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Abstract 

Background:  Changes in the abundance of ovarian proteins play a key role in the regulation of reproduction. 
However, to date, no studies have investigated such changes in pubescent goats. Herein we applied isobaric tags for 
relative and absolute quantitation (iTRAQ) and liquid chromatography–tandem mass spectrometry to analyze the 
expression levels of ovarian proteins in pre-pubertal (n = 3) and pubertal (n = 3) goats.

Results:  Overall, 7,550 proteins were recognized; 301 (176 up- and 125 downregulated) were identified as differen-
tially abundant proteins (DAPs). Five DAPs were randomly selected for expression level validation by Western blot-
ting; the results of Western blotting and iTRAQ analysis were consistent. Kyoto Encyclopedia of Genes and Genomes 
pathway enrichment analysis indicated that DAPs were enriched in olfactory transduction, glutathione metabolism, 
and calcium signaling pathways. Besides, gene ontology functional enrichment analysis revealed that several DAPs 
enriched in biological processes were associated with cellular process, biological regulation, metabolic process, and 
response to stimulus. Protein–protein interaction network showed that proteins interacting with CDK1, HSPA1A, and 
UCK2 were the most abundant.

Conclusions:  We identified 301 DAPs, which were enriched in olfactory transduction, glutathione metabolism, and 
calcium signaling pathways, suggesting the involvement of these processes in the onset of puberty. Further studies 
are warranted to more comprehensively explore the function of the identified DAPs and aforementioned signaling 
pathways to gain novel, deeper insights into the mechanisms underlying the onset of puberty.
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Background
Puberty is the transitional period between the juve-
nile state and adulthood; during this phase, animals 
gain reproductive capacity, which is crucial for their 
growth and development [1]. In female animals, the 
hypothalamic–pituitary–ovarian axis regulates puberty 
and reproductive function [2, 3], and the ovary is the 
final target of this axis. The physiological activity of the 
ovary plays a crucial role in regulating the growth and 
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development of animals [4]. Gonadotropin-releasing 
hormone (GnRH) neurons in the arcuate nucleus of the 
hypothalamus synthesize and secrete GnRH, and dur-
ing the onset of puberty, their activity and consequently 
GnRH secretion are increased, which is characterized by 
pulsed GnRH release [5]. GnRH stimulates gonadotropic 
cells in the anterior pituitary gland to secrete follicle-
stimulating hormone and luteinizing hormone. These 
hormones act on the ovaries via blood circulation to 
facilitate the secretion of sex hormones, thereby promot-
ing the rapid development of reproductive organs as well 
as sexual characteristics and playing a pivotal role in the 
onset of animal puberty [6, 7]. Besides, the ovaries in turn 
regulate the hypothalamic–pituitary–ovarian axis by 
positive and negative feedback via the secreted sex hor-
mones, further affecting puberty [8].

The mechanism underlying the onset of puberty is com-
plex and reportedly involves several factors, including 
neuroendocrinological, genetic, and environmental fac-
tors [9]. The specific regulatory mechanism nevertheless 
remains unclear. Nguyen et al. performed adipose tissue 
proteomic analyses to study puberty in Brahman heifers; 
51 significantly differentially abundant proteins (DAPs) 
were identified between pre- and post-pubertal heifers. 
These DAPs were enriched in estrogen signaling and 
PI3K–Akt signaling pathways, which are known integra-
tors of metabolism and reproduction [10]. Further, Fortes 
et  al. investigated how the uterine tissue and its secre-
tion changes in relation to puberty in Brahman heifers. 
Using a combination of proteomics and transcriptomics, 
they identified 258 DAPs in the uterine fluid of pre- and 
post-pubertal cows [11]. Similarly, Ye et al. applied prot-
eomics to examine the hypothalamus of pre-pubertal and 
pubertal female goats, which led to the identification of 
69 DAPs. These proteins were enriched in the MAPK, 
RAS, and PI3K–Akt–mTOR signaling pathways, indicat-
ing that the identified DAPs and their related signaling 
pathways are crucial in regulating puberty in goats [12]. 
Collectively, the results of such studies indicate that pro-
teomics can be effectively used to assess the hypothala-
mus as well as other tissues to explore the mechanisms 
underlying puberty.

Although the expression of retinol-binding protein 4 
in the ovaries of female mice has been found to remain 
unchanged until puberty, a significant increase was noted 
during puberty [13]; moreover, retinol-binding protein 4 
evidently plays a chief role in the transportation and stor-
age of cells in follicular fluid [14]. Tahir et al. used whole 
ovaries of six pre- and six post-pubertal Brahman heif-
ers to perform differential abundance analyses of protein 
profiles between the two physiological states, identifying 
32 steroidogenesis-associated DAPs [15]. An increase in 
steroidogenesis is observed during puberty [16]. A study 

identified 36 proteins in ovarian follicular fluid of goats at 
different developmental stages [17]. Overall, these find-
ings suggest that ovarian proteins play a fundamental role 
in pubertal development in animals.

