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Abstract

Background: The Qinba region is the transition region between Indica and Japonica varieties in China. It has a long
history of Indica rice planting of more than 7000 years and is also a planting area for fine-quality Indica rice. The aims
of this study are to explore different genetic markers applied to the analysis population structure, genetic diversity,
selection and optimization of molecular markers of Indica rice, thus providing more information for the protection
and utilization on germplasm resources of Indica rice.

Methods: Fifteen phenotypic traits, a core set of 48 SSR markers which originated protocol for identification of rice
varieties-SSR marker method in agricultural industry standard of the People’s Republic of China (Ministry of Agri-
culture of the PRC, NY/T1433-2014, Protocol for identification of rice varieties-SSR marker method, 2014), and SNPs
data obtained by genotyping-by-sequencing (GBS, Nialll and Msel digestion, referred to as SNPs-Nlalll and SNPs-Msel,
respectively) for this panel of 93 samples using the lllumina HiSeq2000 sequencing platform, were employed to
explore the genetic diversity and population structure of 93 samples.

Results: The average of coefficient of variation (CV) and diversity index (H,) were 29.72% and 1.83 ranging from 3.07%
to 137.43%, and from 1.45 to 2.03, respectively. The correlation coefficient between 15 phenotypic traits ranged from
0.984 to -0.604. The first four PCs accounted for 70.693% phenotypic variation based on phenotypic analysis. A total of
379 alleles were obtained using SSR markers, encompassing an average of 8.0 alleles per primer. Polymorphic bands
(PPB) and polymorphism information content (PIC) was 88.65% and 0.77, respectively. The Mantel test showed that
the correlation between the genetic distance matrix based on SNPs-N/alll and SNPs-Msel was the largest (R?=0.88),
and that based on 15 phenotypic traits and SSR was the smallest (R”>=0.09). The 93 samples could be clustered into
two subgroups by 3 types of genetic markers. Molecular variance analysis revealed that the genetic variation was 2%
among populations and 98% within populations (the Nm was 0.16), Tajima’s D value was 1.66, the FST between the
two populations was 0.61 based on 72,824 SNPs.

Conclusions: The population genetic variation explained by SNPs was larger than that explained by SSRs. The gene
flow of 93 samples used in this study was larger than that of naturally self-pollinated crops, which may be caused by
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long-term breeding selection of Indica rice in the Qinba region. The genetic structure of the 93 samples was simple

and lacked rare alleles.

Keywords: Indica rice, Phenotypic traits, SSRs, SNPs, Genetic diversity, Population structure

Key message

It was found that there was a significant correlation
between the genetic distance obtained by the two types
of SNPs markers, while the lowest correlation occured
between the genetic distance of phenotypic traits and
SSR data. The population genetic variation explained
by SNPs was larger than that explained by SSRs among
DNA molecular markers. Bayesian clustering algorithm
was superior to the other two clustering methods. The
genetic structure of 93 samples representative of the
diversity present in Qinba area in China of Oryza sativa
Xian group was simple and lacked rare alleles.

Background

According to the origin and the history of rice cultivate
in China, the two major types of Oryza sativa L. are
classified as O. sativa L. subsp. hsien Ting and O. sativa
L. subsp. keng Ting proposed by Ding Y [1, 2], and the
naming method of O. sativa L. subsp. indica Kato (also
known as O. sativa Xian group) and O. sativa L. subsp.
japonica Kato (also known as O. sativa Xian group ) for
O. sativa L. proposed by Kato was used internationally at
the present [3], in which Indica rice is distributed mainly
in the southern Qinling Mountains in China. The Qinba
area is the climate transition area between the northern
and southern areas as well as the transition area from
Indica rice to Japonica rice, which is also the most suit-
able planting area for Indica rice in China. Germplasm
resources form the basis of all breeding work; the analy-
sis of genetic diversity and genetic structure is beneficial
to mining excellent breeding materials and improving
breeding efficiency. Particularly, in-depth genetic dis-
section of Indica rice germplasm resources have not
been conducted. The population genetic structure is the
non-random distribution of genes or genotypes in space
and time, including genetic variations within popula-
tions and genetic differentiation between populations.
Population structure analysis is essential to explore the
biological adaptability, population formation process,
evolutionary mechanism, protection, and development of
biological resources. At the same time, populations with
identical or similar genetic backgrounds is most suitable
for genome-wide association studies (GWAS), therefore,
the study of population genetic structure plays an impor-
tant role in the field of biology, in which the selection of

genetic markers is the top strategic priority, ranging from
earlier morphological markers to more recent different
types of DNA molecular markers [4-7]. The Indica rice
genome has simple sequence repeats (SSRs) that span
approximately 10-50 kb [8, 9]. In the last few decades,
SSR molecular markers have become important tools in
the field of biology, particularly in terms of population
structure, genetic mapping, and other related fields, SSR
markers have also become the designated markers of the
International Fingerprint Mapping Center [10—12]. These
are employed in judicial identification, identification of
new varieties of plants, such as rice, rape, and corn [13—
18]. SSR markers are also used in DNA fingerprinting for
breed protection [19]. However, SSR markers are scarce,
show unbalanced distribution in the genome, have weak
electrophoretic resolution, and are relatively time-con-
suming and labor-intensive to study, and thus it is dif-
ficult to construct high-density genetic maps. With the
recent development of next-generation sequencing tech-
nology, most biological studies have rapidly improved, in
particular, the use of single nucleotide polymorphisms
(SNPs) based on genome-wide scans. With the release of
extensive rice genome sequencing data, one SNP in every
hundred base pairs or even every dozens of base pairs
has been identified, indicating that there are numerous
SNPs in the rice genome [6, 20]. A small number of SNPs
can be used to resolve many problems, so the sequenc-
ing technology was born based on simplified genome
by restriction site-associated DNA (RAD) tags [21]. The
frontrunner among these technologies is genotyping-
by-sequencing (GBS), which has recently gained atten-
tion because it utilizes methylation-sensitive restriction
endonucleases (type II enzyme), thereby avoiding repeti-
tive regions of the genome (methylated regions). GBS
technology can rapidly identify high-density polymor-
phisms, especially SNPs [22]. In this study, two type II
enzymes (Nlalll and Msel) were selected by simulated
whole-genome enzyme digestion, which generated RAD
tags for sequencing to obtain SNPs datasets, referred
to as SNPs_p;,;; and SNPs ., respectively. Simultane-
ously, a core set of SSR markers from NY/T1433-2014
[23] that originated in the Agricultural Standards of the
People’s Republic of China and 15 phenotypic traits were
employed to explore gene flow and population genetic
structure of 93 samples and to provide reference for
future research studies using different genetic markers
employed in related fields.
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Results

Phenotypic traits diversity and cluster analysis

Phenotypic diversity analysis

Data of the 15 phenotypic traits of the 93 samples are
summarized in Table 1. The basic statistical analysis and
diversity of the 15 phenotypic traits based on phenotypic
data is shown in Table 2. The coefficient of variation (CV)
was 29.72% on average and ranged from 3.07% (brown
rice rate) to 137.43% (chalkiness). The average diversity
index (H,) was 1.92 and ranged from 1.55 to 2.08, with
brown rice rate and chalkiness having lower H,, indicat-
ing that there were relatively few phenotypes in these two
traits. Overall, the Indica rice materials tested had rela-
tively more phenotypes on these 15 traits; the distribu-
tion in each phenotype was uneven Tables 3 and 4.

Phenotypic traits clustering

Average Euclidean distance was 5.19, ranging from 0.90
(between W723 and W742) to 13.73 (between W699 and
W733). Clustering result based on the 15 phenotypic
traits was shown in Fig. 1, which demonstrated that the
92 samples were clustered together in addition to W669
and showed a single genetic basis for the population.

SSR marker analysis

Polymorphism of SSR markers

A total of 378 bands was detected using 48 core SSRs
primer pairs (Table 5). Among these, 336 polymorphic
bands were detected. The average number of polymor-
phic fragments was 7, ranging from 1 to 14. The high-
est number (14) of polymorphic bands was detected
by RM278 while RM311 is the least bands. The average
value of PPB (Percentage of polymorphic bands) was
88.87%, ranging from 50% to 100%. The average value of
PIC (Polymorphism information content) was 0.77, rang-
ing from 0.19 to 0.88. Data showed that core SSR in rice
can produce rich bands and high polymorphic rate.

