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Abstract 

During follicular development, a series of key events such as follicular recruitment and selection are crucially gov-
erned by strict complex regulation. However, its molecular mechanisms remain obscure. To identify the dominant 
genes controlling chicken follicular development, the small white follicle (SWF), the small yellow follicle (SYF), and the 
large yellow follicle (LYF) in different laying stages (W22, W31, W51) were collected for RNA sequencing and bioin-
formatics analysis. There were 1866, 1211, and 1515 differentially expressed genes (DEGs) between SWF and SYF in 
W22, W31, and W51, respectively. 4021, 2295, and 2902 DEGs were respectively identified between SYF and LYF in 
W22, W31, and W51. 5618, 4016, and 4809 DEGs were respectively identified between SWF and LYF in W22, W31, and 
W51. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that extracellular 
matrix, extracellular region, extracellular region part, ECM-receptor interaction, collagen extracellular matrix, and col-
lagen trimer were significantly enriched (P < 0.05). Protein–protein interaction analysis revealed that COL4A2, COL1A2, 
COL4A1, COL5A2, COL12A1, ELN, ALB, and MMP10 might be key candidate genes for follicular development in chicken. 
The current study identified dominant genes and pathways contributing to our understanding of chicken follicular 
development. 
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Introduction
In poultry breeds, high-efficiency follicular develop-
ment means huge economic output for the egg industry. 
Follicles at different stages exist in the ovary of sexually 
mature hens, and a hierarchical system is formed in the 
ovary according to different functions and sizes: Pre-
hierarchical follicle and hierarchical follicle (also known 
as pre-ovulatory follicle) [1]. Once ovulated, a new fol-
licle is selected from the pre-hierarchal cohort to enter 
the hierarchical stage [2]. The development of follicles is 
crucially governed by strict intrinsic complex regulation 
[3]. During follicular development, a series of key events 
such as gene transcription and protein expression occur 

in series and are governed by specific gene expression, 
which is an intrinsic factor regulating follicular recruit-
ment, selection, and apoptosis of follicles [4].

Over the past decade, RNA sequencing (RNA-seq) has 
become an indispensable tool for transcriptome analysis. 
RNA-seq is often used for analyzing differential expres-
sion genes [5]. RNA-seq has been widely applied to a 
variety of organisms such as Pigs [6], cattle [7], chickens 
[8], goats [9], deer [10], and mice [11]. Transcriptome 
studies have involved various traits such as egg qual-
ity [12], meat quality [13], genetic diversity [14], poultry 
disease screening [15], human aging [16], skeletal muscle 
development [17], growth [18].

The Nandan-Yao domestic chicken is a native breed in 
China. It has the characteristics of coarse food resistance, 
strong foraging ability, delicate and delicious meat, but 
its performance in egg production is low. In this study, 
RNA-seq and bioinformatics analysis were performed 
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to identify the differentially expressed genes and path-
ways between different follicles in different laying 
stages to reveal the molecular mechanisms of follicular 
development.

Materials and methods
Ethics statement
All experimental and sample collection procedures were 
approved by the Institutional Animal Care and Use Com-
mittee (IACUC) of the College of Animal Science and 
Technology of Guangxi University (Guangxi, China), 
with approval number GXU2018-058.

Separation of follicles
Nandan-Yao domestic hens (Gallus gallus) purchased 
from Guangxi Guigang Gangfeng Agriculture and Hus-
bandry Co. Ltd, laying continuously 3 eggs, were used in 
this study. Hens in early laying (22 weeks old, with a mean 
body weight of 1.67 ± 0.02  kg), peak laying (31  weeks 
old, with a mean body weight of 1.88 ± 0.06  kg), and 
late laying (51 weeks old, with a mean body weight of 2. 
28 ± 0.08  kg) were selected for ovarian follicle sampling 
(n = 4). Follicles within the ovary were classified as small 
white follicles (SWF, 2–4  mm in diameter), large white 
follicles (LWF, 4–6  mm in diameter), small yellow folli-
cles (SYF, 6–8 mm in diameter), and large yellow follicles 
(12–40 mm, named F5, F4, F3, F2, and F1, respectively) 
[19, 20]. SWFs, SYFs, and LYFs (F1, F2, F3) were col-
lected for RNA extraction. The follicles were washed in 
PBS to remove the yolk.

Total RNA extraction
The total RNA was extracted from SWF, SYF, and LYF 
using TRIzol reagent (Invitrogen Life Technologies, USA) 
according to the manufacturer’s instructions. RNA integ-
rity was monitored on 1% agarose gels. RNA concentra-
tion was checked using the UV–Vis Spectrophotometer 
Q5000 (Quawell, USA).