Goats play an  important  socioeconomic  role in the 
lives of people considering that they are a source of, for 
example, milk and meat. Puberty is a pivotal stage in 
female animal development; it marks the first occurrence 
of ovulation and the onset of reproductive capability [18]. 
A study reported that lncRNA is related to ovarian ster-
oid hormone synthesis, oogenesis, and oocyte matura-
tion during the growth and development of goats [19]; 
moreover, the levels of hormones in goats have been 
found to significantly change during puberty [20]. How-
ever, to date, no studies have used proteomics to assess 
changes in the expression level of proteins in the ovaries 
of pre-pubertal and pubertal goats. Herein we thus aimed 
to identify proteins and pathways associated with the 
onset of puberty by measuring protein abundance levels 
in the ovaries of prepubertal and pubertal goats. Figure 1 
shows the experimental design and workflow. We believe 
our results should enhance our understanding of the key 
factors and mechanisms that regulate puberty in goats.

Results
Protein Identification
Overall, 7,550 proteins were identified and quantified 
by isobaric tags for relative and absolute quantitation 
(iTRAQ) proteomics, of which 2,623 were uncharacter-
ized proteins and 4,927 were proteins with known func-
tions. In total, 301 DAPs were identified: 176 of them 
were up- and 125 were downregulated (Fig.  2a, b). On 
comparing data pertaining to pubertal with pre-pubertal 
goat ovaries, MHC class II antigen showed the highest 
relative upregulation, while DUF4537 domain-contain-
ing protein showed the highest relative downregulation. 
Tables 1 and 2 show the top 15 up- and downregulated 
proteins, respectively, in pubertal ovaries compared with 
pre-pubertal ones.

Validation of protein expression levels by Western 
Blotting (WB)
To confirm the results of iTRAQ–liquid chromatography 
mass spectrometry (LC–MS)/MS analysis and facilitate 
subsequent functional study, the abundance of five repro-
duction-related proteins [upregulated: calcipressin-1 
(RCAN1), insulin-like growth factor I (IGF-1), and delta 
(24)-sterol reductase (DHCR24); downregulated: stath-
min (STMN1) and cyclin-dependent kinase 1 (CDK1)] 
was verified in pubertal and pre-pubertal goat ovaries 
by WB. WB and iTRAQ–LC–MS/MS analysis data were 
consistent (Fig.  3a, b), indicating that our proteomics 
data were highly reliable.
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Cluster analysis of DAPs
Euclidean distance and hierarchical clustering were used 
to cluster DAPs, and dynamic changes in DAPs were com-
pared (Fig. 4). We found significant differences in protein 
abundance intensity in the ovaries of pubertal and pre-
pubertal goats, indicative of differences in protein abun-
dance levels between pubertal and pre-pubertal goat 
ovaries.

Gene Ontology (GO) Functional Enrichment Analysis.
To further analyze the functions of the 301 DAPs, they were 
classified into the following major categories based on their 
GO annotations: biological process, cellular component, 

and molecular function. DAPs enriched in biological pro-
cesses were mainly associated with cellular process, meta-
bolic process, biological regulation, regulation of biological 
process, and response to stimulus (Fig. 5). Further, the five 
most abundant terms in the cellular component category 
were cell part, cell, organelle, membrane, and extracellular 
region, and those in the molecular function category were 
binding, catalytic activity, molecular function regulator, 
transcription regulator activity, and transporter activity.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis
To further explore the signaling pathways involved in 
regulating puberty onset in goats, DAPs were subjected 
to KEGG [21] pathway enrichment analysis (Fig. 6). The 

Fig. 1  Experimental design and workflow to identify differentially abundant proteins (DAPs) in pre-pubertal (n = 3) and pubertal (n = 3) goat 
ovaries

Fig. 2  DAP screening. a Volcano map. Red and green dots indicate up- and downregulation of protein expression levels, respectively. Gray dots 
indicate DAPs with insignificant changes in expression. b Number of DAPs. In total, 301 DAPs were identified. Orange and green columns represent 
the number of up- (n = 176) and downregulated (n = 125) proteins, respectively
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301 DAPs were mapped to 260 KEGG pathways, includ-
ing glutathione metabolism, olfactory transduction, and 
calcium signaling pathways, indicating their involvement 
with pubertal onset in goats.

