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Abstract 

Background:  Sugarcane is the most important sugar crop, contributing > 80% of global sugar production. High 
sucrose content is a key target of sugarcane breeding, yet sucrose improvement in sugarcane remains extremely slow 
for decades. Molecular breeding has the potential to break through the genetic bottleneck of sucrose improvement. 
Dissecting the molecular mechanism(s) and identifying the key genetic elements controlling sucrose accumulation 
will accelerate sucrose improvement by molecular breeding. In our previous work, a proteomics dataset based on 12 
independent samples from high- and low-sugar genotypes treated with ethephon or water was established. How‑
ever, in that study, employing conventional analysis, only 25 proteins involved in sugar metabolism were identified .

Results:  In this work, the proteomics dataset used in our previous study was reanalyzed by three different statistical 
approaches, which include a logistic marginal regression, a penalized multiple logistic regression named Elastic net, 
as well as a Bayesian multiple logistic regression method named Stochastic search variable selection (SSVS) to identify 
more sugar metabolism-associated proteins. A total of 507 differentially abundant proteins (DAPs) were identified 
from this dataset, with 5 of them were validated by western blot. Among the DAPs, 49 proteins were found to partici‑
pate in sugar metabolism-related processes including photosynthesis, carbon fixation as well as carbon, amino sugar, 
nucleotide sugar, starch and sucrose metabolism. Based on our studies, a putative network of key proteins regulating 
sucrose accumulation in sugarcane is proposed, with glucose-6-phosphate isomerase, 2-phospho-D-glycerate hydrol‑
yase, malate dehydrogenase and phospho-glycerate kinase, as hub proteins.

Conclusions:  The sugar metabolism-related proteins identified in this work are potential candidates for sucrose 
improvement by molecular breeding. Further, this work provides an alternative solution for omics data processing.
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Introduction
Omics data analysis applies statistical and computa-
tional methodology to determine the key genes, pro-
teins and metabolites that significantly regulate various 
plant growth and developmental processes [1, 2]. A 
major challenge is that the omics data usually comprise 
thousands or even millions of features, but the sample 
size used can be relatively limited to detect potentially 
biologically-relevant proteins or its attributes. This cre-
ates the so-called p > > n problem [3], i.e., the number 
of features is massively larger than the number of sam-
ples needed to make reliable findings. With large high 
dimensional datasets, classical statistical models such 
as linear regression or logistic regression become over-
saturated and ineffective, and thus cannot provide use-
ful outcomes.

One strategy to address this analytical limitation is to 
apply a marginal regression approach or a t-test approach 
to analyse one bio-feature at a time. Such an approach 
can often identify a set of hundreds of significant features 
[4]. Alternatively, another recently proposed approach 
is penalized regression [4], which analyse multiple fea-
tures simultaneously, and use a penalty function to 
shrink the effects of unimportant features towards zero 
to exclude them to keep only the important ones in the 
model. The penalized regression approach has also been 
suggested as a tool to estimate the sparse inverse covari-
ation matrix, which can be applied to construct gene or 
protein interaction networks [5]. A third option is to use 
Bayesian regression methods. The Bayesian approaches 
are in fact closely connected to the penalised regres-
sion, in the sense that they interpret the penalty function 
as a prior distribution, and then combine the prior and 
the model likelihood to form a posterior distribution. 
Then simulation-based computational methods such as 
Markov Chain Monte Carlo can be used to approximate 
the posterior distribution. One advantage of the Bayes-
ian regression approaches is that they can directly pro-
vide uncertainty measurements such as credible intervals 
or inclusion probabilities to the regression coefficients, 
which can be used for inference. Although these newer 
penalized regression and Bayesian approaches have been 
proposed to detect association between traits of interest 
and different kind of omics data, including proteomics, 
biologists tend to keep on using conventional two sam-
ple t-test or simple logistic regression, due to the fact that 
there is little efforts to illustrate the power and advan-
tages of using the high multiple regression methods for 
large biological datasets [6].

Sugarcane has the capacity to store sucrose in the stem 
as the main reserve food [7], and it contributes to > 80% of 
the world’s sucrose production [8]. High sucrose content is 
a main target of sugarcane breeding. However, the sucrose 
content in sugarcane remained plateaued for several dec-
ades despite sustained conventional breeding efforts for a 
long time. Recent success of molecular breeding in other 
crops suggests its potential for sucrose improvement in 
sugarcane [9–11]. However, little success has been made 
so far in relation to identifying key genetic elements that 
control sucrose accumulation, which will help develop 
molecular breeding strategies for sugarcane. Some previ-
ous studies in sugarcane have identified candidate genes 
likely to be involved in sugar accumulation, but the molec-
ular mechanism sugar accumulation in this crop remains 
unknown [12–16].