Clustering based on SSR

PC, in which the first three PC (eigenvalue) to select and
their cumulative contribution of variance accounted for
15.76%, and the unweighted pair-group method with
arithmetic means (UPGMA) were performed, which
demonstrated that the 93 genotypes could be divided into
2 subgroups (Fig. 2).

Bayesian clustering based on SSR markers

A total of 378 SSR bands was used to elucidate the
population structure of the entire pool of 93 rice germ-
plasms. The best K was K = 2, suggesting that the 93
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rice germplasms were best divided into two subgroups
(Fig. 3).

SNPs marker analysis

A total of 39,872 SNPs_y;,;;; and 35,547 SNPs ... passed
the minor allele frequency (MAF) lower limit of 0.05
using Nlalll and Msel digestion, respectively. Merged
data of SNPs_y;,;;; and SNPs_,,.;, with a total of 72,824
SNPs including 67,621 SNPs that aligned to specific
chromosomes and 5,023 SNPs unlocalized, were then
obtained.

Linkage disequilibrium (LD) and haplotype
analysis

From the total of 6,288,753 loci (93 samples X
67,621SNPs), 326,873 (5.198%) were heterozygous. The
67,621 SNPs were unevenly distributed on the 12 chro-
mosomes (Fig. 4a); chromosome 1 contained the largest
number of makers (8,425), while chromosome 8 included
the least (3,953). LD, as represented by inter-loci R* val-
ues, was calculated for the 84,255 SNP pairs. R? value
had a minimum of 0.2 and an average of 0.73. 46,322 SNP
pairs (54.98%) had R? values higher than 0.8, while 7,841
pairs (9.31%) were in complete LD (R’=1). The 12 chro-
mosomes yielded a total of 6,568 predicted haplotypes
(Fig. 4b), with chromosome 1 possessing the most hap-
lotypes (776) and chromosome 10 possessing the least
(349). The largest haplotype was composed of 95 SNPs.
The longest haplotype spanned over 200.0 kb; the average
haplotype length was 33.71kb.

AMOVA and gene flow

The average MAF of the 93 samples was 0.21. Tajima’s
D value was 1.66, which suggests low levels of both
low- and high-frequency polymorphisms, indicating a
decrease in population size and/or balancing selection
that resulted in more haplotypes and lacked rare alleles
in this population. Analysis of molecular variance
(AMOVA) showed that the genetic variation was 98%
within the population and 2% between populations,
which indicated the existence of slight genetic variation
among 93 samples. The genetic differentiation coeffi-
cient (Fgr) between the two populations was 0.61, and
gene flow (N,,) was 0.16. Further investigation showed
that the gene flow of selfing crops was the smallest, and
that of annual herbaceous plants was the lowest. If N,
> 1, which indicates that the level of gene flow between
populations is high, then genetic differentiation among
populations is small; if N,, > 4, then gene communica-
tion between populations is more adequate and genetic
differentiation is smaller; and N,, < 1 indicates that
population differentiation may have occurred due to
genetic drift. The gene flow was 0.16, which indicates
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Table 1 Phenotypic data of 93 samples

Name Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
W1 R 115 1282 4626 258 617 2895 24136 21764 2857 7914 6747 5860 17.50 4.00 2.40
W298 S 115 1282 4626 258 6.17 2895 24136 21764 2857 7914 6747 5860 1750 4.00 240
W2 R 114 1218 533 246 783 2794 21900 18175 2882 9216 6035 5490 5150 1200 230
W300 S 81 m 4738 196 550 2542 18407 17753 2478 7777 5856 5700 100.00 7980 240
W352 S 102 1124 3076 222 750 2422 14043 13500 2631 7633 5536 4390 5860 2220 250
W353 S 115 1278 4262 196 682 2830 12845 11214 3181 7724 6410 4630 5440 15.1 23
W354 S 122 1202 2994 201 6.35 27.21 16950 15710 2952 7680 5929 2960 21.70 59 25
W355 S M7 1176 4582 211 8.13 2393 16230 146.11 2734 7568 6334 5100 330 09 29
W357 S 100 106 4878 24 517 26.72 20093 180.00 2223 7718 5241 4380 7270 2470 2.00
W359 S 96 1358 3228 248 667 2598 21356 18856 2414 7790 5942 5870 23.10 7.30 240
W361 S 109 1132 4452 206 483 2793 18731 17519 3351 7470 5025 4840 91.20 5880 210
W366 S 105 1246 4042 172 9.00 23.71 159.72 13333 1946 69.03 5018 4910 97.20 79.00 150
W367 S 103 110 5536 1.8 333 2596 24725 23700 2773 8164 5128 4860 9560 4260 1.70
W369 S 105 1092 3722 21 6.33 2441 221.87 19500  20.51 7739 4992 3730 1840 540 240
W370 S 110 1292 4526 216 1033 2880 22194 20817 2360 7730 5329 4820 1880 7.90 2.50
W375 S 85 98.6 36.3 202 667 2590 23106 21429 1930 7754 5008 4140 3890 1320 230
W377 S 103 123 3588 238 383 2647 23686  216.71 2307 7772 4780 5330 1250 3.80 220
W380 S 100 98 3676 2 717 2596 21639 19694 2021 7723 4800 2460 49.80 1860 220
W381 S 98 99.6 28.8 2 4.50 31.31 22886 20393 2210 7531 53.19 4800 19.90 4.80 2.50
W3 R 116 1332 4534 238 633 2928 21614 20136 3622 7987 5144 2890 37.60 9.30 240
W4 R 115 1218 4698 214 717 2794 17663 16894 3067 7944 6083 6030 23.00 490 2.40
W5 R 113 1256 46 228 6.00 3135 25455 24736 2683 7858 5636 4670 17.70 4.10 250
W666 R 105 109.8 395 168 1017 2225 127.20 12250 2310 7966 56.12 5560 280 0.70 240
We67 R 101 105 356 243 683 2204 17500 16850 2441 7862 6095 5590 2570 7.70 210
W668 R 109 1164 3914 22 8.17 2590 14290 13059 3020 7787 6330 6260 1050 2.50 240
W669 R 109 1108 3756 178 1033 2484 14095 11529 2167 7860 6480 6410 4.00 0.80 2.70
W670 R 104 132 3852 226 550 2693 17640 16628 3235 7720 5332 5000 56.80 15.6 24
We71 R 110 1286 4576 262 617 2833 19031 17638 3160 8006 60.73 5940 53.70 1560 230
W672 R 104 1218 4198 212 683 2369 14373 12764 3436 7855 6060 5990 7.10 1.10 2.60
W673 R 106 1196 3783 215 800 26.10 12807 12021 3095 7224 5513 5270 7.80 2.10 240
W674 R 110 1358 434 208 517 28.33 190.31 17638 3466 7661 5874 5830 1380 3.10 250
We675 R 110 1186 3084 198 800 2753 15408 14133 2910 7889 5735 5520 2280 5.00 240
W676 R 109 106 3012 22 6.17 25.65 165.25 15300 2364 7692 5406 5390 1.20 0.30 210
We677 R 110 1122 3012 21 8.17 2423 17444 15963 2913 7980 5810 5660 18.10 3.50 2.30
W678 R 110 112 3924 214 1083 2491 13157 11138 3099 8068 5813 5310 1060 1.90 2.60
W679 R 112 1088 3818 23 7.83 24.72 13344 12094 2962 7882 6050 5960 19.90 4.50 2.60
We80 R 107 1216 4376 208 683 2708 15126 14186 3199 7855 6399 6140 2830 7.60 2.70
Wwes1 R 11 1168 3756 23 517 2472 130.73 11900 3008 7689 5486 5400 1.60 0.20 2.30
W684 R 11 1166 366 2.3 7.33 2656 16831 16313 3126 7958 6182 6000 580 1.70 2.30
W685 R 110 1214 3194 244 817 2398 17687 16953 3326 7948 5674 5450 3520 1000 210
We86 R 110 121 388 248 683 2497 18450 17292 2540 7890 6028 5980 2340 5.00 2.00
We87 R 110 1084 3822 212 733 2507 14233 12887 2874 7856 5634 5410 2950 6.90 2.20
We88 R 108 1146 432 2 7.83 2627 14740 13927 3458 7812 6078 5980 13.10 230 2.60
W689 R 109 1052 3654 254 867 25.75 131.06  86.86 3003 8033 5400 3980 2940 5.80 220
W690 R 113 1048 3314 204 1017 2406 96.70 84.85 26.11 7674 5939 5810 440 0.80 290
We91 R 108 1156 4472 202 883 2818 13540 13030 3440 7835 5620 5150 940 1.90 2.60
We692 R 108 1168 458 266  6.50 2602 26285 21218 2450 /872 6500 6270 370 1.10 3.00
W693 R 114 122 3916 252 717 2498 23475 20813 2727 7799 5861 5720 2390 8.90 2.20
W694 R 110 1038 3352 16 1067 2333 13754 12904 2259 80.13 5670 4800 9.60 3.00 2.60
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Table 1 (continued)