RNA sequencing and quality control
The cDNA libraries were constructed and sequenced fol-
lowing the manufacturer’s standard procedures on an 
Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) in 
Novogene Bioinformatics Technology Co., Ltd., Beijing, 
China. Raw reads of FASTQ format were processed with 
trim galore [21]. To obtain the clean reads, the sequence 
with low quality including adaptor sequences, qual-
ity score < 20, and N base rate of raw reads > 10% were 
removed. The Q20 scores, GC content, and sequence 
duplication levels of the clean data were calculated using 
FastQC [22].

RNA‑Seq analysis
Reference genome and gene model annotation files 
were downloaded from the genome website (http://​ftp.​
ensem​bl.​org/​pub/​relea​se-​102/​gtf/​gallus_​gallus/, http://​
ftp.​ensem​bl.​org/​pub/​relea​se-​102/​fasta/​gallus_​gallus/​
dna/). The clean reads were mapped to the chicken ref-
erence genome using Hisat2v2.1.0 [23, 24]. The string-
tiev2.1.1 was then used to annotate the transcripts [25]. 
The differential expressed genes between samples were 
identified using the DESeq2 R package (1.18.0) [26]. The 
P-value < 0.05 and |foldchange|> 2 were used as the crite-
ria of significance. GO term and KEGG pathway analyses 
of coding genes were performed by the R package clus-
terProfiler 3.14.3 [27–30]. Both GO terms and KEGG 
pathways with corrected P-adjust < 0.05 were considered 
to be significantly enriched. The STRING (Franceschini 
et al., 2013) database was used to explore the interaction 
between DEGs. A confidence score > 0.9 was defined as 
valid.

Validation of RNA‑Seq
RNA was reverse transcribed into cDNA using RT Rea-
gent Kit (Takara, Dalian, China). Primer sequences of 
target and reference genes were shown in Supplemental 
table  1. QRT-PCR was carried out using SYBR Green 
Supermix kit (Takara, Dalian, China) in Bio-RAD CFX96 
Real Time Detection system. The expression of β-actin 
was used to correct the gene expression data. The 2−ΔΔCT 
method was used to analyze the QRT-PCR data and cal-
culate relative expression.

Results
Transcriptome data
As shown in Supplementary table  2, 18,911,563 to 
34,680,085 clean reads per sample were obtained after 
quality control. The average GC content of all samples 
was 52.54%. The average mapped rate was 92.38% com-
paring clean reads with the reference genome. For all 
samples, at least 96.75% of the reads were equal to or 
exceeded Q20.

Analysis of differential expressed genes
At W22, 1866, 4021, and 5618 DEGs were respectively 
identified between SWF and SYF, SYF and LYF, SWF 
and LYF (Fig.  1A). At W31,1211, 2295 and 4016 DEGs 
were respectively identified between SWF and SYF, SYF 
and LYF, SWF and LYF (Fig.  1B). At W51, the number 
of DEGs between SWF and SYF, SYF and LYF, SWF and 
LYF were 1515, 2902, and 4809, respectively (Fig. 1C). As 
shown in Fig.  1a, 299, 440, and 267 DEGs were respec-
tively obtained between W22 and W31, W22 and W51, 
W31 and W51 of SWF. In SYF, 295, 303, and 286 DEGs 
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were respectively identified between W22 and W31, W22 
and W51, W31 and W51 (Fig. 1b). In LYF, the number of 
DEGs between W22 and W31, W22 and W51, W31 and 
W51 were 488, 156, and 410, respectively (Fig. 1c).

GO and KEGG analysis for DEGs
Functional enrichment analysis was performed on DEGs 
of W51 intersection of SWF vs SYF, SYF vs LYF, SWF 
vs LYF (Fig. 2A, B). GO analysis indicated that differen-
tially expressed genes were enriched in 8 items, includ-
ing extracellular matrix, collagen-containing extracellular 
matrix, extracellular region part, extracellular region, col-
lagen trimer, supramolecular complex, supramolecular 
polymer, supramolecular fiber (Supplementary table  3). 
KEGG analysis of differentially expressed mRNAs sig-
nificantly enriched the ECM-receptor interaction and the 
Focal adhesion pathway (Supplementary table 4).

Functional enrichment analysis was carried out for 
the intersection of DEGs of W22 vs W31, W22 vs W51, 
W31 vs W51 in SWF (Fig.  2C, D). The results showed 
that 17 items were significantly enriched in GO analysis 

(Supplementary table  5), such as extracellular region, 
extracellular region part, extracellular space, etc., and 
cytokine-cytokine receptor interaction was significantly 
enriched in KEGG analysis (Supplementary table 6).

Integration of PPI network
To reveal how these DEGs may interact, protein–pro-
tein interaction analyses were carried out based on the 
STRING database. The DEG network interaction analysis 
of W51 and SWF is shown in Fig. 3. The DEG network of 
W51 contains 13 genes, while the DEG network of SWF 
contains 37 genes. These genes may play an important 
regulatory role in the laying process.

Validation of RNA‑seq
To verify our RNA-seq data, we selected 4 genes 
(CYP19A1, FOXL2, IGF1, SPP1) related to follicular 
development for QRT-PCR analysis (Fig.  4). The results 
showed that the differentially expressed genes had the 
same expression trends in QRT-PCR and RNA-seq, 
which validated their accuracy.