Ethylene is an effective chemical ripener used in com-
mercial sugarcane crops [17]. In our previous work, appli-
cation of ethephon (an ethylene releasing compound) in a 
high- and a low-sugar genotype elicited differential sucrose 
accumulation responses, with low-sugar variety accumu-
lating relatively more sugar than the high-sugar clone [18]. 
Using this system, proved to be an effective model for dis-
secting the molecular regulation of sugar accumulation in 
sugarcane, we established a proteomics dataset represent-
ing early stages of sugar accumulation in both clones in 
response to ethephon treatment. The dataset was based on 
12 independent samples and had about 3,000 protein fea-
tures. Differentially abundant proteins (DAPs) were identi-
fied using Mann-Whitney Test with a significance level of 
p < 0.05 adjusted by Benjamini-Hochberg Correction and 
fold change over 1.2. But, in this analysis only 25 proteins 
related to sugar metabolism were identified [19]. To deter-
mine whether our previous analysis detected only a fraction 
of proteins associated with sugar accumulation, we evalu-
ated more sophisticated and powerful methods for analysis. 
Here we used three different statistical approaches, namely, 
the marginal logistic regression method [20], a logistic 
penalized regression approach named Elastic net method 
[21], and a logistic Bayesian stochastic search variable 
selection (SSVS) method [22] to re-analyse the proteomics 
dataset to determine the most effective analytical methods 
for proteomics data with < 20 sample size and to maximise 
the extraction of valuable information for the study.

Materials and methods
Sample collection and proteomics data set preparation
Plant growth conditions, sample collection and prot-
eomics dataset establishment used for this study are 
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described in our previous work [19]. Briefly, two sugar-
cane genotypes, ROC22, a high-sugar (on average 15% 
sucrose content, ROC5 × ROC69-46), and GT86-877, 
a low-sugar (on average 6% sucrose content, GT82-10 
× GT73-11) genotype were used for the experiment. 
Plants were grown in the experimental farm of Sugarcane 
Research Institute, Guangxi Academy of Agricultural Sci-
ences, Nanning, Guangxi China in 2016. and they were 
treated with deionized water or 400 mg/L Ethephon solu-
tion as foliar spray till run-off from the lamina in early 
sucrose accumulation stage (8 months old crop), in mid-
October. Developing stalk tissues, 20 cm above the node 
attached to the second youngest fully expanded leaf, 
which is highly photosynthetically active, were sampled 
on day 7 following ethylene treatment. Pooled sample 
of tissues collected from six individual plants from each 
replicate plot constitute a single biological replicate. 
Three biological replicates were collected for each clone 
from each treatment and they were flash-frozen in liquid 
nitrogen for proteome analysis by iTRAQ method.

Batch effect correction
The following linear mixed model (LMM) was applied to 
correct the potential batch effect caused by the data sam-
pling process (i.e., plates in MS):

where log-intenijk represents the intensity value at the 
protein features k of the replicate i within the group j, gi 
is the design matrix of the (fixed) group effect and aj is 
the corresponding regression coefficients, bj is the ran-
dom effect of the replicate j, sjk is the (interactive) ran-
dom effect of the protein k and replicate j, and eijk is the 
model residual. The random effects rj. sjk and the residu-
als eijk are assumed to mutually follow normal distribu-
tions N (0, σ 2

r ) , N (0, σ 2
s ) , and N (0, σ 2

e ) , respectively. The 
regression parameters of LMM was estimated by the 
maximum likelihood method, implemented by the R 
package (version 4.0.3) lme4.

Principal component analysis (PCA) was conducted by 
the R function “prcomp” on the proteomics data to visu-
alize the structure and variation among the samples, and 
check with the performance of batch effect correction. 
The residuals.

were considered as features being used in the follow-up 
statistical analyses.

Differential protein abundance analysis
The marginal regression analyzed one spectrum at a time, 
defined as.

(1)log−intenijk = gjai + bj + sjk + eijk ,

(2)xik = log−intenijk − sjk

where xik is the (adjusted) intensity of the proteins k 
at the sample i, yi is the binary group indicator, zi is the 
design matrix of the covariate variables, β0 is the model 
intercept, and βk is the effect of protein features k which 
is of primary interest, and eik is the residual error which is 
assumed to follow a normal distribution.

A t-test was conducted on the regression coefficient βk, 
and p-value for the proteins was calculated. The p-values 
were adjusted by the conservative Bonferroni adjustment 
to control the multiplicity.

