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Abstract 

Background:  Calliptamus italicus is a dominant species in the desert and semi-desert grassland. It is widely dis-
tributed throughout many regions such as Asia, Europe, North Africa and the Mediterranean, and has enormous 
destructive potential for agriculture and animal husbandry. The C. italicus overwintering as eggs in the soil through 
diapause, and the cold tolerance of locust eggs is the key to their ability to survive the winter smoothly to maintain 
the population.

Results:  Transcriptome analysis of C. italicus eggs was carried out in this paper in constant low temperature acclima-
tion, natural low temperature acclimation and room temperature. The differentially expressed genes related to cold 
tolerance were screened out, the differences in expression patterns under different low temperature acclimation were 
analyzed, and the genes in the significantly up-regulated pathways may play an important role in cold tolerance. The 
results show that different domestication modes can induce C. italicus eggs to express a large number of genes to 
alleviate low temperature damage, but C. italicus eggs are more sensitive to changes in temperature. Compared with 
the control, there are 8689 DEGs at constant low temperature and 14,994 DEGs at natural low temperature. KEGG 
analysis showed that DEGs were mainly enriched in pathways related to metabolism and biological systems under 
constant low temperature, and were mainly enriched in pathways related to biological systems and environmental 
information processing under natural low temperature. In addition, RNAi technology was used to further verify the 
regulation of genes in the significantly enriched up-regulated pathways on C. italicus eggs, and it was confirmed that 
the hatching rate of C. italicus eggs at low temperature was significantly reduced after interference.

Conclusions:  Transcriptome analysis of C. italicus eggs treated at different temperatures provided a theoretical basis 
for further understanding the adaptation mechanism of C. italicus eggs to low temperature. In addition, four potential 
RNAi target genes were verified in the eggs of C. italicus for the first time, providing new ideas for effective control of 
this species.
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Introduction
Insects are poikilothermic who can survive in extreme 
low or high temperature that will affect their survival and 
individual development [1, 2]. The survival strategy of 
insects for adapting to the changes in external tempera-
ture has always been the core issue of insect evolution. 
Insects living in temperate and frigid regions are threat-
ened by the low temperature in winter every year. In 
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order to maintain the population and expand the distri-
bution range, insects have formed a series of cold resist-
ance mechanisms in the long-term evolution process 
[3]. For example, they adapt to the low-temperature by 
regulating related cold-resistance genes [4], synthesiz-
ing cold-resistant substances [5], increasing the expres-
sion of intracellular antifreeze proteins, and producing 
cold shock proteins [6]. On the other hand, many stud-
ies have reported that low-temperature acclimation can 
significantly improve the cold tolerance in insects [7, 8]. 
In general, these studies are carried out at a constant low 
temperature because they are simpler to operate and only 
require standardized comparison methods [9]. How-
ever, the natural environment is not stable. It has diurnal 
and seasonal changes in temperature and photoperiod. 
Therefore, the stress response under constant low tem-
perature acclimation cannot fully explain the cold toler-
ance mechanism of insects in their natural environment 
against low temperature [10]. In nature, long-term sea-
sonal temperature fluctuations will have a natural domes-
tication effect on insects, which is an adaptive response 
with regard to the decrease in the seasonal temperature 
[11]. Combining the cold tolerance molecular mecha-
nisms of insects under constant and natural low tem-
perature domestication can reflect the characteristics of 
insect to cold tolerance, and provide a theoretical basis 
for revealing the insect’s life history countermeasures, 
physiological and biochemical modulation, and selective 
evolution mechanisms.

Transcriptome technology can identify the main con-
trol genes and secondary change genes under specific 
conditions. Transcriptome sequencing of insects under 
different conditions, such as low temperature, dehydra-
tion, starvation and pathogenic fungi infection, will help 
in comprehensively revealing the molecular mechanism 
of related gene functions and phylogenetic evolution 
in their life activities [12–14]. Li et al. [15] analyzed the 
transcriptome of Ceracris kiangsu and found that the 
body significantly up-regulated genes related to stress 
response and ATP production in response to low tem-
perature stress. Dunning et al. [16] studied the transcrip-
tome of micrarchus alpine and lowland population and 
found that temperature is an important factor driving the 
evolution of micrarchus species. In addition, transcrip-
tome is also commonly used to identify RNA interference 
targets and provide strategies for functional verification 
and pest control [17–19].

