-
ever, increased only from 1,730 (<0.27%) in WGS data to
9,762 (<1.55%) in the in silico WGBS data. In this simu-
lated, paired-end library there is only a minor increase in
overall strand bias, as measured with the SOR metric in
GATK3.8 UnifiedGenotyper, where true positive variants
that would fail the recommended hard-filtering threshold
(SOR>3) increased from 18,045 (2.79%) in WGS data to
31,487 (5.0%) with simulatedWGBS data. All together the
number of true positive variants lost after hard-filtering
increased from 30,858 (4.77%) to 56,695 (9.0%) due to
the in silico bisulfite conversion, while the total false pos-
itive variants increased from 80,528 (6.81%) to 143,745
(10.24%).
Between all selected variant callers, the proportional

deviation of false positives from in silico WGBS reads,
relative to WGS data, show similar profiles when parti-
tioned by substitution context (Supplementary Fig. S3). A
total of 92.3%, 77.3% and 72.8% of the total false positives
here occur in positions which are homozygous-reference
in the truth set for each of GATK3.8, Freebayes, and
Platypus, respectively, after filtering those shared in the
equivalent WGS data. These positions represent 12.0%,
5.6% and 5.6% of the total, unfiltered calls made by each
tool. The remaining false positives typically comprise true
variants which have been assigned an incorrect genotype
(e.g. homozygous-alternative called as heterozygous), rep-
resenting 2.9%, 4.2% and 4.6% of the total, unfiltered calls.
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Fig. 4 The shared fraction of true and false positive variants in real and simulated data for A. thaliana (Cvi-0), following analysis with GATK
UnifiedGenotyper. Distinct WGBS datasets were simulated from both the real WGS alignments and the real WGS reads, separately. The panels
denote A true positives, before and B after filtering, according to recommended hard-filter thresholds in GATK best-practices, and C false positives,
also before and D after filtering. The thresholds chosen for filtering are further described in Supplementary Table S3

Many of these cases suffer a low GQ likely as a con-
sequence of reduced sequencing depth by limiting calls
in bisulfite contexts to opposite-strand alignments. Such
positions are also considered among the false negatives,
alongside the fraction of true SNPs which are not called
at all from bisulfite data. When considering the sequenc-
ing depth distribution of false negatives from in silico
WGBS alignments, discounting those shared in the WGS
data, there is a peak at ∼4-5x in addition to a larger peak
which correlates with the distribution for the true posi-
tives at ∼18-20x (not shown). Accounting for a minimum
per-position sequencing depth of∼7-10x should generally
therefore be enough tomake a successful call, disregarding
differences due to WGBS alignment or significant devi-
ations from typical sequencing biases (e.g. strand bias).
More generally, aiming for a genome-wide coverage of at

least ∼40X, using a paired-end, directional library, would
appear to be the optimal recommendation for analysis
based on the complete results of this study.

Discussion
Conventional germline variant callers can be broadly
categorised as alignment-based, such as GATK3.8 Uni-
fiedGenotyper, or haplotype-based, such as Freebayes and
Platypus. Both strategies are concerned with correctly
identifying variants at a given locus and inferring proba-
bilistic genotype likelihoods based on allelic count differ-
ences, however they differ in their consideration of proxi-
mal variants to establish phase. Whilst UnifiedGenotyper
considers precise alignment information in a position-
specific, independent manner, Freebayes considers the
literal sequence of each overlapping read to obtain the
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