Additionally, a penalized logistic regression approach 
named Elastic net [21] was applied to simultaneously 
analyze all the protein features:

where πi =

exp(β0+
p

k=1

xikβk )

1+exp(β0+
p

k=1

xikβk )

 . Variables yi and xik, and 

regression parameters β0 and βk are defined as the way as 
in Eq. (3), but the difference is that now in (4) the multi-
ple protein variables are simultaneously analyzed in the 
same model. Another major difference from the simple 
regression model (3) is that in (4) the group variable yi is 
treated as binary response variables, while the spectra xik 
are treated as explanatory variables. In (4), a penalty term 
combining the l1 and l2 norm penalties: 
�[ω

p∑
k=1

|βk | + (1− ω)
p∑

k=1

β2
k ] was introduced to shrink 

the effects of un-important features (i.e., a protein which 
is not associated with the group variable) to be zero, and 
only keep the important proteins into the model. The 
tuning parameter λ (λ > 0) determines the degree of 
shrinkage of the regression parameters, and how many 
proteins should be included into the model, while the 
weight parameter ω (0 < ω < 1) determines the relative 
importance of the l1 and l2 penalties. The advantage of 
using such a mixture of l1 and l2 penalties over using 
merely the l1 penalty (which leads to theLASSO regres-
sion) is that the mixture penalty could account for the 
dependency structure among different features, and 
simultaneously select multiple correlated features into 
the model. The optimal values of λ and ω are determined 
by nested cross-validation. The proteins having non-zero 
regression coefficients were considered to have signifi-
cant features. The numerical estimation of model (4) was 
conducted by the R package glmnet (version 4.0).

One disadvantage of the logistic Elastic net approach 
is that the uncertainty measures of the regression coef-
ficients are not available, especially when the sample size 
is limited. Therefore, no multiple testing procedure could 

(3)xik = β0 + yiβk + eik ,

(4)min
(�,�k )

n∑

i=1

[yi log �i + (1 − yi) log(1 − �i)] + �[�

p∑

k=1

||�k || + (1 − �)

p∑

k=1

�2
k
],
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be applied to control the false positives. This motivates us 
to use an alternative approach named Bayesian stochas-
tic search selection. Unlike Elastic net (4) which adds the 
combination of l1 and l2 penalty of the regression param-
eters to the log-likelihood function, in SSVS, the regres-
sion coefficient is assumed to follow the so-called spike 
and slab prior distribution as:

The prior is a mixture of normal distribution with zero 
mean and unknown variance σ 2

j  and point mass at zero. 
The binary indicator variable rj determines whether the 
regression parameter is included into the model. The 
indicator rj was further assigned with a Bernouli prior:

and the hyper-parameter ω was specified to a small 
value, following the assumption that only a small pro-
portion of the spectra was associated with the treatment 
effects. In this work, we use ω = 0.05.

The variance σ 2
j was assigned with an Inverse Gamma 

prior:

where the hyper-parameters were specified as 
a = b = 0.1, which is non-informative.

Combining these prior distributions and the model 
likelihood leads to a posterior distribution of the model 
parameters θ = (βj , rj , σ

2
j ,ω):

.
Bayesian estimation of a logistic regression is generally 

recognized as a challenging problem. To ease the compu-
tation, the posterior was first decomposed into the fol-
lowing two separate problems [23]:

where PG (ni, vi) represents a Polya Gamma distribu-
tion. Now the posterior has a hierarchical structure with 
the second layer equivalent to a normal SSVS regression 
instead of a logistic SSVS regression. An efficient Gibbs 
sampler could be used for parameter estimation.

The empirical marginal posterior distribution of the 
selection indictor: P̂(γj = 1|y) which is often viewed 
as a posterior inclusion probability (PIP) [24] can be 
used for the posterior inference. Intuitively, one could 
use PIP > 0.5 as a criterion to claim the corresponding 

(5)P(βj|rj) ∝ (1− rj)I{βj=0} + rjN (0, σ 2
j ),

P
(
rj|w

)
= wrj(1− w)1−rj

P(σ 2
j |a, b) = Inv− Gamma(a, b),

(6)P(θ |y) ∝ P(y|θ)P(θ)

(7)

φ|βj ∼ PG(ni, vi)