Calliptamus italicus belongs to Orthoptera, Catan-
topidae, Callipamus and it is widely distributed in Cen-
tral Europe, North Africa, Central Asia, the western part 
of the Siberian Plain, the northwestern part of Mongo-
lia, the eastern and northern parts along the Mediterra-
nean Sea, etc. In China, Calliptamus italicus is mainly 

distributed in desert and semi-desert grasslands in the 
north of Xinjiang at an altitude of 800–2300 m [20, 21], 
which can harm up to 17 families and 45 species of 
plants, and cause serious harm to the development of 
animal husbandry and agriculture in Xinjiang [22]. The 
C. italicus overwintering as eggs in the soil through 
diapause, and the development of overwintering eggs 
undergoes three stages: Early-development, Diapause, 
and Diapause-terminated [23]. Xinjiang is cold in winter 
with an average temperature of − 14.5 °C, the extreme 
temperature reaches around − 40 °C [24]. The cold toler-
ance of locust eggs is the key to their ability to survive 
the winter smoothly to maintain the population. The cold 
tolerance of insects is a biological process controlled by 
multiple factors. A generally accepted view is that low-
temperature acclimation can improve cold tolerance but 
we have limited understanding of the regulation mecha-
nism of cold tolerance. Previous studies have found dif-
ferently responded mechanisms for different organisms 
under constant low-temperature acclimation. Transcrip-
tome analysis of Blattella germanica [25] and Microdera 
punctipennis [26] after low-temperature acclimation at 
4 °C, it was found that low-temperature response genes 
in Blattella germanica were functionally enriched in 
carboxylic acid metabolism, stress response, and carbo-
hydrate metabolism, whereas genes in Microdera puncti-
pennis was mainly involved in metabolic pathways, such 
as purine metabolism, thiamine metabolism and glycoly-
sis/gluconeogenesis. Also, there is the different response 
of organisms to various modes of low-temperature accli-
mation. Analysis of transcriptome of Ericerus pela with a 
natural acclimation condition suggested that the majority 
of genes were enriched in the process of signal transduc-
tion and metabolism, and the expression of antifreeze 
related genes, such as heat shock protein (HSP) and 
anti-freeze protein (AFP), were up-regulated [27]. Under 
a slow-cooling mode of condition, the differentially 
expressed genes (DEGs) of Trifolium ambiguum were 
significantly enriched in photosynthesis, photosynthesis-
antenna proteins, and starch and sucrose metabolism, 
whereas when treated with a sudden-cooling mode, the 
DEGs were significantly enriched in starch and sucrose 
metabolism, sesquiterpenoid and triterpenoid biosynthe-
sis, and flavonoid biosynthesis [28].

These studies show that DEGs are mainly enriched in 
pathways related to metabolism, transcription and envi-
ronmental signal processes after low temperature stress. 
Genes directly related to low temperature stress, such as 
hsp, afp and enzyme genes, are differentially expressed. 
However, the genes or pathways related to cold toler-
ance have not been validated, and the previous stud-
ies mentioned only used one temperature as a stress or 
adaptation temperature in their study. However, insects 
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have different responses to different low temperatures. 
Therefore, this experiment constructed transcriptome 
sequencing under constant and natural low tempera-
ture acclimation, identified candidate genes related to 
cold tolerance through differential expression analysis, 
and verified RNAi target genes related to cold toler-
ance through dsRNA artificial injection test, in order to 
explore the molecular biological mechanism of C. italicus 
eggs resisting low temperature in winter.

Results
Transcriptome sequencing and functional annotation
The C. italicus eggs at the early-development, diapause 
and diapause-terminated stages were sequenced at con-
stant low temperature acclimation (0 °C), natural low 
temperature acclimation and room temperature (27 °C) 
conditions, respectively. Three replicates were con-
ducted for each treatment and each stage, resulting in 
construction of 27 cDNA libraries (Table  1). Transcrip-
tome sequencing yielded 6.40G–7.33G of clean reads for 
single sample with a GC content of 43.24–47.05%, which 
showed a small deviation with random distribution. The 
percentage of bases >Q30 was greater than 92.35%, indi-
cating that the quality of this sequencing data was reli-
able and could be used for further analysis.

Transcriptome data of C. italicus was annotated by 
using seven databases including Nr, Nt, KEGG, Swiss-
Prot, PFAM, GO, and KOG((Table 2). The large number 
of unigenes (78,623) could be annotated by NR, account-
ing for 32.23% of the total unigenes. KEGG provided 
annotation for 16.60% of the total unigenes, followed 
by GO and PFAM (30% of unigenes). A least number of 
unigenes (16,777) were annotated by KOG, accounting 
for 6.87% of the total unigenes. A total of 9149 unigenes 

could be annotated in all seven databases, accounting for 
3.86% of the total unigenes.

Statistical analysis of differentially expressed genes (DEGs)
The statistics of the number of DEGs under different 
treatments and stages are shown in Fig.  1(Table S1). 
Samples in the constant low-temperature(Z vs T) and 
the natural low-temperature acclimation(N vs T) group 
showed 200 and 777 DEGs in the early-development 
stage, respectively. They had 915 and 6828 DEGs in the 
diapause stage, and 7574 and 7389 DEGs in the diapause-
terminated stage. The number of DEGs increased with 
the development of C. italicus eggs. The number of up-
regulated genes at early-development and diapause stage 
in the constant low-temperature acclimation group was 
more than that of the down-regulated genes, while an 
opposite phenomenon was found for DEGs at diapause-
terminated stage. For natural low-temperature acclima-
tion group, the number of down-regulated genes was 
more than that of the up-regulated genes.