Protein–Protein Interaction (PPI) network analysis
The interaction relationships among DAPs in the 
enriched signaling pathways (KEGG analysis) were 
found in the STRING database [22], and a PPI network 

was constructed (Fig.  7), which revealed some key 
interactions among DAPs. In the PPI network, nodes 
represent proteins and edges denote predicted func-
tional associations; 222 nodes and 192 edges were 
found to be interconnected. CDK1, recombinant heat 
shock 70 kDa protein 1A (HSPA1A), and uridine cyti-
dine kinase 2 (UCK2) occupied the central position in 
the PPI network and were observed to interact with 
other DAPs as a hub.

Table 1  Top 15 upregulated proteins in pubertal compared to pre-pubertal goat ovaries

Accession Gene Name Description Coverage [%] Unique 
Peptides

P Mean_Ratio

Q6BCN2 Cahi-DQA1 MHC class II antigen (Fragment) 0.207 1 0.0010 6.3115

A0A068B4V9 GSTA3 Glutathione S-transferase 0.414 1 0.0034 5.8213

A0A452F8N3 TET3 Methylcytosine dioxygenase TET 0.018 1 0.0050 5.6453

A0A452FL66 Ig-like domain-containing protein 0.155 2 0.0189 5.6192

A0A452F0V7 USP42 USP domain-containing protein 0.006 1 0.0049 5.4207

A0A452FRG5 LMNTD2 LTD domain-containing protein 0.021 1 0.0081 5.3130

P0CH26 HBAII II alpha globin 0.627 1 0.0086 5.2103

A0A452EDD0 NR5A2 Uncharacterized protein 0.018 1 0.0440 4.8056

A0A452DRV6 ZNF529 Uncharacterized protein 0.014 1 0.0022 4.7709

I6TE27 KIAA1239 (Fragment) 0.017 1 0.0027 4.7686

A0A452F5F2 SERPINI2 SERPIN domain-containing protein 0.044 1 0.0145 4.7063

A0A452DS42 IGv domain-containing protein 0.065 1 0.0003 4.4793

A0A452EDE4 KMT2C [Histone H3]-lysine (4) N-trimethyltransferase 0.002 1 0.0009 4.2239

A0A452FX60 LOC102185917 Ig-like domain-containing protein 0.147 1 0.0234 3.8227

A0A452FZ42 CCNE1 Cyclin N-terminal domain-containing protein 0.019 1 0.0081 3.7908

Table 2  Top 15 downregulated proteins in pubertal compared to pre-pubertal goat ovaries

Accession Gene Name Description Coverage [%] Unique 
Peptides

P Mean_Ratio

A0A452GA12 C11orf16 DUF4537 domain-containing protein 0.015 1 0.0006 0.3087

A0A452FKP1 EFCAB6 Uncharacterized protein 0.004 1 0.0001 0.3770

A0A452E9S9 CNMD BRICHOS domain-containing protein 0.015 1 0.0030 0.3841

P02082 Hemoglobin fetal subunit beta 0.855 10 0.0032 0.4100

A0A452FUY5 PER2 Uncharacterized protein 0.006 1 0.0027 0.4138

A0A452E681 ZP2 ZP domain-containing protein 0.049 4 0.0002 0.4267

A0A452G903 Metallothionein 0.328 1 0.0000 0.4319

A0A452FKU4 ZP3 Zona pellucida sperm-binding protein 3 0.229 9 0.0007 0.4391

A0A452FFM6 G_PROTEIN_RECEP_F1_2 domain-containing protein 0.025 1 0.0002 0.4455

A0A452DYI9 FLYWCH family member 2 0.052 1 0.0000 0.4803

A0A452FEE2 Ig-like domain-containing protein 0.215 2 0.0022 0.4892

A0A452G9F8 Uncharacterized protein 0.189 3 0.0003 0.4930

A0A452EAM2 Uncharacterized protein 0.037 1 0.0095 0.4947

A0A452FCF1 LOC108635821 AIG1-type G domain-containing protein 0.196 2 0.0026 0.4983

A0A0H4PMF2 Esco2 0.01 1 0.0096 0.5003
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Discussion
Puberty is a phase of anatomical and physiological devel-
opment, leading to sexual maturity and reproductive 
capacity [23]; however, the specific mechanisms under-
lying puberty remain unclear. Proteins are the material 
basis of life [24], so changes in the abundance of ovarian 
proteins are bound to affect pubertal onset. Therefore, 
we herein performed iTRAQ–LC–MS/MS analysis to 
compare the expression levels of ovarian proteins in pre-
pubertal (n = 3) and pubertal (n = 3) goats so as to iden-
tify core proteins involved in puberty regulation. This led 
to the identification of 7,550 proteins, of which 301 DAPs 
met the screening standard.