βj|yi,φ ∼ N (vi|

p∑

j=1

xijβj , 1)P(βj|γj)p(γj|w)

features to be significant. However, such a heuristic 
criterion does not necessarily guarantee that the false 
positives due to simultaneously tests of multiple hypoth-
eses could be effectively controlled [25]. Alternatively, 
we could also utilize the marginal probability of a feature 
not being selected: P̂(γj = 0|y) = 1− P̂(γj = 1|y) , which 
is interpreted as a local false discovery rate (LFDR) [26–
28]. Based on LFDR, a global level Bayesian FDR (BFDR) 
[29, 30] could be constructed by combining LFDRs for 
a group of features. To eliminate the multiplicity, the 
BFDR should be controlled under a defined threshold, 
here we specified α = 0.05guaranteeing that the overall 
FDR among the multiple hypotheses is less than 0.05. In 
more detail, the BFDR is calculated as follows. First, the 
LFDRs for each feature are sorted in ascending order. The 
average value of the LFDRs for the first T features (T = 1, 
… ,p) is defined as a BFDR for feature markers. We find 
the highest possible value of BFDR (the average of the 
T smallest LFDRs), which is still smaller than the given 
threshold, and the corresponding features are significant.

KEGG analysis
Pathway analysis was processed by KOBAS (http://​kobas.​
cbi.​pku.​edu.​cn/) against Zea mays [31]. The KEGG data-
base, which is used in the KEGG analysis, is developed 
by Kanehisa Laboratories [32–34]. Hypergeometric test 
and Fisher’s exact test were used, and the FDR correction 
method was Benjamini and Hochberg.

Protein validation by western blot
To verify the DAPs detected by statistical methods are 
indeed biologically relevant to sugar accumulation, 3 
proteins selected randomly from this work and the 2 pro-
teins validated in our previous work [19] were further 
validated using western blot (WB) based on the protocol 
we used previously [19]. Briefly, SDS-PAGE was used to 
separate proteins (20  µg) from each sample. They were 
then transferred to polyvinylidene fluoride membranes 
which were incubated with appropriate primary anti-
bodies generated by Abmart and the HRP-conjugated 
anti-mouse IgG secondary antibody (Abmart, M21001). 
An enhanced chemiluminescence system (Biouniquer, 
China) was used to visualize Immune-reactive bands, 
which were exposed to X-ray film (Kodak). Following 
this, ImageJ program was used to quantify signal intensi-
ties which were normalized to the b-actin signal.

Protein‑protein interaction network construction
Protein-Protein Interaction (PPI) Network Analysis 
was conducted using STRING (https://​string-​db.​org/) 
[35]. We selected the gene symbol as input of website 
https://​cn.​string-​db.​org/, chose multiple proteins, used 
gene symbol as list of names, and selected Zea mays as 

http://kobas.cbi.pku.edu.cn/
http://kobas.cbi.pku.edu.cn/
https://string-db.org/
https://cn.string-db.org/
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organism. The output was exported in the tsv format. The 
PPIs in the string-db are based on experimental data or 
predictions by bioinformatics methods. We mapped the 
DAPs associated with sucrose accumulation onto the PPI 
network. The hub genes were determined by the website 
https://​cn.​string-​db.​org/. Nodes with the greatest num-
bers of interactions with neighboring nodes were consid-
ered as hub nodes.

Results
Datasets and batch effect correction
The sucrose content was increased in both genotypes 
after 3 days of treatment, and it was continued for 7 
days [18]. Four samples were collected on 7th day after 
treatment, and they were labelled as RCK: samples from 
high-sucrose content sugarcane (on average 15% sucrose 
content) treated with water; MCK: samples from low-
sucrose content sugarcane (on average 6.0% sucrose con-
tent) treated with water; R400: samples with high-sucrose 
content sugarcane treated with 400 mg/L ethephon; and 
M400: samples from low-sucrose content sugarcane 
treated with 400 mg/L ethephon. Each group comprises 
3 independent biological replicates. By iTRAQ experi-
ment, about 65,000 spectra (19%) were identified from 
a total of 345,000 spectra of each iTRAQ sample. After 
data processing, 2,983 proteins were identified [19], and 
they were included in the statistical analysis. The PCA 
(Fig. 1a) reveals that the first replicates of the four groups 

formed one cluster, and the rest of the replicates jointed 
in the other. The first and second PC explained 81% and 
10%, respectively, of the total variation of the spectral 
data. After batch effect correction, samples from four 
groups were clearly separated (Fig.  1b). The two PCs 
explained 41% and 24% of the variation.

Identification of differentially abundant proteins
The stalk tissue protein abundance in the following treat-
ment comparisons were analysed: (i) high-sugar genotype 
VS low-sugar genotype (RCK vs. MCK, R400 vs. M400), 
and (ii) water VS ethephon treatment (MCK vs. M400, 
RCK vs. R400). Protein abundance variation in differ-
ent groups were analysed by three different approaches, 
including a logistic marginal regression, a penalized mul-
tiple logistic regression called Elastic net, and a Bayesian 
multiple logistic regression method namely Stochastic 
search variable selection (SSVS).