Table 1  Data quantity statistics of C. italicus eggs samples before and after filtration

Note: T (Twenty-seven) represents the treatment in the artificial climate chamber at 27 °C; Z (Zero) represents the treatment at 0 °C low temperature acclimation for 
15 days; N (Natural) represents the treatment under natural outdoor conditions. ED (Early-development) stands for early developmental stage; D (Diapause) stands 
for diapause stage; DT (Diapause-terminated) stands for diapause release stage. Raw reads: raw sequence data; Clean reads: the number of sequencing sequences 
multiplied by the length of the sequence, and converted to G as the unit; Total mapped: statistics of sequencing sequences that can be located on the genome; GC 
content: bases G and The number of C accounts for the percentage of total bases; Q30: the percentage of bases with a Phred value greater than 30 to the total bases

Sample Raw Reads Clean Reads Total mapped GC Content(%) Q30(%)

T_ED 23,427,576 6.82G 37,991,977(83.58%) 44.52 92.98

T_D 24,603,027 7.24G 40,259,910(83.36%) 43.50 94.81

T_DT 23,000,542 6.53G 35,164,138(80.81%) 44.04 94.64

Z_ED 22,897,560 6.66G 37,441,784(84.41%) 47.05 92.71

Z_D 23,772,541 6.95G 37,341,301(80.50%) 43.59 94.44

Z_DT 22,450,927 6.40G 35,076,205(82.11%) 43.24 94.72

N_ED 24,035,594 6.99G 38,930,646(83.59%) 46.47 92.87

N_D 25,000,086 7.33G 40,111,145(82.05%) 43.43 94.47

N_DT 22,919,680 6.56G 35,997,595(82.36%) 45.02 93.83

Table 2  Statistics of the functional annotations of the unigenes 
of C. italicus eggs

Annotated databases Number of unigene 
hits

Percentage

Nr 78,623 32.23%

Nt 31,633 12.97%

KEGG 40,485 16.60%

Swiss-Prot 35,894 14.71%

PFAM 56,106 23.00%

GO 56,096 23.00%

KOG 16,777 6.87%

Annotated in all Databases 9419 3.86%

All 243,877 100%
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A venn diagram was created based on further com-
parison of the DEGs between constant low-tempera-
ture and natural low-temperature acclimation group. 
The results showed that eight co-expressed genes were 
found in the constant low-temperature acclimation 
group at all stages, and 132, 596 and 7208 specifically 
expressed genes were detected at the early-devel-
opment, diapauses, and diapause-terminated stage, 
respectively (Fig.  2,A). In the natural low-tempera-
ture acclimation group, 150 co-expressed genes were 
found at all stages, and 308, 5175 and 5961 specifi-
cally expressed genes were detected in the early-devel-
opment, diapauses, and diapause-terminated stage, 
respectively (Fig. 2,B).

GO and KEGG annotation of DEGs
GO enrichment analysis of all DEGs in the constant low-
temperature acclimation group showed that 31 signifi-
cantly enriched terms were annotated (Fig. S1,A), among 
which the largest number of DEGs (803) fell into “protein 
metabolic process” in the biological process. Whereas 
1093 and 2389 genes were annotated by “organelle” in 
cellular component and “binding” in molecular func-
tion, respectively (Table S2). GO enrichment analysis 
of all DEGs in the natural low-temperature acclimation 
group showed that 13 significantly enriched terms were 
annotated (Fig. S1,B), among which the largest number 
of DEGs (145) were annotated as “cellular response to 
stress” in biological process, while 361 DEGs were anno-
tated by “transition metal binding” in molecular function, 
and no significantly enriched DEGs were found in the 
cellular component (Table S3).

KEGG analysis showed that a large number of DEGs 
in the constant low-temperature acclimation group were 

enriched in 64, 167 and 290 pathways, of which 13, 13 
and 18 pathways had significantly enriched DEGs at the 
three stages, respectively [29–31] (Fig. S2,A-C). They 
were mainly related to metabolism, environmental adap-
tation and signal transmission, such as arginine and pro-
line metabolism, Circadian rhythms, and FoxO signaling 
pathway (Table S4). In the natural low-temperature accli-
mation group, a large number of DEGs were enriched in 
147, 285 and 289 pathways respectively, of which 18, 20 
and 27 pathways were significantly enriched with DEGs 
(Fig. S2,D-F), such as insulin signaling pathway, AMPK 
signaling pathway, and protein digestion and absorption 
(Table S5).

Validation of DEGs by RT‑qPCR
In order to evaluate the validity of transcriptome data, 
the expression of DEGs screened above was analyzed by 
RT-qPCR (Fig. 3). The results showed that the expression 
pattern of DEGs analyzed by qPCR was basically consist-
ent with that reflected by RNA-seq, thus indicating the 
reliability of the RNA-seq results (Table S6).