Fig. 1  Venn diagram of differentially expressed genes. (1) represents the Venn diagram of differentially expressed genes between different follicles 
at the same age. A, B, and C represent W21, W31, and W51, respectively. (2) represents the Venn diagram of differentially expressed genes in follicles 
of the same grade at different ages. a, b, and c represent SWF, SYF, and LYF, respectively. Abbreviations: SWF: small white follicle; SYF: small yellow 
follicle; LYF: large yellow follicle
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Fig. 2  GO and KEGG enrichment analysis of DEGs. A and B represent GO enrichment and KEGG analysis of DEGs in the W51 intersection, 
respectively. C and D represent GO enrichment and KEGG analysis of DEGs in SWF intersection, respectively

Fig. 3  The protein–protein interaction (PPI) network of DEGs. (A) PPI analysis of DEGs in the W51 intersection. (B) PPI analysis of DEGs in 
the SWF instersection. Line thickness indicates the strength of data support
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Discussion
Follicular development is a complex physiological pro-
cess, regulated by diverse genes and endocrine hormones 
[3]. Previous studies revealed the effect of GPR12 [20], 
GREM1 [31], BMP4 [32], RAC1 [33], FOXO3 [34], bFGF 
[35, 36], Melatonin [37, 38], CSAL1 and CSAL3 [39] on 
follicular development. RNA-seq has empowered many 
research areas and has led to new discoveries throughout 
the mRNA field [40]. In the present study, high-through-
put transcriptome analyses were employed to study the 
differential gene expression profiles of three different fol-
licles in different laying stages.

DEGs were significantly enriched in the extracellular 
matrix, extracellular region, extracellular region part, 
extracellular space, ECM receptor interaction, collagen 
containing extracellular matrix, and collagen trimer. The 
abilities of ECM to direct cell proliferation, differentia-
tion, and function imply its remodeling in normal ovar-
ian function [41]. The wall of the hen follicle is mainly 
composed of the extracellular matrix (ECM), which com-
prises collagenous fibers, dermatan sulfate, heparan sul-
fate, elastin, and hyaluronic acid [42].

Protein network interaction analyses of DEGs in W51 
identified several genes associated with follicle develop-
ment including COL4A2, COL1A2, COL4A1, COL5A2, 
COL12A1, ELN, FBN2, ALB, MMP10. COL4A2 (col-
lagen type IV alpha 2 chain), COL1A2 (collagen type I 
alpha 2 chain), COL4A1 (collagen type IV alpha 1 chain), 
COL5A2 (collagen type V alpha 2 chain), COL12A1 (col-
lagen type XII alpha 1chain) are five kinds of collagen. 
Type IV collagen is the main component of the basement 
membrane and constitutes its skeleton. It not only main-
tains the integrity of the basement membrane but also 
plays a key role in its formation. In normal conditions, 
the basement membrane is stable, dense, and continuous 

and can prevent macromolecules and cells from pass-
ing through [43]. The ELN gene encodes elastin. Fibril-
lin microfibrils are widely distributed components of 
extracellular matrices that function in the formation of 
elastin, serve structural roles and provide substrates for 
cell adhesion [44]. Albumin encoded by ALB may be a 
requirement for the control of follicle growth, which is 
attributable to albumin binding to specific cell-mem-
brane components followed by the intracellular uptake 
of Alb-bound substances [45]. The MMP10 (matrix 
metallopeptidase 10) gene belongs to the matrix metal-
lopeptidase family. A growing body of evidence suggests 
that MMPs play a relevant role in the ECM remodeling 
of ovarian tissues [46–53]. Many MMPs are produced in 
the mammalian ovary and participate in the regulation 
of ovarian functions [46, 49, 51, 53–55]. It indicates that 
increased collagen may support the structural integrity of 
follicles during growth.

Conclusions
The current study identified a series of key genes and sign-
aling pathways associated with chicken follicular develop-
ment by RNA-seq and bioinformatics analysis. These key 
genes (COL4A2, COL1A2, COL4A1, COL5A2, COL12A1, 
ELN, FBN2, ALB, MMP10) may regulate egg production by 
taking part in the extracellular matrix, extracellular region, 
extracellular region part, extracellular space, ECM-receptor 
interaction, collagen containing extracellular matrix and 
collagen trimer. The study constructed the transcriptional 
profiles of chicken growing follicles in different laying 
stages laying a foundation for further research on follicular 
development.

Fig. 4  RNA-Seq validation using QRT-PCR. 4 DEGs (CYP19A1, FOXL2, IGF1, SPP1) were selected to test the accuracy of RNA sequencing. (A) Validation 
in the SWF and SYF at W22. (B) Validation in the SYF and LYF at W22. N = 6
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Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; QRT-PCR: Quan-
titative Real-time PCR.
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