The simple regression analysis identified 340 pro-
teins that are differentially abundant in the samples with 
low- and high-sucrose content (RCK vs. MCK, R400 vs. 
M400) (Table S1). While the multiple regression-based 
Elastic net detects 40 DAPs (Table S2), which were also 
detected by the simple regression analysis. The Bayesian 
SSVS approach identified 21 significantly different DAPs 
(Table S3), but only 2 of them overlapped with those 
detected by simple regression method, indicating that 19 
new proteins (Table S4) were identified. So, a total of 359 

Fig. 1  The scatter plot of first and second principal components (PCs) ofsugarcane proteomics data. PCs were calculated from the data before (a) 
and after (b) batch effect correction

https://cn.string-db.org/
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DAPs were detected from the genotype comparison. No 
common gene was found in the analysis outputs of these 
three methods (Fig.  2A). When genotypes treated with 
ethephon were compared (R400 vs. M400), 162, 23 and 
3 proteins were found up-regulated in the simple regres-
sion, the Elastic net and the Bayesian SSVS analyses, 
respectively, whereas 40, 1 and 3 proteins, were found to 
be down-regulated in these three methods, respectively. 
A similar comparison of genotypes treated with water 
(RCK vs. MCK), identified 173, 23 and 3 up-regulated 
and 26, 2 and 2 down-regulated proteins in the simple 
regression, the Elastic net and the Bayesian SSVS analy-
ses, respectively (Fig. 2B).

In the water and ethephon treatment comparison 
(MCK vs. M400, RCK vs. R400), the simple regression 
approach detected 126 DAPs (Table S5), and the Elastic 
net method identified 60 DAPs (Table S6). Again, all the 
DAPs identified by Elastic net were also detected by sim-
ple regression. However, the Bayesian approach identified 
26 DAPs (Table S7), and only 4 of them were common 
across the Bayesian and the simple regression groups, 
suggesting that 22 additional DAPs were detected with 

Bayesian analysis (Table S8). Thus, a total of 148 DAPs 
were detected from the comparison based on treatments, 
of which 4 proteins were detected in all the three meth-
ods (Fig.  2  C). Three of these proteins were annotated, 
including enolase (m.4058; m.159,651) and histone H1 
(m.136,263). In the comparison of low sugar genotype 
treated with water and ethephon (MCK vs. M400), 58, 39 
and 3 proteins were found up-regulated, and, 15, 7 and 13 
proteins were down-regulated in the three methods com-
bined. In a similar comparison between water vs. eth-
ephon treatments in the high-sugar genotype (RCK vs. 
R400), 48, 28 and 4 up-regulated and 22, 8 and 12 down-
regulated proteins were detected between the 3 statistical 
methods, (Fig.  2D). So, totally 507 DAPs were detected 
between three methods, of which 306 DAPs were anno-
tated (Table S9).

Identification of differentially abundant proteins involved 
in sugar metabolism
To find out the DAPs associated with sugar metabolism 
in sugarcane, KEGG enrichment analysis of 306 DAPs 
identified by the three methods was conducted (Table 

Fig. 2  Summary of DAPs detected by three different statistical analysis approaches. Venn diagram of DAPs detected by three methods based on 
comparisons between genotypes (A) and between water and ethephon treatments (C). Up-regulated and down-regulated proteins detected 
in genotype (B) and treatments (D)comparisons by the three methodsThe protein number of S1-S3 in (A) is identical to that in Supplementary 
Tables 1, 2 and 3, and the number of S5-S7 in (C) is identical to that in Supplementary Tables 5, 6 and 7
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S9). Sugar metabolism related pathways, including 
carbon fixation in photosynthetic organisms, carbon 
metabolism, photosynthesis, amino sugar and nucleo-
tide sugar metabolism, as well as starch and sucrose 
metabolism, were enriched (Fig.  3; Table S10). A total 
of 48 DAPs involved in sugar metabolism were identi-
fied from KEGG enrichment analysis (Table S11).