Identification of cold‑tolerance related genes and RNA 
interference (RNAi) verification
Further analysis of significantly enriched 10 up- and 
down-regulated pathways under two low-temperature 
acclimation treatments suggested that the up-regulated 
pathways were significantly enriched under constant 
low-temperature which is mainly related to metabolism 
(Table  3). Among them, the largest numbers of genes 
were involved in amino acid metabolism, such as GAD, 
NOS, OAT, ALDH, and TH. Two significantly down-reg-
ulated pathways, the longevity regulation pathway and 
MAPK signaling pathway, were enriched with the largest 

Fig. 1  Analysis of DEGs in different acclimation groups of C. italicus egg. Up-regulated DEGs (red), and down-regulated DEGs (green) were 
presented by histogram
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numbers of genes, such as SOD, HSPA1_8, CRYAB, CAT​,  
and JUN. The up-regulated pathways significantly 
enriched under natural low-temperature acclimation were 
mainly related to organismal systems (Table  4). Among 

them, pathways like that of the insulin signaling pathway 
and Circadian rhythms processed the largest number of 
enriched genes: FASN, RKAR, CALM, and PKA. Among 
the significantly down-regulated pathways, citrate cycle 

Fig. 2  DEGs Four-way Venn diagram in different acclimation groups of C. italicus egg
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(TCA cycle) and AMPK signaling pathway were enriched 
with the most abundant genes: SDH, PCK, and FOXO3.

Many studies on insects have shown that the DEGs 
in response to temperature stress were mainly enriched 
in the pathways related to low-temperature regulation. 
These pathways can be summarized under three aspects. 
Firstly, cold-regulation signal transduction [32, 33], such 
as MAPK signaling pathway, PI3K-Akt signaling pathway, 
and Calcium signaling pathway; Secondly, cold-resist-
ant physiological metabolism [34], such as arginine and 
proline metabolism, Cytochrome P450 metabolism, and 
oxidative phosphorylation; Thirdly, the environmental 
adaptation [4], such as Circadian rhythms. Along with 
this study results and previous reports related to gene 
regulation at low-temperature stress [35–37], four genes 
related to low temperature tolerance (Hsp90, HSPA5, 
NOS and GAD) were screened from the significantly up-
regulated pathways of the two comparison groups, and 
the role of these four genes in the low-temperature toler-
ance of C. italicus eggs was verified by RNAi technology.

dsRNA treatment of cold resistant genes
Compared with the control, significantly different 
expression was found after injection of dsRNA, but the 
interference efficiency was different among the treat-
ment groups at different times (Fig.  4, Table S7). A 
highest interference efficiency of 84.2% was recorded 
for early-development stage after injection of dsHsp70 
for 72 h, whereas the lowest interference efficiency of 
40.15% was detected after injection for 48 h. The injec-
tion for 24 h showed the highest interference efficiency 
of 76.7% at diapause stage, which gradually decreased, 

and the lowest interference efficiency was only 20.7% at 
96 h after injection. At diapause-terminated stage, the 
interference efficiency was the highest (84.5%) at 24 h 
after injection, and was the lowest (37.4%) at 48 h upon 
injection. After injection of dsHsp90, the interference 
efficiency of early-development stage and diapause 
stage reached the greatest value of 70.1 and 66.2%, 
respectively at 24 h, and then decreased gradually, with 
the lowest interference efficiency of 34 and 43.6% at 
72 h, respectively. The highest interference efficiency 
(62.4%) was detected at the diapauses-terminated stage 
at 48 h of treatment, which decreased gradually, with 
an interference efficiency of 5.3% at 96 h of injection. 
After injection of dsGAD, the 72 h treatment showed 
the best interference efficiency (48%) at early-develop-
ment stage, while 48 h after injection resulted in the 
lowest interference efficiency (23.1%). The best interfer-
ence efficiency of the diapause stage was 82.1% at 96 h 
after injection, while no obvious interference effect at 
24 h and 48 h of treatment. For diapause-terminated 
stage, the highest interference efficiency was 69.5% at 
24 h, which gradually decreased, with the lowest value 
of 30.6% at 96 h. After injection of dsNOS, the interfer-
ence efficiency reached the highest value of 67.9% at 
96 h at the early-development stage, and no interfer-
ence effect was recorded at 24 h and 48 h after injection. 
The interference efficiency of diapause stage reached 
the highest value of 42.8% at 48 h, and then decreased 
to the lowest value of 31.4% at 96 h. The interference 
efficiency of 96 h treatment was the best (81.8%) at the 
diapause-terminated stage, and that of 72 h was the 
lowest (50.4%).