Among the DAPs identified in this study, MHC class 
II antigen (fragment) was the most upregulated one in 
the ovaries of pubertal goats. MHC class II molecules 
are encoded by the MHC gene locus, which is located on 
chromosome 6 in humans and chromosome 17 in mice 
[25]. These molecules play a key regulatory role in sev-
eral immune responses and are involved in most autoim-
mune diseases [26]. In addition, MHC genes reportedly 
influence mating preferences and odor in house mice 
[27] and even humans [28]. We believe that MHC class 
II antigen (fragment) affects puberty onset in goats by 
causing alterations in odor. RCAN1, previously known 
as DSCR1, was one of the most significantly upregu-
lated proteins in this study. As it is located on human 
chromosome 21, RCAN1 has been postulated to con-
tribute to mental retardation in Down syndrome. It is 
evidently involved in transcriptional regulation and/or 
signal transduction [29]; further, it is expressed in neu-
rons and participates in local protein synthesis during 

neuronal stimulation [30]. Site-specific phosphorylation 
of RCAN1 has been reported to regulate bidirectional 
synaptic plasticity [31]. The downregulation of RCAN1 
expression during radial migration of cortical neurons in 
rats has been observed to impair neural progenitor cell 
proliferation, resulting in radial migration defects [32]. 
Besides, both in  vitro and in  vivo studies have shown 
that RCAN1 overexpression promotes neuronal loss 
[33, 34]. Nakata et al. found that growth hormone (GH) 
administration induced RCAN1 mRNA expression in 
the liver of hypophysectomized rats [35]. It is a known 
fact that the secretion rate and amount of GH increase 
during puberty [36], and in vitro experiment results have 
indicated that GH directly stimulates GnRH secretion 
from GT1-7 cells [37]. Therefore, it seems that RCAN1 
indirectly regulates puberty onset via GH.

In this study, IGF-1 expression levels were also signifi-
cantly upregulated in the ovaries of goats at puberty. IGF-
1, a polypeptide hormone, is an important modulator of 
GH activity, and it plays a pivotal role in cell differentia-
tion and proliferation [38] as well as in bone growth and 
development [39]. In addition, in the developing central 
nervous system, IGF-1 mediates changes in morphology, 
synaptic efficacy, and cellular organization, enabling cells 
of the central nervous system to respond to continuous 
external and internal stimuli [40]. IGF-1 is reportedly the 
upstream regulator of KiSS-1 [41]; moreover, IGF-1 is an 
important factor in reproductive and neuroendocrine 
function regulation, and it also participates in GnRH syn-
thesis and release [42]. Intracerebroventricular admin-
istration of IGF-1 has been reported to promote GnRH 
secretion by activating KiSS-1 expression in the brain of 

Fig. 3  iTRAQ–LC–MS/MS data validation by Western blotting (WB). a Abundance of three upregulated [IGF-1 (full-length blots/gels are presented 
in Additional file 5), RCAN1 (full-length blots/gels are presented in Additional file 6), and DHCR24 (full-length blots/gels are presented in Additional 
file 7)] and two downregulated [CDK1 (full-length blots/gels are presented in Additional file 8) and STMN1 (full-length blots/gels are presented in 
Additional file 9)] proteins were analyzed by WB. β-Tubulin (full-length blots/gels are presented in Additional file 8) served as the internal reference. 
(Some positions of marker were in the middle and some were on the edge of the gels. To display the images more aesthetically, we have cropped 
them.) b Quantitative results for proteins. Values represent mean ± SEM (n = 3/group). Statistical significance was assessed using Student’s t-test; 
P < 0.05



Page 6 of 14Qin et al. BMC Genomics          (2022) 23:507 

pre-pubertal female rats, advancing the onset of puberty 
[43]. According to our findings, we believe that this phe-
nomenon could be due to IGF-1 changing the sensitivity 
of KiSS-1 neurons to stimuli or changing the intensity 
and duration of neuronal synaptic activity. Further stud-
ies are warranted to explore the roles of RCAN1 and 
IGF-1 in the onset of puberty in goats.

Herein the enrichment of DAPs in olfactory tran-
sition, glutathione metabolism, and calcium sign-
aling pathways suggested the involvement of these 

pathways in the onset of puberty in goats. Olfactory 
signals evidently play a key role in the onset of mam-
malian puberty [44]. The mammalian olfactory system 
can effectively detect pheromones; externally released 
steroids in mammals have been reported to function as 
pheromones and provide direct information pertain-
ing to internal hormone state [45]. Olfactory sensory 
neurons are the first order neurons in the olfactory sys-
tem and the initial site of odor detection [46]; the sig-
nals generated are transmitted to the hypothalamus, 