Name Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
We97 R 105 908 2732 182 733 2296 11419  101.31 2127 7924 6257 6180 260 0.70 240
weos R 107 1158 416 204 967 2565 15888 15317 2575 7904 5982 5870 1420 3.70 240
W699 R 102 1088  80.7 222 383 2627 42850 39460 2063 7894 6129 5880 950 240 2.60
Wé R 117 1252 4412 232 617 2390 23615 21131 2918 8215 5604 4720 2560 5.20 2.20
W700 R 101 1218 356 272 717 2409 16638 15381 2517 7940 6340 6200 160 0.30 2.60
W701 R 113 1412 4516 168 950 2870 18870 18115 2220 7779 6004 5860 17.50 4.00 240
W702 R 107 1266 3308 178 1083 2127 12713 11813 2338 7885 6327 6140 070 0.20 2.60
W703 R 107 1086 3532 166 800 2384 16230 14704 2043 7958 6386 6350 250 040 2.70
W704 R 114 1334 457 1.9 540 2422 20646 19677 2536 7824 5696 5620 580 1.10 240
W707 R 106 1166 3802 176 833 2391 14178 13467 1861 77.21 6243 6180 500 1.10 290
W708 R 104 1174 3316 226 817 2606 23525 21600 2370 7651 6123 5910 741 123 2.60
W710 R 104 1164 301 186 733 2369 17788 16825 2956 8148 6029 5930 91.10 2320  1.80
W711 R 102 115 3288 182 817 2298 15988 15324 2885 8124 6708 6580 89.10 2120 180
W713 R 108 1142 357 164 767 2448 23219 20119 2037 7993 6468 6420 120 0.20 2.80
W714 R 100 1202 2694 19 733 2190 20082 18159 1969 7996 5960 5770 3.00 0.70 240
W715 R 104 1186 3508 18 8.50 2641 23360 21987 2228 7834 6290 6270 200 0.50 2.70
W716 R 92 1044 3922 208 667 2420 17550 14570 2809 7825 6224 5680 1370 340 2.70
W717 R 105 135 4106 232 667 2869 19238 180.15 2576 7901 6385 5750 5250 1450 230
W718 R 113 1414 3628 2.1 1017 2683 15396 13742 2743 7926 6109 5990 220 0.30 2.70
W719 R 97 1254 3266 188 783 2245 14520 13860 2862 7948 6049 5340 0.70 0.10 3.10
W720 R 99 1224 3256 204 917 24.35 11214 10483 2921 7750 5873 5470 200 030 2.90
W721 R 105 982 3522 24 567 2536 18346 17854 2712 7743 5651 5260 4870 3920 220
W722 R 96 1236 3706 218 6.17 2669  159.75 11056 2465 7920 5598 1530 3950 1030 290
W723 R 105 1292 3764 262 667 2806 25529 24593 2296 8044 6213 6080  14.00 4.20 2.30
W724 M 84 934 415 154 867 22.65 14847 12625 2037 8037 61.14 5880 1530 4.90 240
W725 M 89 99.2 4426 174 767 2371 19628 18200 2447 8339 6230 5130 1340 3.70 240
W726 M 78 76.2 3346 138 1367 2125 9933 8042 2809 8226 6404 5970 8590 33.00 270
W727 M 80 88.6 4052 176 800 2310 12029 11219 2970 7921 6038 5620 30.68 1279 250
W728 M 75 82.6 3614 142 1033 2088 98.26 90.37 2650 8029 6190 5732 16.97 6.70 2.60
W730 M 86 95.6 3622 142 1133 2260 12852 12467 2401 7768 5386 4040 5950 2250 230
W732 M 89 90.2 29.7 14 767 2020 12582 11968 2593 7999 5699 4330 81.00 2350  1.90
W733 M 81 758 293 128 1083 1817 7053 63.07 28.11 80.07 5888 5240 80.80 2690 250
W734 M 91 90.2 3444 222 933 2192 16561 15083 2490 8061 6013 5780 9380 4100 1.70
W735 M 87 89.2 3742 154 967 2091 13159 12812 2667 7986 5857 4330 89.90 3070 2.00
W736 M 84 86 3112 15 1200 2020 10084 94.72 2944 7864 5184 3850 9470 4150 210
W737 M 81 92 2828 154 9.7 1937 12792 12328 2759 80.10 56.71 4980 97.10 4840 240
W738 M 100 1058 418 172 967 2533 154.27 14968 2463 8055 6413 6320 73.10 21.00 240
W739 M 100 1106 4486 236 6.17 2410 14610 13324 2369 7956 6205 6160 3420 8.90 2.00
W740 M 81 85.8 2918 152 1400 2622 25315 23023 2985 8105 6360 5850 @ 86.00 3950 220
W741 M 85 86.6 3418 154 1083 19.78 8293 71.67 3037 7667 5731 5230 9340 4520 220
w742 M 104 1328 3688 244 750 2773 26247 25333 2238 7980 6217 6120 1230 3.10 240
W743 M 100 914 3434 198 683 21.83 13557 12577 2902 7889 5550 5040 40.20 7.90 210
W744 M 95 9238 5086 1.74  7.00 2479 13340 12707 3190 7738 5772 5290 2760 5.50 2.10
W7 R 114 1312 3694 216 600 2641 21894 20263 2825 7760 5592 5190 1.20 0.30 2.30

Note: M, Rand S in the table refer to the maintainer line and restorer line of rice CMS Lines, and special rice. Phenotypic trait number (1 to 15) in first row correspond
from left to the right to The period from seeding to heading (d); Plant heights (cm); Leaf length (cm); Leaf width (cm); Average single plant valid spike number; Spike
lengths (cm); Kernel numbers per spike; Grain numbe; 1000-seed weights (g); Brown rice rate (100%); Milled rice rate (100%); Head rice rate (100%); Chalky rice rate;

Chalkiness; Length-width ratio
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Table 2 Basic statistical analysis and diversity of the 15 phenotypic traits

Phenotypic traits Mean+SD Median Mode Rang CV (%) H,
The period from seeding to heading(d) 102.95410.543 105 110 47 10.24 191
Plant heights (cm) 112.7661+14.994 115.600 1218 65.6 13.30 2.05
Leaf length (cm) 3867274751025 37.5600 30.12 53.76 19.42 1.89
Leaf width (cm) 2.0423£0.33795 2.0800 1.54 144 16.55 2.08
Average single plant valid spike number 7.74+£2.007 7.50 6 11 25.83 2.03
Spike lengths (cm) 25.0742.593 2498 24 13 10.34 2.02
Kernel numbers per spike 17442452668 165.61 190 358 30.20 1.92
Grain number 159.68449.365 153.17 176 332 30.91 1.92
1000-seed weights (g) 26.75+£4.129 2712 20 17 1544 2.06
Brown rice rate (100%) 787642414 78.85 79 23 3.07 1.79
Milled rice rate (100%) 58.8044.439 5942 67 19 7.59 204
Head rice rate (100%) 53.61£8.955 56.20 59 51 16.70 1.89
Chalky rice rate 32.174£31.064 19.90 1 99 96.56 1.68
Chalkiness 11.97£1645 5 0 80 13743 1.55
Length-width ratio 2.3940.293 240 2 1 12.26 1.96