Fig. 3  RNA-seq data validation by quantitative real-time PCR (RT-qPCR). The histograms show 12 DEGs of C. italicus egg
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Effect of dsRNA treatment of cold tolerance genes 
on the hatching rate of Calliptamus italicus eggs
Compared with the control (57.78%), the hatching rate of 
C. italicus eggs decreased significantly after injection of 
dsHsp70, dsHsp90, dsGAD, and dsNOS (Fig. 5). The hatch-
ing rate after the injection of dsHsp70 was 52.22%, which 
decreased by 5.56%. The hatching rate with the injection 
of dsHsp90 was 46.67%, which decreased by 11.11%. The 
hatching rate after the injection of dsGAD was 43.33% with 
a decrease of 14.45%. The hatching rate after the injection 
of dsNOS was 47.78%, which decreased by 10%.

Discussion
Summary of transcriptome analysis
C. italicus is an important pest in the grassland of Xinji-
ang [21]. C. italicus eggs have strong cold resistance, but 
the molecular mechanism of cold resistance is still unclear 
[23, 38–40]. In this study, using RNA-Seq technology, 
nine transcriptomes of C. italicus eggs at three devel-
opmental stages were assembled at three different tem-
peratures: constant low temperature acclimation (0 °C), 
outdoor natural low temperature acclimation in winter, 
and room temperature (27 °C). Compared with the con-
trol (27 °C), a large number of DEGs were screened after 

acclimation, with a greater number of down-regulated 
genes than that of the up-regulated genes, indicating 
that the negative regulation of these genes improved the 
cold tolerance in C. italicus eggs. Secondly, the number 
of DEGs in eggs under natural low-temperature acclima-
tion was significantly higher than that of the under con-
stant low-temperature acclimation, thus indicating that 
different acclimation modes can induce the expression 
of a large number of genes to alleviate the injury of low 
temperature. Whereas natural low-temperature acclima-
tion induces the expression of more genes in response to 
low temperature, which can be speculated as the results 
of more sensitive response to fluctuating in C. italicus 
eggs. Wang et  al. [41] found that low-temperature accli-
mation and simulated natural temperature acclimation 
significantly improved the survival rate of Locusta migra-
toria manilensis eggs. With a high survival rate for simu-
lated natural temperature acclimation, the locusts eggs 
have better adaptability to natural temperature changes. 
After constant and natural low-temperature acclima-
tion, 8 and 150 co-expressed genes were screened across 
the three different development stages in C. italicus eggs. 
However, only 2 and 22 co-expressed genes could be func-
tional annotated, and they were preferentially enriched in 

Fig. 4  RT-qPCR analysis of Hsp70,Hsp90,GAD and NOS from C. italicus egg after RNAi at different times
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pathways related to human diseases, thus their relevancy 
to cold tolerance needs to be further studied [42–44].

Molecular mechanism of cold tolerance
The response of insects to temperature stress is a complex 
process, which requires the participation and regulation 
of multiple genes [45]. With the respect to the pathways 
involving DEGs, there were differences in the response 
mechanism of C. italicus eggs in low temperature under 
the two acclimation modes. Under constant low-temper-
ature acclimation, metabolism pathway accounted for a 
large proportion of the significantly enriched pathways, 
in which a large number of DEGs were involved in sugar, 
lipid and amino acid metabolic pathways. Amino acid is an 
important osmoregulatory substance [46]. The accumu-
lation of a large number of free amino acids in the hemo-
lymph seemed to be an important physical and chemical 
feature for cold-tolerant insects in response to low temper-
ature stress [47]. Ge et al. [38] also confirmed that amino 
acids, such as alanine, proline, tyrosine and phenylala-
nine, accumulated significantly in C. italicus eggs during 
overwintering. This allows us to speculate that pathways 
such as arginine and proline metabolism and beta-alanine 
metabolism play a key role in the response of C. italicus 
eggs to constant low-temperature acclimation. Under 
natural low-temperature acclimation, the organ system 
pathway accounted for a large proportion of the signifi-
cantly enriched pathways, among which the digestive and 
the endocrine system can affect the growth, development 
and reproduction of insects [48]. For example, temperature 
stress can change the titer of juvenile hormone, resulting 
in the delay or failure of insect development. This abnor-
mal development of insects led by temperature stress may 
be caused due to the abnormal endocrine system [49]. 
Thus, we speculated that the resistance to low temperature 

in C. italicus eggs could be achieved mainly by regulating 
the metabolic physiology under natural low-temperature 
acclimation. It is worth noting that DEGs were significantly 
enriched in the circadian rhythms pathway under both 
low-temperature acclimation modes, which is similar to 
the results of Parker et al. [50] Previous studies have shown 
that circadian rhythm related genes of insects are not only 
the molecular basis driving the output of their own physi-
ological and behavioral circadian rhythms, but also related 
to the coping mechanism with temperature stress [51]. Still, 
it is unclear whether the changes in circadian rhythm genes 
directly affect the ability to tolerate cold. However, they 
can be promising candidates for explaining the metabolic 
changes during low-temperature acclimation [50].