Fig. 4  Cluster heatmap showing expression intensity of DAPs. Euclidean distance and hierarchical clustering were used to cluster protein 
expression patterns. Colors represent relative expression levels of proteins in the ovaries of pre- and pubertal goats, with red and blue representing 
up- and downregulation, respectively
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which affect reproduction as well as fertility [47]. Sev-
eral pheromones affect pubertal onset in animals [48]. 
The olfactory system influences the timing of puberty 
in mice via GnRH neurons [49]. Furthermore, male 
scents can reportedly accelerate the onset of puberty in 
females, promoting uterine growth and the first estrus 
[50]. Glutathione is a ubiquitous tripeptide composed of 
glutamic acid, cysteine, and glycine, and it plays a chief 
role in cell proliferation regulation [51, 52]. Glutamate–
cysteine ligase is the rate-limiting step in glutathione 
synthesis [53]. Glutamate dehydrogenase catalyzes glu-
tamate synthesis; a study reported the hypothalamic 
content of glutamate to significantly increase in female 
rats at first proestrus [54], which may be related to the 
synthesis of glutathione, considering that the content 
of glutathione reaches its peak during this time [55]. In 
addition, subcutaneous administration of glutathione 
has been found to predate the onset of puberty in 
immature female rats, and the weight of the pituitary 
gland and ovary was found to significantly increase 
[56]. Similarly, intracerebroventricular administration 
of glutathione was reported to increase plasma levels 
of follicle-stimulating hormone [57], which is known to 
play a fundamental role in puberty [58]. From an overall 

perspective, it appears that glutathione and its metabo-
lism play a chief role in regulating the onset of puberty.

Luteinizing hormone reportedly acts via protein 
kinase A and C to modulate T-type calcium currents 
and intracellular calcium transients in mice Leydig 
cells [59]. Calcium, a critical intracellular messenger, 
regulates numerous signal transduction pathways and 
is associated with steroid production [60]. In the excit-
able cells of the nervous system, an increase in free cal-
cium levels evidently initiates neurotransmitter release 
[61], which consequently affects the onset of puberty 
in animals [62, 63]. In this study, the expression level 
of phosphodiesterase (PDE) in the calcium signaling 
pathway was significantly upregulated. It is notable that 
the onset of puberty corresponds to the maturation of 
oocytes [64]. In most mammals, oocytes enter the early 
stage of meiosis during the fetal stage and their devel-
opment then stops until ovulation or atresia [65]. The 
preovulatory gonadotropin surge leads to a decrease in 
cyclic guanosine monophosphate levels in oocytes and 
an increase in intracellular PDE activity, which leads to 
a decrease in cyclic adenosine monophosphate (cAMP) 
levels and recovery of meiosis [66, 67]. PDE activity 
regulation is a complex, important approach to control 