Most phenotypic traits were correlated or significantly correlated. The most significant correlation was between kernel numbers per spike and grain number, followed
by that between chalky rice rate and chalkiness. However, the correlation between chalky rice rate and length-width ratio was the least significant, followed by that

between leaf width and average single plant valid spike number (Table 3)

Table 3 Pearson correlation coefficient analysis of the 15 phenotypic traits

Traits 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 1

2 0726" 1

3 0224" 0249 1

4 0567 05827 261" 1

5 0358 -0398" -0394" -0564" 1

6 05747 06347 0398”7 05717 -04697 1

7 0268" 03917 0509" 04607 -0520" 0554”7 1

8 0260 03937 05017 0428" -05197 0545 0984 1

9 0179 0111 0074 0159  -0024 0147  -0272" -0250" 1

10 0107 -0130 0098  -0013 015  -0116 0085 0067 0078 1

11 0053 0095 0049 0014  0222° -0037 -0014 -0022 0012 0336" 1

12 0076 0125 0058 0055 0115 -0054 0031 0065 -0045 0155 0680" 1

13 04917 -04147 0053 -03227 0152 02687 -0.158 -0.140 0.145 0077 -0239° -02707 1

14 0466" 03537 0017 -03017 0116  -0240° -0116 -0099 0036 -0.143 -0295" -0208" 08917 1

15 0095 0171 0005 -0015 0156 0104 -0047 -0084 -0042 0001 0360° 0134 -0604" -0518" 1

Note: Asterisk indicates significant difference between phenotypic traits using two-tailed t-tests. *P<0.05; **P<0.01

Principal components were extracted based on the criterion that the eigenvalue was greater than 1.0. The eigenvalues of the first four PCs in 15 phenotypic traits were
greater than 1.0, and together accounted for 70.693% of the phenotypic variation (Table 4). The first PC accounted for 31.527%; the most important traits were spike
lengths (0.167), plant heights (0.165) and leaf width (0.159). The second PC accounted for 18.137%, the most important traits being length-width ratio (0.252), milled

rice rate (0.244) and head rice rate (0.195)

that the gene flow among populations in the Qinba Clustering based on SNPs
region is lower, but nearly 2.5-fold higher than that of PCclustering

conventional inbred plants, which may result in long-  Principal component analysis was performed to select
term artificial selection, leading to reduced genetic the first three PCs (based on eigenvalue). Their cumu-
differentiation. lative contribution of variance accounted for 40.69%,
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Dim-3

Fig. 1 Cluster diagram based on the 15 phenotypic traits. a via PC clustering; b via UPGMA clustering

Table 4 Eigenvalue and contributive percentage of principal components and component scores coefficient matrix of the 15
phenotypic traits

Traits code First principal Second principal Third principal Fourth
component component component principal
component

The period from seeding to heading(d) 0.155 0.052 -0.212 0.135
Plant heights (cm) 0.165 0.029 -0.138 0.106
Leaf length (cm) 0.108 -0.098 0.188 0.130
Leaf width (cm) 0.159 -0.038 -0.091 0.156
Average single plant valid spike number -0.136 0.155 0.050 0.020
Spike lengths (cm) 0.167 -0.066 -0.083 0.081
Kernel numbers per spike 0.155 -0.136 0.262 -0.151
Grain number 0.152 -0.141 0.264 -0.137
1000-seed weights (g) 0.001 0.002 -0.224 0.565
Brown rice rate (100%) -0.007 0.071 0.305 0.267
Milled rice rate (100%) 0.023 0.244 0.279 0.232
Head rice rate (100%) 0.030 0.195 0272 0.194
Chalky rice rate -0.121 -0.242 0.099 0.244
Chalkiness -0.110 -0.248 0.077 0.142
Length-width ratio 0.043 0.252 -0.039 -0.194
Eigenvalue 4.729 2.721 1.763 1.391
Contributive percentage (%) 31.527 18.137 11.756 9.272
Cumulative contributive percentage (%) 31.527 49.665 61.420 70.693

39.76% and 40.10% for SNPs_p;,i» SNPs_y,;, merged into two subgroups by the first three PCs (Fig. 5), with
data of SNPs_ y;,;; and SNPs_,,.;, respectively, which W366 and W367 being always separated from other
demonstrated that the 93 genotypes could be clustered samples.
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Table 5 Information and polymorphism of 48 SSR primers

Primer name Chr. Sequence(5’-3') Annealing TNB NPB PPB (%) PIC
temperature (°C)
RM583 1 F:agatccatccctgtggagag; Rigcgaactcgegttgtaatc 55 10 10 100 0.86
RM71 2 F:ctagaggcgaaaacgagatg; R.gggtgggcgaggtaataatg 55 8 8 100 0.84
RM85 3 F:ccaaagatgaaacctggattg; Rigcacaaggtgagcagtcc 55 9 9 100 0.85
RM471 4 F:acgcacaagcagatgatgag; R:.gggagaagacgaatgtttgc 55 8 6 75 0.86
RM274 5 Ficctcgettatgagagcettcg; Ricttctccatcactcccatgg 55 12 12 100 0.84
RM190 6 Fictttgtctatctcaagacac; Rittgcagatgttcttcctgatg 55 5 5 100 0.74
RM336 7 F:cttacagagaaacggcatcg; Rigctggtttgtttcaggttcg 55 7 7 100 0.79
RM72 8 F:ccggcgataaaacaatgag; Rigcatcggtcctaactaaggg 55 12 9 75 0.86
RM219 9 F:cgtcggatgatgtaaagcct; Ricatatcggcattcgectg 55 2 2 100 0.36
RM311 10 F:tggtagtataggtactaaacat; Ritcctatacacatacaaacatac 55 2 1 50 0.37
RM209 1 F:atatgagttgctgtcgtgceg; Ricaacttgcatcctcecctec 55 4 3 75 0.67
RM19 12 F:caaaaacagagcagatgac; Rictcaagatggacgccaaga 55 12 9 75 0.86
RM1195 1 Fatggaccacaaacgaccttc; Ricgactcccttgttcttctgg 55 8 8 100 0.84
RM208 2 F:tctgcaagccttgtctgatg; Ritaagtcgatcattgtgtggacc 55 5 4 80 0.75
RM232 3 F:ccggtatecttcgatattgc; Riccgacttttectectgacg 55 10 10 100 0.87
RM119 4 F:catccccctgetgetgetgctg; Ricgccggatgtgtgggactageg 67 7 4 57.14 0.79
RM267 5 Fitgcagacatagagaaggaagtg; Riagcaacagcacaacttgatg 55 9 5 56.56 0.85
RM253 6 F:tccttcaagagtgcaaaacc; Rigcattgtcatgtcgaagec 55 6 6 100 0.75
RM481 7 F:tagctagccgattgaatggc; Rictccacctcctatgttgttg 55 7 7 100 0.80
RM339 8 F:gtaatcgatgctgtgggaag; R\gagtcatgtgatagccgatatg 55 8 8 100 0.79
RM278 9 F:gtagtgagcctaacaataatc; Ritcaactcagcatctctgtcc 55 14 14 100 0.85
RM258 10 Fitgctgtatgtagctcgeac; Ritggcectttaaagetgtege 55 7 6 85.71 0.80
RM224 11 F:atcgatcgatcttcacgagg; Ritgctataaaaggcattcggg 55 8 8 100 0.84
RM17 12 F:tgccctgttattttcttctcte; Riggtgatcctttcccatttca 55 9 9 100 0.78
RM493 1 F:tagctccaacaggatcgacc; Rigtacgtaaacgcggaaggtg 55 7 7 100 0.83
RM561 2 F:gagctgttttggactacggc; R:gagtagctttctcccacccc 55 8 5 62.50 0.85
RM8277 3 F:agcacaagtaggtgcatttc; Riatttgcctgtgatgtaatage 55 7 7 100 0.75
RM551 4 F:agcccagactagcatgattg; R:gaaggcgagaaggatcacag 55 6 6 100 0.68
RM598 5 F:gaatcgcacacgtgatgaac; Riatgcgactgatcggtactcc 55 9 5 55.56 0.75
RM176 6 F:cggctcccgctacgacgtctec; R:agcgatgegcetggaagaggtge 67 10 7 70 0.88
RM432 7 F:ttctgtctcacgcetggattg; Riagctgcgtacgtgatgaatg 55 5 5 100 0.71
RM331 8 F:gaaccagaggacaaaaatgc; Ricatcatacatttgcagccag 55 8 7 87.50 0.82
OSR28 9 F:agcagctatagcttagctgg; Riactgcacatgagcagagaca 55 10 9 90 0.80
RM590 10 F:catctccgctctccatgc; Riggagttggggtcttgttcg 55 9 6 66.67 087
RM21 11 F:acagtattccgtaggcacgg; Rigctccatgagggtggtagag 55 1 1 100 0.87
RM3331 12 F:cctcctccatgagctaatgc; Riaggaggagceggatttctcte 50 6 4 66.67 0.80
RM443 1 F:gatggttttcatcggctacy; Riagtcccagaatgtegtttcg 55 10 7 70 0.75
RM490 1 F:atctgcacactgcaaacacc; Riagcaagcagtgctttcagag 55 9 9 100 0.82
RM424 2 Fitttgtggctcaccagttgag; Ritggcgcattcatgtcatc 55 5 5 100 0.72
RM423 2 Fagcacccatgccttatgttg; Ricctttttcagtagcecctecc 55 7 7 100 0.82
RM571 3 F:ggaggtgaaagcgaatcatg; Ricctgctgctctttcatcage 55 7 7 100 0.67
RM231 3 F:ccagattatttcctgaggtc; Ricacttgcatagttctgcattg 55 12 12 100 0.84
RM567 4 F:atcagggaaatcctgaaggg; R\ggaaggagcaatcaccactg 55 10 10 100 0.78
RM289 5 Fittccatggcacacaagcg; Rictgtgcacgaacttccaaag 55 10 10 100 0.88
RM542 7 F:tgaatcaagcccctcactac; Rictgcaacgagtaaggcagag 55 8 7 87.50 0.84
RM316 9 F:ctagttgggcatacgatggc; R:acgcttatatgttacgtcaac 55 2 2 100 0.19
RM332 1 F:gcgaaggcgaaggtgaag; Ricatgagtgatctcactcaccc 55 10 8 80 0.88
RM7102 12 F:taggagtgtttagagtgcca; Ritcggtttgcttatacatcag 55 3 3 100 043
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Fig. 3 Bayesian clustering based on SSR markers; Red: group |; Green: group II. Each vertical line on the X-axis correspond to a sample. The
proportion of each color represents probability rate with which a given genotype belongs to each group