Analysis of the significantly enriched, up-regulated 
pathways under the two low-temperature acclimation 
modes suggested the involvement of GAD gene under 
both constant low-temperature and natural low-temper-
ature acclimation. Although GAD is the key enzyme func-
tioning in catalysis of the decarboxylation of glutamate to 
produce γ-aminobutyric acid (GABA), it also accumulates 
abundantly in plants under various abiotic stresses [52], 
thus suggesting that GAD may be involved in regulating 
the normal physiological activities in the locust eggs at 
low temperature [53]. However, the expression of GAD in 
response to low temperature has not been reported. Also, 
the relationship between GAD gene and cold tolerance 
and its function needs to be further studied. NOS gene 
was also involved in cold acclimation in the two groups, 
although the pathways were different between groups. 
Thus, it can be speculated that the mechanism of NOS 
gene resisting low temperature may be different in the 
two low-temperature acclimation modes. Previous studies 
have shown that organisms can resist low temperature or 
other environmental stresses by up-regulating the expres-
sion of NOS [36, 54]. HSPs are closely related to the cold 
tolerance of insects [55, 56]. In the constant low-tempera-
ture acclimation group, the expression of HspA5 gene was 
significantly up-regulated, while the expression of Hsp90 
gene was significantly up-regulated in the natural low-
temperature acclimation group. Additionally, the expres-
sion of HspA1_8 gene was significantly down-regulated 
due to low-temperature stress, thus implying that differ-
ent HSPs genes showed different responses to different 
low temperature treatments, which is consistent with the 
results described in Zhang et al. [57].

The energy metabolism of insects would be inhibited at 
low temperature. Analysis of the significantly enriched, 
down-regulation pathways under the two acclimation 
modes found that the enzymes related to oxidative phos-
phorylation were significantly down-regulated in the con-
stant low-temperature group, while the enzymes related 
to TCA cycle were significantly down-regulated in the 

Fig. 5  The effect of dsRNA of Hsp70, Hsp90, GAD and NOS treatment 
on cold tolerance of C. italicus egg hatchablilty
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natural low-temperature group. These results indicated 
that although the energy supply patterns for locust eggs 
were different in the two groups, they survived under 
low temperature conditions mainly through generation 
or consumption of less energy. This is in agreement with 
the mechanism that insects respond to low-temperature 
environmental pressure by inhibiting metabolic rate in 
winter [58]. Yan et  al. [39] also proved that the level of 
respiration and metabolism of C. italicus eggs decreased 
significantly under low temperature condition.

In addition, AFPs that are related to cold tolerance in 
insects [59], have not been found under the two accli-
mation modes of locust eggs. One possible explanation 
is that only a few insect species were studied for the 
production of AFPs, which makes it difficult to identify 
AFP genes in newly studied species based on similarity 
annotation. On the other hand, the relationship between 
the levels of transcription and protein expression can be 
highly complex and often unequal. The analysis with the 
combination of transcriptome and proteome data often 
results in weak correlation between the levels of tran-
scription and protein expression [60].

Verification of cold tolerance gene
In this study, RNAi experiments were conducted by using 
the four selected genes. The results showed that the RNAi 
efficiency of different target genes was variable. Among 
the four genes injected with dsRNA, the highest inter-
ference efficiency of dsHspA5 gene was about 80% at the 
three development stages, while the highest interference 
efficiency of dsNOS at the diapause stage was only 42.8%. 
dsGAD and dsNOS showed no interference effect at the 
early-development stage and the diapause stage at 24 h 
and 48 h after treatment. The results of Vatanparast et al. 
[61] also showed that after interfering on three important 
enzyme genes of Helicoverpa armigera, interference effi-
ciency was found to be different (95.8, 97.7, and 74%).

Secondly, the optimal time for interference was also 
found to be different for various target genes. In the 
four periods for detection after injection of dsRNA, 
dsHspA5 gene displayed the best interference effect at 
72 h of early-development stage, 24 h of diapause stage 
and diapause-terminated stage, respectively. dsHsp90 
gene showed the best interference effect at 24 h of 
early-development stage and diapause stage, and 48 h 
of diapause-terminated stage respectively. dsGAD gene 
had the best interference effect at 72 h of the early-
development stage, 96 h of the diapause stage and 24 h 
of the diapause-terminated stage, respectively. dsNOS 
gene produced the best interference effect at 96 h in 
the early-development stage and diapause-terminated 

stage, and 48 h in the diapause-terminated stage, 
respectively. Lin et al. [62] and Lü et al. [63] conducted 
interference experiments on Henosepilachna vigintioc-
topunctata and found that the larval mortality on the 
3rd day after interfering with HvIAPI gene was 80%, 
while the same larval mortality could be achieved on 
the 9th day after interfering with Hvlesswright gene.