biological_process cellular_component molecular_function

ce
llu

la
r 

pr
oc

es
s

bi
ol

og
ic

al
 r

eg
ul

at
io

n
m

et
ab

ol
ic

 p
ro

ce
ss

re
gu

la
tio

n 
of

 b
io

lo
gi

ca
l p

ro
ce

ss
re

sp
on

se
 to

 s
tim

ul
us

m
ul

tic
el

lu
la

r 
or

ga
ni

sm
al

 p
ro

ce
ss

de
ve

lo
pm

en
ta

l p
ro

ce
ss

lo
ca

liz
at

io
n

po
si

tiv
e 

re
gu

la
tio

n 
of

 b
io

lo
gi

ca
l p

ro
ce

ss
si

gn
al

in
g

ne
ga

tiv
e 

re
gu

la
tio

n 
of

 b
io

lo
gi

ca
l p

ro
ce

ss

ce
llu

la
r 

co
m

po
ne

nt
 o

rg
an

iz
at

io
n 

or
 b

io
ge

ne
si

s
m

ul
ti−

or
ga

ni
sm

 p
ro

ce
ss

im
m

un
e 

sy
st

em
 p

ro
ce

ss
bi

ol
og

ic
al

 a
dh

es
io

n
ce

ll 
pr

ol
ife

ra
tio

n
lo

co
m

ot
io

n
re

pr
od

uc
tio

n
re

pr
od

uc
tiv

e 
pr

oc
es

s
gr

ow
th

be
ha

vi
or

ce
ll 

ki
lli

ng
rh

yt
hm

ic
 p

ro
ce

ss
de

to
xi

fic
at

io
n

ce
ll 

ag
gr

eg
at

io
n

pi
gm

en
ta

tio
n

ce
ll

ce
ll 

pa
rt

or
ga

ne
lle

m
em

br
an

e
ex

tr
ac

el
lu

la
r 

re
gi

on
or

ga
ne

lle
 p

ar
t

ex
tr

ac
el

lu
la

r 
re

gi
on

 p
ar

t
m

em
br

an
e 

pa
rt

m
ac

ro
m

ol
ec

ul
ar

 c
om

pl
ex

m
em

br
an

e−
en

cl
os

ed
 lu

m
en

ce
ll 

ju
nc

tio
n

su
pr

am
ol

ec
ul

ar
 c

om
pl

ex
sy

na
ps

e
vi

rio
n

vi
rio

n 
pa

rt
sy

na
ps

e 
pa

rt

bi
nd

in
g

ca
ta

ly
tic

 a
ct

iv
ity

m
ol

ec
ul

ar
 fu

nc
tio

n 
re

gu
la

to
r

tr
an

sc
rip

tio
n 

re
gu

la
to

r 
ac

tiv
ity

si
gn

al
 tr

an
sd

uc
er

 a
ct

iv
ity

st
ru

ct
ur

al
 m

ol
ec

ul
e 

ac
tiv

ity
tr

an
sp

or
te

r 
ac

tiv
ity

m
ol

ec
ul

ar
 tr

an
sd

uc
er

 a
ct

iv
ity

m
ol

ec
ul

ar
 c

ar
rie

r 
ac

tiv
ity

an
tio

xi
da

nt
 a

ct
iv

ity

0

30

60

90

D
E

P
s 

N
um

be
r

UpDown

down

up

Fig. 5  Gene ontology functional analysis of DAPs. P < 0.05
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the level of intracellular second messenger cAMP [68]. 
In addition, gonadotropins activate adenylyl cyclase in 
oocytes and facilitate its interaction with G protein to 
catalyze the conversion of adenosine triphosphate to 
cAMP [69, 70]. In mammalian oocytes, cAMP main-
tains meiotic arrest by inhibiting maturation-promoting 
factor activation and stimulating cAMP-dependent pro-
tein kinase A [71]. This prevents oocytes from resum-
ing meiosis prematurely, and they thus obtain normal 
development ability [72]. Herein we found that PDE and 
adenylate cyclase type 4 expression levels were signifi-
cantly upregulated in goat ovaries during puberty. This 
could be a method to regulate intracellular cAMP levels 
so that the meiosis of oocytes and eventually the onset 
of puberty can occur normally.

Our PPI network revealed that proteins interacting 
with CDK1, HSPA1A, and UCK2 were the most abun-
dant. While HSPA1A and UCK2 have been discussed 
in the context of diseases such as cancer [73, 74], their 
involvement in puberty remains to be reported. CDK1 
is a cell cycle-related enzyme that drives cell division 
and is the main regulator of the cell cycle process [75, 
76]. In addition, mammalian cells express other cyclin 

kinases and phosphorylate cellular proteins to drive the 
cell cycle process [77, 78]. Intriguingly, CDK1 can replace 
other CDKs and is sufficient to drive the mammalian cell 
cycle [79]. Artificial knockout of CDK1 has been found 
to lead to early embryo death, and conditional knockout 
of CDK1 in viable mice causes cell proliferation disorder 
[80]. Besides, CDK1 is essential and sufficient to drive the 
resumption of meiosis in mouse oocytes, and the process 
of meiosis is regulated by CDK1 activity [81, 82]. In com-
bination with the results of these studies, our findings 
imply that CDK1 plays a prominent role in mammalian 
reproduction.

Conclusions
To summarize, 301 DAPs were identified on analyz-
ing ovarian protein expression levels in pubertal and 
pre-pubertal goats. We believe that the DAPs identi-
fied herein directly or indirectly regulate pubertal onset. 
Besides, olfactory conduction, glutathione metabolism, 
and calcium signaling pathways seem to play a significant 
role in the onset of puberty in goats. Further studies are 
nevertheless warranted to explore the specific molecular 
mechanisms underlying the onset of puberty.

Fig. 6  Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of DAPs. The larger the bubble, the more the number of DAPs. 
Bubble color indicates the P value; the smaller the P value, the higher the level of significance
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Materials and methods
Experimental Design.
Quantitative proteomics techniques based on iTRAQ were 
used to identify and characterize DAPs between prepu-
bertal and pubertal goats. Goat ovaries were collected and 
suspended in protein lysate; ovarian proteins were then 
enzymatically digested with trypsin to obtain peptides. 
The hydrolyzed peptides were subsequently labeled with 
iTRAQ labels. Peptide separation and high-performance 
LC were performed, followed by MS and bioinformatics 
analyses. To verify the accuracy of our proteomics data, the 
expression levels of several proteins were assessed by WB.

Ovary collection
This study was authorized and endorsed by the Animal 
Care and Use Committee of Anhui Agricultural Univer-
sity. All experimental procedures involving goats were 
performed according to the Regulations for the Admin-
istration of Affairs Concerning Experimental Animals 
(Ministry of Science and Technology, China; revised 
in June 2004). Three pre-pubertal (2.5  months of age, 
8.1 ± 0.3 kg) and three pubertal (4.5–5.0 months of age, 
20.16 ± 0.35  kg) Anhui white goats (an indigenous Chi-
nese breed) were housed under the same conditions on 
a farm in Feixi County, Anhui Province, China. The date 
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of puberty onset in female goats was defined as the date 
of the first estrus detected by male goats and by moni-
toring changes in the appearance of the vulva [83]. Rams 
test conditions were performed twice daily at 08:00 and 
16:00. The cunnus of pubescent goats was inflamed and 
mature follicles were observed in the ovaries. The animals 
were deeply anesthetized by intramuscularly injecting 1% 
pentobarbital (60  mg/kg, Solarbio, P8410, China). The 
left ovary was then surgically removed and immediately 
frozen in liquid nitrogen, and they were stored at − 80 °C 
until needed.