Considering that some proteins associated with sugar 
metabolism related pathways were not enriched due 
to their very low abundance, we checked the annota-
tion of all the DAPs detected in this work to find pos-
sible missing proteins related to sugar metabolism. We 
did find one protein m.146,783, annotated as chloro-
phyll a-b binding protein, which is a photosynthesis - 
antenna protein, was positively correlated with sugar 
metabolism in plants. So, the protein m.146,783 is 
also considered as a candidate target participating in 
sucrose accumulation in sugarcane. Thus, a total of 49 
proteins associated with sugar metabolism were iden-
tified in this work (Table  1). Then we compared these 
49 DAPs with the DAPs involved in sugar metabolism 
identified in our previous work [19]. Seven DAPs were 
found overlapping between two studies, indicating that 
42 new DAPs associated with sugar metabolism were 

identified in this work (Table 1). The mean abundance 
and standard deviation of those 49 DAP’s are presented 
in Table S12.

In the photosynthesis pathway, 5 new enzymes, 
PsaD (m.80,314), oxygen-evolving enhancer 
(m.150,518/m.77,636), ATP synthase (m.17,250) and 
ferredoxin reductase (m.27,004) were identified in 
this work. Similarly, in the carbon fixation pathway, 
besides PEPC (m.172,065/m.114,523/m.101,304) some 
other important enzymes such as phosphoenolpyru-
vate carboxykinase (m.82,036/m.82,032), NADP-
dependent malic enzyme (m.96,035/m.58,073), enolase 
(m.159,644/m.159,651), ribulose-phosphate 3-epimer-
ase (m.37,775) and ribulose-1,5-bisphosphate carboxy-
lase oxygenase (m.120,708) were also identified in this 
work, compared to our previous work [19]. Interestingly, 
m.159,651 was the common protein detected by all the 
three methods, implying an important role for it in the 
sucrose accumulation process.

While in the carbon metabolism pathway, 23 new pro-
teins were identified in this work, including important 
enzymes such as, phosphoglycerate kinase (m.138,161), 
glucose-6-phosphate isomerase (m.101,603), phos-
pho-glucomutase (m.128,432/m.141,239), and 

Fig. 3  KEGG analysis of annotated DAPs detected by three different statistical approaches. The size of the dots corresponds to the number of DAPs 
in each pathway. The color displays the significance of enrichment
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Table 1  Differentially abundant proteins related to sucrose accumulation identified in this work

Protein ID and names in italic bold indicate DAPs with their encoding genes showing differential expression at transcriptional level [18], and those with bold font with 
gray background indicate proteins overlapping between those identified in the current and our previous work [19]
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6-phosphogluconate dehydrogenase (m.48,690), etc. 
In the amino sugar and nucleotide sugar metabolism 
pathway, 2 new proteins, UDPG pyrophosphorylase 
(m.25,693) and ADPG pyrophosphorylase (m.85,895) 
were identified. In the starch and sucrose metabo-
lism pathway, besides the two beta-glucosidases 
(m.97,819/m.27,280), a glucose-6-phosphate 1-epime-
rase (m.104,895) and an alpha-glucan phosphorylase 
(m.45,257) were also detected in this work.

Genes are carriers of genetic information, while pro-
teins execute the gene function. To get moreinsights into 
the molecular mechanism of sucrose accumulation, we 
looked for overlaps between the new DAPs and those 
from our previous work that used the same dataset [19], 
as well as DEGs reported by Chen et al. [18]. There were 
7 overlapping proteins between this work and previous 
work [19] (Table  1). This analysis also identified genes 
of 12 DAPs showing differential expression at transcrip-
tional level (Table 1).

Validation of DAPs by western blot
To validate the reliability of DAPs identified in this 
work, the abundance of 5 DAPs involved in sugar 
metabolism were validated by western blot. Among 
them, 2 proteins, m.120,013 (FBA, fructose-bisphos-
phate aldolase) and m.97,819 (beta-glucosidase 30-like) 
identified both in this study and previous work, have 
also been validated by western blot in previous work 
[19]. The protein m.68,843 (phosphoenolpyruvate car-
boxylase) showed higher expression in CK than that 
in ethephon treatment in both high- and low-sugar 

genotypes but showed no difference between high- and 
low-sugar genotypes irrespective of treatment, indicat-
ing that m.68,843 was negatively affected byethephon 
not by genotype. While m.138,161 (phosphoglycer-
ate kinase) and m.141,239 (phospho-glucomutase) 
were highly expressed in low-sugar genotype than in 
high-sugar clone, ethephon failed to induce them in 
both genotypes, suggesting that their expression is 
genotype-dependent. The results from western blot 
confirmed the DAPs detected by the new statistical 
analyses in this study, proving the value of the statisti-
cal approaches described here for identifying DAPs in 
sugarcane (Fig. 4).