Thirdly, the interference effect was found to gradu-
ally weaken over time. For example, the expression 
level of dsHspA5 gene decreased by about 80% after 
24 h of interference in the diapause stage, but then 
increased gradually with the extension of interference 
time. This result indicated that the timeliness of RNA 
interference and the normal gene expression level will 
be restored after a certain period of time. Ji et al. [64] 
conducted an interference experiment on gene coding 
for cytochrome P450 reductase in Spodoptera litura. 
They found that the gene expression level decreased 
significantly, but the interference efficiency decreased 
gradually with the increase in interference time.

Fourthly, RNAi efficiency on the same gene could be 
different at different developmental stages. For example, 
the optimal interference efficiency of dsGAD gene was 
48, 82 and 70% in the early-development, diapause, and 
diapause-terminated stage, respectively. This indicated 
that locust eggs had different sensitivity to dsRNA at dif-
ferent developmental stages. Hou [65] performed inter-
ference with the BdCrzR gene in Bactrocera dorsalis at 
different developmental periods. It was found that the 
silencing efficiency was 60% for larvae and 50% for adults.

Fifthly, compared with the control group, RNAi on 
target genes HspA5, Hsp90, GAD and NOS could not 
only reduce the expression of these genes, but also 
break the cold tolerance system of locust eggs. It tends 
to reduce their hatching rate after low temperature 
treatment due to the interference of the expression 
pattern of target genes, thus indicating that the four 
genes identified in this study play an important role in 
coping with low temperature stress in locust eggs.

In summary, the response to low-temperature stress in 
insects is a complex regulatory process involving multiple 
genes. RNAi study on a single gene cannot fully under-
stand the mechanism of low-temperature stress tolerance 
in locust eggs. Locust eggs possess more than one copy 
of the four target genes, e.g., 17 HSP70 genes have been 
found in locust eggs. Subsequent experiment of RNA 
interference can be performed on multiple gene members, 
to explore the role of specific genes in cold tolerance of 
locust eggs. Genes in specific pathways can also be inter-
fered, with the aim to provide a basis for a comprehensive 
understanding of the mechanism of cold tolerance.
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Materials and methods
Insects and treatments
In the early July 2019, female and male adults of C. itali-
cus were captured in the Nanshan Experimental Station 
of Manas, Changji, Xinjiang Uygur Autonomous Region 
(43°54′ N, 86°7′ E; 1310 m), and were fed in an outdoor 
insect cage (1 m × 1 m × 1 m). Four plastic pots with the 
same diameter and a depth of 12 cm were placed on the 
ground in the cage. The pots were filled with sandy loam 
for C. italicus to lay eggs. The feeding density in the 
cage was 500 individuals/m2, and the ratio of female to 
male was kept at 1:1, aiming to obtain the social C. itali-
cus [66]. The insects were fed daily with fresh Artemisia 
frigida and Medicago sativa until mating and spawning. 
The flower pots were replaced regularly on a daily basis, 
and the oocysts were collected by sieving the soil.

After the oocysts were brought back to the labora-
tory, a portion of them were placed in a plastic box 
with a depth of about 5 cm that contained vermicu-
lite(30 cm × 20 cm × 9.6 cm). The plastic box was sealed with 
a sealing film and pierced with small holes to maintain 
humidity and ventilation, and was then placed in an indoor 
intelligent artificial climate box. The remaining oocysts were 
placed in the soil about 5 cm deep under the natural outdoor 
conditions. In a pre-experiment, eggs in early-development 
stage were treated for 5 d, 10 d and 15 d at 0 °C and 4 °C. The 
results showed that the supercooling point at two tempera-
tures after the treatment for 5 d was significantly different 
from that of the control group (27 °C) (P<0.05). The super-
cooling point at 0 °C after treatment for 10 d was signifi-
cantly different from that of the control group (27 °C). The 
supercooling point at 0 °C after treatment for 15 days was 
significantly different from that of the control group (27 °C) 
(P<0.05). Since the strong tolerance of insects was seen in 
the diapauses stage [67], eggs treated at 0 °C for 15 d were 
set as experimental group I, eggs overwintering in outdoor 
natural conditions were set as experimental group II, and 
eggs at the same development stage in artificial incubator 

at 27 °C were set as control group. The eggs of groups I and 
II were separately sampled at the early-development, dia-
pause and diapause-terminated stages, and 30 eggs in each 
group were sampled with three replicated groups. The 
development stages of overwintering eggs of C. italicus were 
divided according to the method described by Wang et al. 
[23] (Fig. 6). The difference in spawning time, temperature 
change in the year or storing temperature for eggs, can be 
the determining factors for the development time of C. 
italicus eggs [68]. Therefore, our experiment was carried 
out based on the development stages instead of the devel-
opment time. The temperature of the artificial incubator 
was maintained at 27 ± 1 °C, while the humidity was set at 
45% ± 5%, and the photoperiod was set as 14 L:10 D [69].