UPGMA clustering Bayesian clustering

The unweighted pair-group method with arithmetic  Seventy-two thousand eight hundred twenty-four SNPs
means (UPGMA) algorithm was performed and demon- (MAF <5%) were used to assess the population struc-
strated that the 93 genotypes could be divided into 2 sub-  ture of the entire pool of 93 samples. Delta K reached a
groups (Fig. 6), which was consistent with the PC results. maximum value at K=2, suggesting that the 93 samples
Group I included 1 to 3 samples, while group II contained  were divided into two subgroups (consisting of 70 and 23
92 to 90 samples. The average genetic distance was 0.29, samples) (Fig. 7). In the population structure analysis, the
ranging from 0.02 to 0.55 based on merged SNPs ,;,;; results from K = 2 to K = 5 revealed the occurrence of
and SNPs_,,; data. The two most closely related materials  gene introgression between groupl and groupll, account-
were W710 and W711, and the two most furthest materi-  ing for approximately 76.34% of the observed variations
als were W366 and W740. (calculated with K = 2).
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Table 6 Population genetic analysis of different category materials

Samples Tajima’'D Range of IBS The average Two samples with the Two samples with
genetic distance genetic distance closest genetic distance the farthest genetic
distance
Whole materials (93) 1.66 0.0229-0.5452 0.3007 W710/W711 W366/W740
Restoring lines (57) 1.36672 0.0229-0.3927 0.2666 W710/W711 W685/W697
Maintainer lines (19) 0.43533 0.0242-0.3745 0.2293 W740/W741 W725/W738
Special rice (17) 0.62542 0.0285-0.5315 0.3280 W375/W380 W300/W366
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Fig. 8 Clustering based on UPGMA. a clustering of 57 restoring lines. b clustering of 19 maintainer lines. ¢ clustering of 17 special rice lines

The analysis performed based on phenotypic traits,
SSR and SNPs data using PCA, UPGMA and Bayes-
ian clustering led to inconsistent results, the population
structure is relatively simple, the matrix delamination is
not distinctive.

Clustering of different category materials

Population genetic information of different category
samples, including 57 restoring lines, 19 maintainer
lines and 17 special rice lines was analyzed (Table 6) and

clustered (Fig 8a, b, c, respectively). Results showed that
the genetic basis of the restorer line was more abundant
than that of the maintainer line, and that the genetic basis
of the special rice was wider than that of the conventional
rice.

Correlation analysis of genetic distance matrices
based on 3 types of genetic markers

All cluster analyses were based on the genetic distance or
genetic similarity coefficient generated by genetic markers
between samples; in the present study, the coefficients of
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Fig. 9 Correlation between the genetic distance matrices generated using different genetic markers

correlation (R?) between the genetic distance matrices were
0.0914, 0.1726, 0.198, 0.876, 0.3478, 0.2713, respectively
(Fig. 9). These results may be due to the use of different
number of markers.

Discussion

Phenotype is the result of the interaction of genotype
with environment. A given genotype can be expressed
as different phenotypes in different environments; this is
known as the plant inherent phenotypic plasticity, which
is different from the genotype. In the study of germplasm
resources with more samples, economical and effective
method with the use of phenotype data to study popula-
tion genetic structure and genetic diversity is also a very
important at this early stage. The selected 15 traits belong
to quantitative traits and are greatly affected by envi-
ronment; hence it is not recommended to use them for
population genetic structure analysis. In recent decades,
SSR markers, which represent second-generation DNA
molecular markers, have been widely used for plant pop-
ulation genetic analysis, phylogenetic reconstruction, and
quantitative trait mapping. All kinds of DNA markers are
different and results generated by different DNA markers
reflect different polymorphic region in the genome and
can reveal various information contained in the genome.
Theoretically, the more markers used, the more accurate
results will be. SSR markers are mostly distributed in cen-
tromeres, telomeres, introns, and 3’ untranslated regions
(UTR). Most of these markers are non-functional genetic
markers and do not affect the application of SSR marker
in clustering analysis. While the population genetic vari-
ation explained by SNPs was larger than that explained

by SSRs (for example, in PC analysis), the accumulative
contribution rate of the first three major factors analyzed
by SSR was only 15.76%, far less than that using SNPs
data (40.10%), indicating that the more DNA polymor-
phism, the more accurate the population variation can be
explained. For association analysis between markers and
traits, greater number of polymorphic sites is associated
with higher mapping resolution. A natural population
often contains multiple sub-populations, which could
result in high degree of LD within the tested population
and lead to pseudo-association between markers and
traits. Therefore, LD and haplotype studies are neces-
sary before carrying out association analysis. The core 48
pairs of SSR markers as well 72,824 SNPs had rich bands
and high polymorphism in Indica rice genome; clustering
result of SSR was concordant with that of SNPs, but dif-
ferent from phenotypic traits clustering.

All analyses of the population genetic structure were
based on the estimation of genetic distance or genetic
similarity coefficient matrix between samples. Analy-
ses were conducted using three methods: PC, UPGMA,
and Bayesian clustering. Bayesian algorithm is more
practical than UPGMA and PC analysis no matter
which genetic marker is used given the prior pedigree
knowledge of the 93 samples. At the same time, the
size of gene flow of each sample can be seen from the
population genetic structure graph based on Bayesian
algorithm.