Protein‑protein interaction network
Almost all the biological functions are mediated by pro-
teins. Many proteins take part in biological processes 
such as signal transduction, gene expression, energy 
and nutrient metabolism by interaction with other 
proteins. PPI analysis predicts the function of proteins 
and identify key regulatory factors. To further explore 
the interaction between the 49 DAPs related to sugar 
metabolism identified in this work, a PPI network was 
constructed using STRING database. The PPI network 
contained 42 nodes and 350 edges. In the PPI network, 
4 proteins (degree ≥ 26) were selected as hub proteins, 
including glucose-6-phosphate isomerase, 2-phospho-
D-glycerate hydrolyase (enolase), malate dehydrogenase 
(NADP-dependent malic enzyme) and hosphor-glycer-
ate kinase. Moreover, malate dehydrogenase had the 

Fig. 4  Western blot validation of differentially abundant proteins. RCK: high-sugar genotype with water control; MCK: low-sugar genotype with 
water control; R400: high-sugar genotype with ethephon treatment; M400: low-sugar genotype with ethephon treatment. Number after sample 
code (-1, -2, -3) represents the replicate number
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highest degrees, suggesting that it may play a crucial 
role in sucrose accumulation in sugarcane (Fig. 5).

Discussion
Sugarcane sucrose content improvement by conven-
tional breeding programme is concerningly low due to 
the complex genetic background and slow introgression 
of exogenous genes [36]. To explore molecular breed-
ing strategies for sugar content improvement, we are 
studying the molecular basis of sucrose accumulation in 

sugarcane [13, 16, 18, 19], with the ultimate aim of iden-
tifying potential molecular targets for variety improve-
ment. Recently, we have developed a proteomic dataset 
developed for sucrose accumulation studies, and it is 
used in this study. After acquiring the raw sugarcane pro-
teomics data, and conducting routine data pre-pro-
cessing such as protein feature quantification, baseline 
correction and normalization, we conducted three differ-
ent types of statistical analyses such as (i) principal com-
ponent analysis (PCA), (ii) protein differential expression 

Fig. 5  The protein-protein interaction network based on DAPs related to sugar metabolism. Each node represents a protein. The helical symbol in 
the node indicates the known 3D structure of the protein, and empty nodes indicate unknown proteins. The line between two nodes represents 
interaction and multiple lines represent various interactions between two proteins
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analysis and (iii) protein interaction network modelling, 
and they revealed biologically meaningful results from 
different perspectives. The PCA results (Fig. 1b) gave an 
overall picture of how the proteomics data of different 
samples varied. The first PC clearly separated M400 from 
the other three groups, indicating that when the sucrose 
content is low, the treatment of ethephon has a signifi-
cant effect on protein abundance, which was also sup-
ported by our transcriptomic studies [18]. In that work, 
more DEGs were induced by ethephon in low-sugar gen-
otypes compared to high-sugar clone [18]. On the other 
hand, the second PC separates the groups M400, and 
MCK from the other two groups R400, and RCk. Hence, 
the second PC explained the difference in protein expres-
sion between samples from the groups of low and high 
sucrose content, which was consistent with the finding 
that genotype had a dominant effect on gene expression 
than ethephon treatment [18].

We then evaluated and compared the three high 
dimensional statistical approaches, including the logis-
tic marginal regression method [20], the logistic Elastic 
net method [21], and the logistic Bayesian stochastic 
search variable selection (SSVS) method [22], for detect-
ing significantly differentially abundant proteins from 
this proteomics data comprising thousands of features 
that are associated with vital traits of interest. The mar-
ginal regression methods analyses one feature at a time, 
and then use a multiple testing procedure to eliminate 
the false positive finds. While the Elastic net and Bayes-
ian approaches simultaneously analyse multiple protein 
features, and use penalty functions or prior information 
to conduct feature selection. The logistic Elastic net and 
Bayesian SSVS methods are closely related approaches 
and both of them analyse multiple features simultane-
ously and are able to conduct variable selection to select 
only a set of important features into the final model. How-
ever, the two approaches are philosophically different. 
The Elastic net, as a frequentist approach, relies on the 
likelihood model to make inference, and assumes all the 
model parameters to be fixed. But the Bayesian approach 
uses the posterior distribution (the likelihood combines 
with model prior) as a foundation to make inference, and 
all the model parameters have a marginal posterior dis-
tribution. Therefore, the uncertainty measures such as 
standard errors or credible intervals, or model inclusion 
probability in the Bayesian SSVS were directly controlled 
[37]. In the sugarcane proteomics dataset with 12 sam-
ples and about 3,000 protein features, the performance of 
the three methods on detecting different expressed fea-
tures associated with either (i) high sugar VS low sugar 
content and (ii) water VS ethephon treatment was evalu-
ated. The simple regression approach is the most liberal 
approach which detected 466 significant DAPs (Table 

S1; S5), accounting for 91.9% of total DAPs, even using 
the Bonferroni adjustment which is often considered as 
the most conservative approach for multiple testing. So, 
the simple regression is the most effective method for 
analysis of the proteomics dataset. However,, the multi-
ple regression-based Bayesian SSVS detected 41 more 
significant DAPs, while the Elastic net method detected 
40 and 60 DAPs from genotype and treatment compari-
sons, respectively (Table S2; S6),. All these DAPs were 
also detected by the simple regression analysis suggesting 
that the two approaches could confirm the analytical reli-
ability of each other.