Total RNA extraction, transcriptome sequencing 
and annotation
For each development stage of the experimental and the 
control group, 100 mg of C. italicus eggs was grounded with 
liquid nitrogen. The total RNA was extracted according to 
the instructions of TRIzol reagent. The quality of RNA was 
detected by 1% agarose gel electrophoresis, and the concen-
tration and purity of RNA were evaluated by Ultramicro 
Biological Detector (Thermo, USA), and the qualified total 
RNA was further purified. Novogene (Tianjin, China) was 
commissioned to complete cDNA library construction and 
high-throughput sequencing. The sequencing platform was 
Illumina NovaSeq 6000, the sequencing read length was 
PE 150, and the sequencing method was “paired-end”, raw 
reads were obtained. Sequencing raw reads were preproc-
essed using Novogene’s internal Perl script, Clean reads 
were obtained by removing Adapter related, reads Contain-
ing N and Low quality reads. The obtained clean reads were 
assembled using Trinity (version: v2.4.0) software to obtain 
unigene. Finally, BLAST (version: V2.2.28 +, parameter: 
E-value < 10− 5) was used to compare unigene sequences 
with Nr, Nt, KOG and Swiss-Prot databases. Then use 
KAAS (version: R140224, parameter: e-value < 10− 10) to 

Fig. 6  Egg development stage and sampling of Calliptamus italicus 
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obtain the annotation information of unigene in KEGG. 
Use Blast2GO (version: B2G4PIPE_v2.5, parameter:e-value 
< 10− 6) to get the GO annotation information. The PFAM 
annotation information was obtained by using HMMSCAN 
(version: HMMER 3, parameter: e-value < 0.01) software.

Analysis of differentially expressed genes (DEGs)
The FPKM method was used to calculate the expression of 
each annotated gene. The gene expression levels obtained 
were screened for the DEGs between the samples of con-
stant low temperature acclimation group and the natural 
low temperature acclimation group with DESeq2 soft-
ware. The screening threshold is |log2(FoldChange)| > 1 
and P-value < 0.05. The smaller the P-value, the more sig-
nificant the difference was in the gene expression. Finally, 
GOseq R and KOBAS software packages were used to 
analyze the GO and KEGG enrichment of DEGs.

Validation of RNA‑seq DEGs
RT-qPCR was used for the validation of gene expres-
sion, and several genes were randomly selected from 
the screened DEGs to verify the reliability of transcrip-
tome data. Primers were designed by primer 5.0 software 
(Table S8), the cDNA synthesis mentioned in Section 4.2 
was used as the template, and β-Actin gene was used as 
an internal reference. Fluorescence real-time quantita-
tive PCR reaction was performed using SYBR® Premix Ex 
TaqTMgreen II kit. The reaction system (20 μL) consisted 
of: 1 μL of cDNA template, 1 μL of each gene-specific 
primer (0.2 μmol/L), 7 μL of ddH2O, and 10 μL of SYBR 
Green Supermix. The reaction program was: pre-denatur-
ation at 95 °C for 10 min; 95 °C for 10 s, 58 °C for 15 s, 72 °C 
for 15 s, 40 cycles; 95 °C for 10 s, 65 °C for 60 s, and 97 °C 
for 1 s. The dissolution curves were then generated. Each 
group of C. italicus egg samples were repeated three times.

Functional verification of cold tolerance genes by RNAi 
technology
Gene-specific primers with T7 promoter were designed 
(Table S9), and a 400–500 bp dsRNA was synthesized in the 
ORF region of the candidate cold tolerance gene using the 
TranscriptAidTM T7 kit. The concentration of dsRNA was 
measured by a microbiological detector and the integrity of 
dsRNA was detected by 1% agar gel electrophoresis. The qual-
ified dsRNA was diluted in ddH2O and saved for later use.

The dsRNA was injected into the middle and upper yolk 
of the C. italicus eggs (27 °C) using a microinjector. The 
injection volume was 69 nL with the concentration of 1 μg/
μL [70]. C. italicus eggs were injected with the same amount 
of dsEGFP which were used as control. After injection, a 
group of locust eggs were incubated in a 27 °C incubator 
for 24 h, 48 h, 72 h, and 96 h. The healthy and surviving C. 

italicus eggs were selected for each time period to extract 
total RNA and synthesize cDNA, which was detected by 
RT-qPCR. The reaction system and conditions were the 
same as those in Section 4.4. After low-temperature accli-
mation (0 °C/72 h), the other group was placed under the 
conditions of 27 ± 1 °C, 45 ± 5%, and L:D = 14:10 h, and the 
hatching rate was recorded. Each treatment was repeated 
three times, with 30 eggs for each repeat.

Statistical analysis
The relative gene expression was calculated by 2–△△C

T 
method, and statistical analysis of the data was per-
formed using SPSS 20.0 software. The interference effi-
ciency of dsRNA at different time points was tested by 
independent sample t-test.

Hatching rate (%) = the number of hatched eggs/total 
locust eggs× 100%.

Significance level was tested using P < 0.05.
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