Through the analysis of different types of materials
(57 restorer lines, 19 sterile lines, and 17 special rice),
the results showed that the genetic basis of the restorer
lines was richer than that of the maintainer lines, which
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was consistent with the conclusion of Ying Jiezheng
et al. [24]. The main reason may be that most CMS
(cytoplasmic male sterile) lines currently used in pro-
duction are related to cultivars such as Zhenshan 97B,
I1-32B, Zhong9a and Gang46a and may be derived from
Aizazhan and Aijiaonante, which originated from dwarf
rice varieties. At present, the restorer lines used in com-
bination production originate from the Yangtze River
Basin of China, Sichuan, Southeast Asia, South Korea,
etc, and were created by crossing Indica and Japonica
rice. Special rice has an abundant genetic basis compared
to other rice germplasm resources and has high breeding
potential.

Conclusions

Higher number of genetic markers is related to higher
explained population variation, especially functional
DNA markers. The above showed that it is difficult to
make certain the genetic nature of rice germ-resources
using phenotype traits clustering. Clustering results
based on different genetic markers showed that the
genetic basis of 93 samples was single. Average genetic
distance was 0.29 based on 72,824 SNPs of 93 samples,
which may be due to many reasons, such as the wide
exchange of variety resources among breeding units
in the process of breeding, and similar breeding goals.
Genetic effects in populations depend on the oppor-
tunity distribution of MAFs across the genome-wide,
and different populations have different MAF values.
Although the gene flow in the population composed of
93 samples was relatively large, the average MAF of the
population was only 0.21, indicating the genetic struc-
ture of 93 samples is simple and lacked rare alleles.
Though the amount of colored rice only take up a small
proportion of rice resource in this study, it arose an
extensive attention all over the world, due to its charac-
teristics which include special nutrition, health care and
artificial utilization. Measures to improve the genetic
diversity of rice cultivars in the Qinba area are important
in the future.

Materials and methods

Plant materials

A total of 93 samples were collected from the Shaanxi
Rice Research Institute (Hanzhong city, China), compris-
ing 57 restoring lines, 19 maintainer lines, and 17 special
rice (Special rice refers to rice with special genetic traits
and uses such as colored rice genotypes including black
rice, purple rice, red rice, green rice and yellow rice and
aromatic rice germplasm, which only research colored
rice in this study.), which were representative of the
diversity of Oryza sativa Xian group present in the Qinba
area in China.
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Field experiments

Seeds were planted at the rice experimental farm (E:
106°59'57", N: 33°7’48") during three consecutive years
(2018, 2019, 2020), with planting dates of 2018 April 10,
2019 April 11, and 2020 April 8, and transplanted on May
24, May 24, May 20 according to a 16.7cm x 20cm split-
split-plot design. Each sample was arrayed randomly
at plots with three repeats, to no edge row between the
plots.

Phenotyping

Six plants in the middle of each plot were selected to
investigate the values of agronomic, economic and qual-
ity traits according to “Recording items, methods and
standards of national rice variety test and observation”
as well as “National Standard of GBT 17891-1999 high
quality paddy” The 15 selected phenotypic traits included
sowing date, plant height, leaf length, leaf width, effective
number of panicles per plant, panicle length, total num-
ber of grains per panicle, number of filled grains per pan-
icle, 1000-grain weight, browning rate, milled rice rate,
head milled rice rate, chalky grain rate, degree of chalki-
ness, and length/width ratio; the averages of the three-
year data were used as the phenotypic data.

Phenotypic traits statistical analysis

The mean value (x), standard deviation (8), and coeffi-
cient of variation (CV) were computed. Shannon-Weiner
index (H’) was calculated according to the following equa-
tion: H’=-) PInP, where P, is the proportion of samples
ranked at i grade for a given phenotypic trait among all
samples (all of the phenotypic traits were divided into 10
grades by assigning values less than X-28 as 1% grade and
those greater than X + 26 as 10" grade, with inter-grade
difference of 0.59 for the remaining grades). All of phe-
notypic trait data were the standardized using Z-scores,
and hierarchical cluster analysis was performed using
between-groups linkage method based on Euclidean dis-
tance. The above analysis was carried out with the IBM
SPSS statistics 22.0 software; MEGA7.0 software was
used for editing and visualizing cluster results.

SSR genotyping

The genomic DNA of 93 samples was extracted from
fresh leaves using the SDS technique and detected with
0.8% agarose gel electrophoresis. The 48 SSR prim-
ers were synthesized by Beijing Aoke Biotechnology
Co., Ltd. (Beijing, China). PCR were carried out in a
10 pL volume containing 1 uL. DNA template, 2 pL (10
uM) of forward and reverse primers (1uL each), 5uL
2xTaq Master Mix, and 2 uL RNase-free water. Reac-
tions were programed as follows: initial denaturation
at 94.0°C for 5 minutes, denaturation at 94.0°C for 1
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minute, annealing at 50-60.0°C for 1 minute, and exten-
sion at 72.0°C for 1 minute, for a total of 35 cycles.
Electrophoresis was performed using 8% non-denatur-
ing polyacrylamide gel under 95V voltage; bands were
visualized via silver staining. Following electrophore-
sis, each amplification band corresponded to a primer
hybridization locus and was considered as an effective
molecular marker. Each polymorphic band detected by
a same given primer represented an allelic mutation.
In order to generate molecular data matrices, clear
bands for each fragment were scored in every acces-
sion for each primer pair and recorded as 1(presence of
a fragment), O(absence of a fragment), and 9(complete
absence of band).

SSR marker efficiency analysis

The value of the polymorphism information content
(PIC) was calculated using the PIC Calc 0.6 program
(http://www.bio-soft.net/dna/pic.htm). The level of poly-
morphism of each marker was assessed by the polymor-
phism information content, which measures the extent
of genetic variation: PIC values smaller than 0.25 indi-
cates low levels of polymorphism associated to a locus,
PIC values between 0.25 and 0.5 imply moderate levels of
polymorphism, while PIC values greater than 0.5 indicate
high levels of polymorphism [25].

SNPs genotyping

The genomic DNA of 93 samples was digested using the
Nialll and Msel enzymes. GBS was performed using the
[lumina Hiseq 2000 platform of Novo Gene Bioinformat-
ics Technology Co.,Ltd (Beijing, China). The SNPs data
obtained with Nlalll and Msel digestion were recorded
as SNPs_ ;i SNPs .1, respectively. Polymorphism fil-
tering of SNPs was done with dp., Miss and MAF of 2,
0.3 and 0.05, respectively, followed by annotation based
on the reference genome (ftp://ftp.ensemblgenomes.org/
pub/plants/release-37/fasta/oryza_indica/dna/).

LD and haplotype construction

Genotype data were then used to calculate LD between
SNPs and to construct haplotypes using the EM algo-
rithm implemented in PLINK1.07 (https://www.
cog-genomics.org/plink2). The commands “--r2” and
“--blocks” were used to calculate LD and assign SNPs to
their respective haplotypes by calculating inter-maker LD
within a 200kb window, respectively. Figures were con-
structed using the Origin8 platform (http://www.origi
nlab.com/).

AMOVA and gene flow
A total of 72,824 SNPs were employed to analyze molec-
ular variance (AMOVA) and gene flow. The components

Page 14 of 16

of variance attributable to different varieties and breed-
ing lines were estimated from the genetic distance
matrix using the Tajima & Nei method, as specified
in the AMOVA procedure in ARLEQUIN 3.1 [26]. A
nonparametric permutation procedure with 9999 per-
mutations was used to test the significance of variance
components associated with the different possible levels
of genetic structure in this study. The pairwise Fst values,
a value of F statistic analogs computed from AMOVA,
were used to compare genetic distances between any two
groups.

PC clustering
PC analysis was performed under the Eigen module using
NTSYS-pc2.10e [27].