A total of 306 annotated DAPs were identified by the 
three statistical methods used in this research (Table 
S9), whereas only 139 DAPs were identified in our previ-
ous work using the same dataset [19]. By KEGG analysis 
and further comparison with our previous work, 42 new 
DAPs associated with sugar metabolism were identified 
in this work (Table 1). These DAPs provide new targets 
for further functional analysis and molecular breed-
ing due to their potential biological functions in sugar 
metabolism. For instance, phospho-glucomutase (PGM) 
catalyzes the reversible conversion of glucose 1-phos-
phate (G1P) and glucose 6-phosphate (G6P), which is 
one of the vital enzymes promoting carbohydrate syn-
thesis in higher plants [38,  39]. The lack of the cyto-
solic PGM activity in Arabidopsis resulted in decreased 
rosette fresh weight, shorter roots, and reduced seed 
production, leading to reduced growth [40]. The alpha-
glucan phosphorylase is an important enzyme involved 
in carbohydrate metabolism in prokaryotes and eukary-
otes. The plant alpha-glucan phosphorylase, also called 
starch phosphorylase, is known for the phosphorolytic 
degradation of starch, which is closely related to sugar 
metabolism [41]. In this work, 2 phospho-glucomutase 
(m.128,432/m.141,239) and one alpha-glucan phosphor-
ylase (m.45,257) were newly detected, suggesting that 
they may play a crucial role in sugar metabolism.

The hub node in the PPT network may be the key regu-
latory factor in a pathway. The PPI analysis suggests that 
enzymes glucose-6-phosphate isomerase, malate dehy-
drogenase (NADP-dependent malic enzyme), enolase 
(2-phospho-D-glycerate hydrolyase) and phosphoglycer-
ate kinase are hub proteins, with malate dehydrogenase 
scoring the highest degrees. So, these hub proteins may 
play a crucial role in sucrose accumulation in sugarcane. 
Glucose-6-phosphote isomerase catalyzes the inter-
conversion of glucose 6-phosphate and fructose 6-phos-
phate, which plays an important role in sucrose synthesis. 
Over-expression of a wheat glucose-phosphate isomer-
ase gene TaPGIc in Arabidopsis thaliana improved plant 
photosythesis, starch over-accumulation, biomass and 
yield [42].
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Malate dehydrogenase catalyzes the reversible conver-
sion of oxaloacetate and malate, and plays crucial roles in 
energy homeostasis and plant development [43]. Enolase 
(2-phospho-D-glycerate hydrolyase) exists in all eukary-
otes and many prokaryotes. It converts 2-phospho-d-
glycerate (PGA) into phosphoenolpyruvate (PEP) [44]. 
Mutation in AtENO2 (encodes an enolase) reduced seed 
starch level, resulting in decreased seed size and weight 
[45]. Phosphoglycerate kinase (PGK) is a key enzyme 
participating in both photosynthesis and glycolysis. In 
photosynthetic organisms, PGK catalyzes the reduc-
tion of 3-PGA to form sugar-phosphates [46, 47]. Malate 
dehydrogenase, enolase and PGK are three key enzymes 
in carbon fixation in photosynthetic organisms, so they 
are also closely associated with sugar metabolism.

Based on our work, a putative network of key proteins 
regulating sucrose accumulation is proposed in sugar-
cane (Fig. 6).

Conclusions
This work, for the first time, used three logistic regres-
sion approaches including a classical marginal regression 
approach and two multiple regression methods to iden-
tify DAPs in a proteomics dataset. With this data analysis 
approach, more DAPs and more new proteins associated 
with sugar metabolism were identified, suggesting that 

this approach could be an additional method of proteom-
ics data analysis in sugarcane. The proteins related to 
sugar metabolism form potential candidates for sucrose 
improvement in sugarcane by molecular breeding. The 
network of key proteins related to sugar metabolism 
based on the findings of this work provides a framework 
for dissecting the mechanism(s) of sucrose accumulation 
in sugarcane.
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