Protein extraction
The ovaries were transferred into six 5-mL centrifuge tubes. 
An appropriate amount of 1 × cocktail was then added, fol-
lowed by the addition of Ethylene Diamine Tetraacetic Acid 
(Ameresco, Shanghai, China) and sodium dodecyl sulfate 
(SDS, Solarbio, Beijing, China) lysis buffer 3. Finally, two 
5-mm magnetic beads were added to the centrifuge tubes 
with tweezers to enable thorough grinding. After incuba-
tion on ice for 5 min, a tissue lyser (JXFSTPRP, Shanghai, 
China) was used to break and lyse the ovaries. The samples 
were then centrifuged at 25,000 × g and 4  °C for 15  min. 
To the supernatant thus obtained, dithiothreitol (Bio-Rad, 
Hercules, CA, USA) was added at a final concentration of 
10  mM, followed by incubation in a water bath at 56  °C 
for 1  h. Subsequently, iodoacetamide (Sigma-Aldrich, St. 
Louis, MO, USA) was added at a final concentration of 
55 mM, and the suspension was incubated in the dark for 
45 min. Five times the volume of precooled acetone (Ling-
feng, Shanghai, China) was then added, followed by incuba-
tion at − 20 °C for 2 h and centrifugation at 25,000 × g and 
4  °C for 15  min. The supernatant thus obtained was dis-
carded, and a suitable amount of lysis buffer 3 without SDS 
was added to the precipitate to promote protein dissolution 
through a tissue lyser. After centrifugation at 25,000 × g and 
4 °C for 15 min, the supernatant was obtained, which repre-
sented the protein extract.

Proteolysis and peptide labeling
To a 1.5-mL centrifuge tube, 100  μg protein was added. 
As per trypsin (μg):substrate protein (μg) ratio of 1:20, an 
enzyme solution was then added, and the solution was vor-
texed and then centrifuged at low speed for 1 min, followed 
by incubation at 37 °C for 4 h. The digested peptide solution 
was then subjected to desalination and freeze-dried.

Peptides were reconstituted in 0.5  M tetraethylammo-
nium bromide and processed with 8-plex iTRAQ reagent 
(Applied Biosystems), according to manufacturer instruc-
tions. Briefly, iTRAQ labeling reagents were thawed 
to room temperature, and 50 μL isopropyl alcohol was 
added to each reagent tube. The tube was then vortexed 
and shaken at low speed. Samples were labeled as follows: 

sample puberty 1 (113 tags), 2 (114 tags), and 3 (115 tags) 
and sample prepuberty 1 (118 tags), 2 (119 tags), and 3 
(121 tags). After labeling, all samples were incubated at 
room temperature for 2  h. The labeled peptide mixtures 
were then pooled and dried by vacuum centrifugation.

Peptide Separation and High‑Performance Liquid 
Chromatography.
The LC-20AB liquid phase system (Shimadzu, Kyoto, 
Japan) was used for liquid phase separation of samples. 
We used a Gemini C18 separation column (4.6 × 250 mm, 
5  μm). iTRAQ-labeled peptide mixtures were reconsti-
tuted in mobile phase A (5% acetonitrile, pH 9.8) and 
injected; gradient elution was used at a flow rate of 1 mL/
min: 5% mobile phase B (95% acetonitrile, pH 9.8) for 
10  min, 5%–35% mobile phase B for 40  min, 35%–95% 
mobile phase B for 1 min, mobile phase B for 3 min, and 
5% mobile phase B for 10 min. Elution was monitored by 
measuring absorbance at 214 nm, and fractions were col-
lected every 1 min. The eluted peptides were pooled into 
20 fractions, followed by freeze drying.

The separation was performed using the Easy-nLC™ 
1200 system (Thermo Fisher Scientific, San Jose, CA). The 
freeze-dried peptide samples were reconstituted in mobile 
phase A (2% acetonitrile and 0.1% formic acid), centri-
fuged at 20,000 × g for 10 min, and the supernatant thus 
obtained was collected. The samples then entered a tan-
dem self-packed C18 column (internal diameter, 75  μm; 
column size, 1.9 μm; column length, 25 cm) and were sep-
arated at a flow rate of 200 nL/min via the following gradi-
ent: 0–3 min, 5% mobile phase B (80% acetonitrile, 0.1% 
formic acid); 3–45 min, linear increase of mobile phase B 
from 8 to 44%; 45–50 min, linear increase of mobile phase 
B from 44 to 60%; 50–53  min, linear increase of mobile 
phase B from 60 to 100%; and 53–60  min, 80% mobile 
phase B. The nanoliter liquid phase separation end was 
directly connected to the mass spectrometer.