UPGMA clustering

Identity-by-state (IBS) distance matrix generated by TAS-
SEL5.0 (http://www.maizegenetics.net/tassel) was used
to build an UPGMA tree. MEGA7.0 (http://http://www.
megasoftware.net/) was used for editing and visualizing.

Bayesian clustering

STRUCTURE 2.3.4 (http://taylor0.biology.ucla.edu/struc
tureHarvesteroybase.org/tools.php), which applies a
Bayesian clustering algorithm, was used to simulate pop-
ulation genetic structure based on SSR and SNPs data,
respectively. Using a membership probability threshold of
0.60, population K values from 1 to 5 were simulated with
5 iterations for each K using 10,000 burn-in periods fol-
lowed by 10,0000 Markov Chain Monte Carlo iterations
in order to obtain an estimate of the most probable num-
ber of populations. Delta K was plotted against K values;
the best number of clusters was determined following the
method proposed by Evanno et al [28], and obtained via
the Structure Harvester platform (http://taylor0.biology.
ucla.edu/structureHarvester/) [29].

Correlation analysis among genetic distance matrices

by diffrent DNA marker dataset

Mantel tests were used to measure the correlation
between the genetic distance matrices generated using
15 phenotypic traits and SSR, 15 phenotypic traits and
SNPs_yup 15 phenotypic traits and SNPs_;..;, SNPs_;.m1
and SNPs_,,; SNPs_y;,;;; and SSRs, SNPs_;.; and SSRs.
It was carried out using the GenAlEx software with 9999
permutations [30]. r > 09,08 <r < 0.9, 0.7 <r < 0.8,
and r < 0.7 represented significant correlation, moder-
ate correlation, weak correlation, and no correlation,
respectively.


http://www.bio-soft.net/dna/pic.htm
ftp://ftp.ensemblgenomes.org/pub/plants/release-37/fasta/oryza_indica/dna/
ftp://ftp.ensemblgenomes.org/pub/plants/release-37/fasta/oryza_indica/dna/
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2
http://www.originlab.com/
http://www.originlab.com/
http://soybase.org/tools.php)
http://www.megasoftware.net/
http://www.megasoftware.net/
http://taylor0.biology.ucla.edu/structureHarvesteroybase.org/tools.php
http://taylor0.biology.ucla.edu/structureHarvesteroybase.org/tools.php
http://taylor0.biology.ucla.edu/structureHarvester/
http://taylor0.biology.ucla.edu/structureHarvester/

Zhang et al. BMC Genomics (2022) 23:550

Abbreviations

AMOVA: Analysis of molecular variance; DNA: Deoxyribonucleic acid; GWAS:
genome-wide association studies; GBS: genotyping by sequencing; IBS:
Identity by state; LD: Linkage disequilibrium; MAF: Minor allele frequency; NPB:
number of polymorphic bands; PPB: Percentage of polymorphic bands; PIC:
Polymorphism information content; PCA: Principal component analyses; RAD:
restriction site-associated DNA; SNP: Single nucleotide polymorphism; SSR:
Simple sequence repeats; TNB: total number of bands; UPGMA: Unweighted
pair group method with arithmetic mean.

Acknowledgments
We thank LetPub (www.letpub.com) for its linguistic assistance during the
preparation of this manuscript.

Authors’ contributions

Yu Zhang wrote the manuscript, Yewen Wang and Peijiang Li performed the
field experiments and identified all plant materials, Yuexing Wang, Shimao
Zheng, Qiaogiao He and Xixi Zhou performed the laboratory tests and ana-
lyzed data. The authors read and approved the final manuscript.

Funding

This study was supported by the Sci-technological Project of Shaanxi Province
(NYKJ-2016-35), the Sci-technological Project of Shaanxi Province (2013K02-
10-01), the Sci-technological Project of Shaanxi Province (2020NY-050), the
Sci-technological Project of Shaanxi Province (2019NY-041).

Availability of data and materials

The datasets generated during the current study are available in the NCBI
repository, [https://www.ncbi.nlm.nih.gov/bioproject/PRINA801889]
[PRINA801889].

Declarations

Ethics approval and consent to participate

Yewen Wang and Peijiang Li identified all plant materials. In this study, experi-
mental research and field studies of plant materials, including the collection of
plant material and all methods were in compliance with relevant institutional,
national and international guidelines and legislation.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Shaanxi University of Technology, Hanzhong 72300, Shaanxi, China. >Shaanxi
Province Key Laboratory of Bio-resources, Hanzhong 72300, Shaanxi, China.
3QinLing-Bashan Mountains Bioresources Comprehensive Development C. .
C., Hanzhong 72300, Shaanxi, China. “Qinba State Key Laboratory of biologi-
cal resources and ecological environment, Hanzhong 72300, Shaanxi, China.
®Shaanxi Rice Research Institute, Hanzhong 723000, Shaanxi, China. ®College
of Agronomy, Xinjiang Agricultural University, Urumgi 830052, China.

Received: 17 January 2022 Accepted: 20 June 2022
Published online: 02 August 2022

References

1. Ling QH, Zhang HC, Ding YF. Discussion of Naming for Two Subspecies of
Oryza sativa L. Scientia Agricultura Sinica. 2013;46(2):250-6. https://doi.
0rg/10.3864/j.issn.0578-1752.2013.02.004.

2. Ding Y. The origin and evolution of cultivated rice in China. Acta Agron
Sin. 1957;8(3):243-60.

3. Wang WS, Mauleon R, Hu ZQ, Chebotarov D, Tai SS, Wu ZC. Genomic
variation in 3,010 diverse accessions of Asian cultivated rice. Nature.
2018;557(7703):43-9. https://doi.org/10.1038/541586-018-0063-9.

4. Delphine VI, Albrecht EM, Claude L, Benjamin S. Population structure and
genetic diversity in a commercial maize breeding program assessed with

20.

21.

22.

23.

Page 150f 16

SSR and SNP markers. Theor Appl Genet. 2010;120(7):1289-99. https://
doi.org/10.1007/500122-009-1256-2.

Loveless MD, Hamrick JL. Ecological determinants of genetic structure in
plant populations. Ann Rev Ecol Syst. 1984;15:65-95. https://doi.org/10.
1146/annurev.es.15.110184.000433.

Shen'YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, et al. Development of
genome-wide DNA Polymorphism database for map-based cloning of
rice genes. Plant Physial. 2004;135(3):1198-205. https://doi.org/10.1104/
pp.103.038463.

Zhang Y, Zhang XJ, Chen X, Sun W, Li J. Genetic diversity and structure
of tea plant in Qinba area in China by three types of molecular markers.
Hereditas. 2018;155(3):22. https://doi.org/10.1186/541065-018-0058-4.
Junjian N, Peter MC, David JM. Evaluation of Genetic Diversity in Rice Sub-
species Using Microsatellite Markers. Crop Science. 2002;42(2). https://
doi.org/10.2135/cropsci2002.6010.

Yu J, Hu SN, Wang J, Wong GK, Li SG, Liu B, et al. A draft sequence of the
rice genome (Oryza sativa L. ssp. indica). Science. 2002;296(5565):79-92.
https://doi.org/10.1126/science.1068037.

. He GL, Fu GP, Peng CS, Deng W, Zhu S, Yang Z, et al. DNA Fingerprint Map

and Analysis of Genetic Diversity of the Japonica Rice Varieties in the
Regional Test in Jiangxi Province in 2018. Acta Agriculturae Universitatis
Jiangxiensis. 2019;41:843-52. https://doi.org/10.13836/}.jjau.2019097.

. Huang XH, Li LZ, Zhang JF, He DL, Zhang XQ, Chen JB, et al. Evaluation of

Diversity and Evolution of the Microsatellite LEI0258 in Chicken Region
from South China. Chinese J Animal Vet Sci. 2016;47(11):2175-83. https://
doi.org/10.11843/].issn.0366-6964.2016.11.004.

. Yin QQ Li DY, Wang HZ, Cao DC, Lu CY, Sun XW, et al. Microsatellite

marker analysis on genetic diversity in two German mirror carp(Cyprinus
carpio L) families. J Anhui Agricu Univ. 2008;(2):211-8. https://doi.org/10.
13610/j.cnki.1672-352x.2008.02.030.