Mass spectrometry
The peptides separated in liquid phase were ionized by 
the nano-ESI source and then transferred to an Orbit-
rap Exploris 480 (Thermo Fisher Scientific, San Jose, 
CA) tandem mass spectrometer in data-dependent 
acquisition mode. The main settings were as follows: 
ion source voltage, 2.1  kV; scanning range of primary 
MS, 350–1,600 m/z with resolution of 60,000; and initial 
m/z of secondary MS, 100 m/z with resolution of 15,000. 
The screening conditions for the parent ions of second-
ary fragmentation were as follows: the charge was from 
2 + to 7 + , and the peak strength was greater than 50,000 
in the first 1 s. The ion fragmentation mode was higher 
energy collision-induced dissociation; fragment ions 
were detected in the Orbitrap, and the dynamic exclusion 
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time was set at 30  s. The auto gain control was set to 
Level 1 1E6 and Level 2 1E5.

DAPs screening
The automated software IQuant [84], which integrates Mas-
cot Percolator [85] algorithm, was used quantitatively ana-
lyze peptide samples labeled with isobaric tags. To assess 
the confidence of peptides, peptide-spectrum matches 
were pre-filtered at a false discovery rate (FDR) of 1%. Sub-
sequently, based on the “parsimony principle,” identified 
peptide sequences were assembled into a set of confident 
proteins. To control the rate of false positives at the protein 
level, a protein FDR at 1%, which is based on Picked protein 
FDR strategy [86], was also estimated after protein infer-
ence (protein-level FDR ≤ 0.01). When the ratio of pubertal 
ovaries compared with pre-pubertal ovaries was 1.5 or 0.67, 
proteins were considered to up- or downregulated.

Western blot
Samples were obtained from the same ovaries as those used 
for iTRAQ–LC–MS/MS analysis, and protein concentration 
was determined using the BCA protein detection kit. After 
adding a protein loading buffer, the sample was boiled for 
10 min at 100℃. Subsequently, 20 μg protein was subjected to 
SDS–polyacrylamide gel electrophoresis (Bio-Rad, Hercules, 
CA, USA), and protein bands thus obtained were transferred 
to a polyvinylidene fluoride (Merck Millipore, Billerica, MA, 
USA) membrane. The protein was sealed at room tempera-
ture for 2 h with 5% skimmed milk powder and then incu-
bated with each of the following antibodies for overnight at 
4℃: rabbit anti-RCAN1 (1:500, T73889, Abmart), rabbit anti-
IGF1 (1:500, PA3635, Abmart), rabbit anti-DHCR24 (1:1000, 
TD12472, Abmart), rabbit anti-STMN1 (1:500, PA4263, 
Abmart), and rabbit anti-CDK1 (1:500, T55176, Abmart). 
The membranes were washed thrice with Tris-buffered 
saline with Tween (BioSharp, Hefei, China) for 10 min each 
time, and then a secondary antibody, i.e., horseradish perox-
idase-labeled goat anti-rabbit immunoglobulin G (1:3,000, 
GB23303, Servicebio), was added, followed by incubation at 
room temperature for 1  h. After washing thrice with Tris-
buffered saline with Tween, the membrane was finally ana-
lyzed using a chemiluminescence imaging analyzer. The test 
strips were excised, and their gray value was analyzed by the 
image analysis software ImageJ. β-Tubulin (1:2,500; Protein-
tech, Wuhan, China) was used as the internal control; the rel-
ative gray value of target proteins was obtained using the ratio 
of the gray values of target proteins and β-tubulin.

Bioinformatics
Hierarchical Cluster [87] and Java TreeView [88] were 
used for hierarchical clustering analysis. All genes cor-
responding to DAPs were subjected to GO annotation 

[89] and KEGG [90] pathway analyses. Gene symbols of 
DAPs were submitted to the STRING database [91], and 
Cytoscape v3.2.1 [92] was used to generate and analyze 
PPI networks.

Statistical analysis
GraphPad Prism 8 (GraphPad Software, San Diego, 
CA) was used for histogram plotting. Values represent 
mean ± SEM, and Student’s t-test was used to compare 
relative expression levels of ovarian proteins between 
pubertal and pre-pubertal goats. IBM SPSS Statistics 26 
(SPSS Inc., Chicago, USA) was used for data analysis. 
P < 0.05 indicates statistical significance.
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