. Zeng XS, Peng D, Shi'Y, Xie W, Liu AM. Fingerprinting Construction of Rice

Core Parental Lines with SSR Markers. Crop Research. 2016;30(5) 481-
486+511. https://doi.org/10.16848/j.cnki.issn.1001-5280.2016.05.01.

. LiC, ZhangY,Ying K, Liang XL, Han B. Sequence variations of simple

sequence repeats on chromosome 4 in two subspecies of the Asian
cultivated rice. Theoretical Appl Genetics. 2004;108(3):392-400. https://
doi.org/10.1007/500122-003-1457-z.

. LiHB,Yang J, Lv ZW, YiB, Wen J, FuTD, et al. Screening of Brassica napus

core SSR primers. Chinese J Oil Crop Sci. 2010;32(3):329-36. https://doi.
0rg/10.7666/d.y1994144.

. Lin YX, Wang AX, Liu H, Wang Z, Liang MZ, Dai XJ, et al. Research on

DNA Molecular Digital Fingerprint Database Based on 48 Pairs of SSR
Primers for 94 Hybrid Rice Parents in NYT 1433-2014. Chinese J Rice Sci.
2016;30:593-602. https://doi.org/10.16819/j.1001-7216.2016.6028.

. Sui GL, Yu SC, Yang JX, Wang WH, SuTB, Zhang FL, et al. Validation of a

Core Set of Microsatellite Markers and Its Application for Varieties Identi-
fication in Chinese Cabbage. Acta Horticulturae Sinica. 2014;41(10):2021-
34, https://doi.org/10.16420/j.issn.0513-353x.2014.10.008.

. Wang MH, Zhang XT, Wu GL, Jiang Q, Shi YH. DNA Fingerprints Construc-

tion and Purity Identification Based on SSR Markers for Rice Varieties in
Ningbo City. China Rice. 2019;25(6):50-4. https://doi.org/10.3969/].issn.
1006-8082.2019.06.013.

. Teng HT, Lv B, Zhao JR, Xu Y, Wang FG, DU WW, et al. DNA Finger-

print Profile Involved in Plant Variety Protection Practice. Biotechnol
Bull. 2009;1:1-6. https://doi.org/10.13560/j.cnki.biotech.bull.1985.
2009.01.022.

Nasu S, Suzuki J, Ohta R, et al. Search for and analysis of single nucleotide
polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and estab-
lishment of SNP markers. DNA Res. 2002;9(5):163-71. https://doi.org/10.
1093/dnares/9.5.163.

Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and
cost-effective polymorphism identification and genotyping using restric-
tion site associated DNA (RAD) markers. Genome Res. 2007;17(2):240-8.
https://doi.org/10.1101/gr.5681207.

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al.

A robust, simple genotyping-by-sequencing (GBS) approach for high
diversity species. PLoS One. 2011;6(5):219379. https://doi.org/10.1371/
journal.pone.0019379.

Ministry of Agriculture of the PRC. NY/T1433-2014, Protocol for identifica-
tion of rice varieties-SSR marker method. China Agriculture Press; 2014.


http://www.letpub.com
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA801889
https://doi.org/10.3864/j.issn.0578-1752.2013.02.004
https://doi.org/10.3864/j.issn.0578-1752.2013.02.004
https://doi.org/10.1038/s41586-018-0063-9
https://doi.org/10.1007/s00122-009-1256-2
https://doi.org/10.1007/s00122-009-1256-2
https://doi.org/10.1146/annurev.es.15.110184.000433
https://doi.org/10.1146/annurev.es.15.110184.000433
https://doi.org/10.1104/pp.103.038463
https://doi.org/10.1104/pp.103.038463
https://doi.org/10.1186/s41065-018-0058-4
https://doi.org/10.2135/cropsci2002.6010
https://doi.org/10.2135/cropsci2002.6010
https://doi.org/10.1126/science.1068037
https://doi.org/10.13836/j.jjau.2019097
https://doi.org/10.11843/j.issn.0366-6964.2016.11.004
https://doi.org/10.11843/j.issn.0366-6964.2016.11.004
https://doi.org/10.13610/j.cnki.1672-352x.2008.02.030
https://doi.org/10.13610/j.cnki.1672-352x.2008.02.030
https://doi.org/10.16848/j.cnki.issn.1001-5280.2016.05.01
https://doi.org/10.1007/s00122-003-1457-z
https://doi.org/10.1007/s00122-003-1457-z
https://doi.org/10.7666/d.y1994144
https://doi.org/10.7666/d.y1994144
https://doi.org/10.16819/j.1001-7216.2016.6028
https://doi.org/10.16420/j.issn.0513-353x.2014.10.008
https://doi.org/10.3969/j.issn.1006-8082.2019.06.013
https://doi.org/10.3969/j.issn.1006-8082.2019.06.013
https://doi.org/10.13560/j.cnki.biotech.bull.1985.2009.01.022
https://doi.org/10.13560/j.cnki.biotech.bull.1985.2009.01.022
https://doi.org/10.1093/dnares/9.5.163
https://doi.org/10.1093/dnares/9.5.163
https://doi.org/10.1101/gr.5681207
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1371/journal.pone.0019379

Zhang et al. BMC Genomics

24.

25.

26.

27.

28.

29.

30.

(2022) 23:550

Ying JZ, Shi YF, Zhuang JY, Xue QZ. Microsatellite Marker Evaluation

on Genetic Diversity of the Major Commercial Rice Varieties in China.
Scientia Agricultura Sinica. 2007;4:649-54. https://doi.org/10.3321/j.issn:
0578-1752.2007.04.001.

Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic link-
age map in man using restriction fragment length polymorphisms. Am J
Human Genetics. 1980;32(3):314-31.

Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated
software package for population genetics data analysis. Evol Bioinform
Online. 2007;1:47-50. https://doi.org/10.1143/JJAP34.L.418.

Rohlf F. NTSYS-pc -Numerical Taxonomy and Multivariate Analysis System,
vol. 2. New York: Applied Biostatistics Inc; 1988. p. 1.

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of
individuals using the software STRUCTURE: a simulation study. Mol Ecol.
2005;14(8):2611-20. https://doi.org/10.1111/j.1365-294X.2005.02553 X.
Earl DA, Vonholdt BM. STRUCTURE HARVESTER: a website and program
for visualizing STRUCTURE output and implementing the Evanno
method. Conserv Genet Res. 2012;4(2):359-61. https://doi.org/10.1007/
$12686-011-9548-7.

Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population
genetic software for teaching and research--an update. Bioinformatics.
2012;28(19):2537-9. https://doi.org/10.1093/bioinformatics/bts460.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Page 16 of 16

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.3321/j.issn:0578-1752.2007.04.001
https://doi.org/10.3321/j.issn:0578-1752.2007.04.001
https://doi.org/10.1143/JJAP.34.L418
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.1093/bioinformatics/bts460

	Genetic diversity and population structure of 93 rice cultivars (lines) (Oryza sativa Xian group) in Qinba in China by 3 types of genetic markers
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Key message
	Background
	Results
	Phenotypic traits diversity and cluster analysis
	Phenotypic diversity analysis
	Phenotypic traits clustering


	SSR marker analysis
	Polymorphism of SSR markers

	Clustering based on SSR
	Bayesian clustering based on SSR markers
	SNPs marker analysis
	Linkage disequilibrium (LD) and haplotype analysis
	AMOVA and gene flow
	Clustering based on SNPs
	PC clustering

	UPGMA clustering
	Bayesian clustering
	Clustering of different category materials
	Correlation analysis of genetic distance matrices based on 3 types of genetic markers
	Discussion
	Conclusions
	Materials and methods
	Plant materials
	Field experiments
	Phenotyping
	Phenotypic traits statistical analysis
	SSR genotyping
	SSR marker efficiency analysis
	SNPs genotyping
	LD and haplotype construction
	AMOVA and gene flow
	PC clustering
	UPGMA clustering
	Bayesian clustering
	Correlation analysis among genetic distance matrices by diffrent DNA marker dataset

	Acknowledgments
	References


