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Abstract 

Background:  GenoLab M is a recently developed next-generation sequencing (NGS) platform from GeneMind 
Biosciences. To establish the performance of GenoLab M, we present the first report to benchmark and compare the 
WGS and WES sequencing data of the GenoLab M sequencer to NovaSeq 6000 and NextSeq 550 platform in various 
types of analysis. For WGS, thirty-fold sequencing from Illumina NovaSeq platform and processed by GATK pipeline is 
currently considered as the golden standard. Thus this dataset is generated as a benchmark reference in this study.

Results:  GenoLab M showed an average of 94.62% of Q20 percentage for base quality, while the NovaSeq was 
slightly higher at 96.97%. However, GenoLab M outperformed NovaSeq or NextSeq at a duplication rate, suggesting 
more usable data after deduplication. For WGS short variant calling, GenoLab M showed significant accuracy improve-
ment over the same depth dataset from NovaSeq, and reached similar accuracy to NovaSeq 33X dataset with 22x 
depth. For 100X WES, the F-score and Precision in GenoLab M were higher than NovaSeq or NextSeq, especially for 
InDel calling.

Conclusions:  GenoLab M is a promising NGS platform for high-performance WGS and WES applications. For WGS, 
22X depth in the GenoLab M sequencing platform offers a cost-effective alternative to the current mainstream 33X 
depth on Illumina.
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Background
The past 15 years have witnessed a new era in DNA 
sequencing technologies [1], starting from the release 
of the Roche 454 sequencer, which opened the door to 
next-generation sequencing (NGS) [2]. Compared to 
Sanger sequencing technology [3], NGS has remark-
ably higher throughput and reduced costs [1]. As tech-
nology upgrades and iterates, NGS technologies have 

dramatically decreased the cost of human whole genome 
sequencing (WGS) and whole-exome sequencing (WES). 
As a result, the rapid development of technology leads to 
brilliant achievements in WGS projects such as the 1000 
genome project [4], the HapMap project [5], and exten-
sive cohort studies worldwide. WGS and WES have been 
and are being widely performed to discover disease-asso-
ciated genes and identify driver mutations in hereditary 
tumors [6–8]. It lays the foundations for the understand-
ing of how mutated genes affect disease phenotype and 
the further interpretation of pathogenic mechanisms 
[6–8].
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Since the completion of the Human Genome Pro-
ject in 2003, various sequencing platforms have been 
developed: Roche 454, Illumina series (GA, HiSeq, 
Miseq, NextSeq, NovaSeq, etc.) [9], MGI (BGISEQ-500, 
MGISEQ2000, DNBSEQ-T7) [10], Ion Torrent [11], 
and GenapSys [12]. Benefiting from continued technol-
ogy development and product commercialization, Illu-
mina’s sequencing by synthesis (SBS) based sequencers 
have dominated the sequencing market for a long time. 
In 2016, NextSeq 550 was released as mid-throughput 
desktop sequencing instrument, which can be applied 
in many fields, including transcriptome sequencing, tar-
geted sequencing, WES, metagenomics sequencing, and 
genotyping. In June 2017, NovaSeq 6000 was launched, 
which incorporates Illumina’s SBS chemistry and two-
color optics. Combined with patterned flow cell tech-
nology and reversible terminator-based method [10], it 
can produce 6 TB of sequencing data in a single run at a 
cost of approximately 10 USD/GB [13]. As NGS applica-
tions expand in various research areas and clinical set-
tings, there is an unmet demand to develop a novel NGS 
platform that is accurate, flexible, and cost-efficient for 
applications.

In October 2020, GeneMind Biosciences Company 
Limited (GeneMind) launched a new sequencing instru-
ment (GenoLab M) based on their previous work on sin-
gle molecule sequencer GenoCare™ [14]. The GenoLab 
M sequencer employs SBS techniques and reversible ter-
mination approaches [15]. In 2021, the first study using 
GenoLab M was published [15], revealing that the Geno-
Lab M is a promising sequencing platform for transcrip-
tomics and LncRNA studies in animal, plant, and human 
with comparable performance but a lower cost compared 
to NovaSeq 6000. However, the performance of the Gen-
oLab M platform in other application areas has not yet 
been released, especially in WGS and WES.

In 2014, Genome in a Bottle (GIAB) published A 
golden standard genotype dataset (including reference 
sample NA12878), providing a resource for compari-
son of variants calling pipelines [16]. Recently, several 
studies used the GIAB variant dataset for comparisons 
among different variants callers or sequencing platforms 
[17–20]. Generally, data depth of WGS and WES were 
above 30 fold and 100 fold [13, 18, 21–23]. Early in the 
history of WGS, the field converged around the concept 
that 30-fold represents a “high quality” genome with 
the ideal trade-off of accuracy and cost. Together with 
Genome Analysis Tool kit (GATK) [24] as the best prac-
tice analysis pipeline [25], this depth concept has become 
deeply ingrained in the community mindset, even when 
the sequencing and analysis fields have evolved rapidly. It 
is well recognized that GATK works well with dominated 
Illumina data, but is not yet proven on other sequencing 

platforms. Also, 30-fold data in WGS is potentially 
redundant, not only on the cost of sequencing but also 
the analysis computation and storage costs. There are 
quite a few previously published lower depth WGS stud-
ies, such as a large group WGS project of Icelanders in 
2015 with a median sequencing depth was 20X [26]. In 
2018, Anna Supernat et  al., have compared three vari-
ant callers (DeepVariant [27], GATK, and SpeedSeq [27]) 
for WGS reference sample sequenced at different depths 
(10X, 15X, and 30X). It was observed that the F-Scores 
obtained by DeepVariant at 15X were comparable to 
SpeedSeq and GATK at 30X. Yifan Jiang et  al., found 
that the optimal sequencing depth for whole genome re-
sequencing in pigs was 10X, an ideal practical depth for 
achieving plateau coverage and discovering accurate vari-
ants with greater than 99% genome coverage [28]. With 
all these preliminary supporting studies and the emerg-
ing sequencing and analysis technologies with improved 
accuracy, a lower sequencing depth than 30X may be 
considered as the current best practice.

This study obtained both WES and WGS datasets of 
the NA12878 standard sample generated from multiple 
sequencing platforms, including NextSeq 550, NovaSeq 
6000, and GenoLab M. On the analysis part, two pipe-
lines were chosen: Sentieon DNAscope pipeline, a 
machine learning (ML) based variant calling workflow 
(https://​github.​com/​Senti​eon/​senti​eon-​dnasc​ope-​ml), 
and DNAseq workflow, which is an accelerated GATK re-
implementation [29]. We compared WGS performance 
in GenoLab M with 22X data and NovaSeq 6000 with 
33X data.

Method
Samples preparation and sequencing
We ordered 50 μg NA12878 cell line genomic DNA from 
Sequanta Technologies Co., Ltd. After quality control, 
in brief, the genomic DNA was constructed as Illumina 
WES via SureSelect Human All Exon V8 kit (Agilent 
Technologies Inc.) and WGS library via TruSeq Nano 
DNA library kit (Illumina, Inc.). Subsequently, one ug 
DNA to was fragmented by Covaris E220 to 100–250 bp 
for WES, and to 350–450 bp for WGS. Then, end of each 
DNA fragment was repaired and an A base was added 
to the 3’end to form a sticky end, and then the Illumina 
adapter was ligated to both ends of DNA fragments. PCR 
amplification was applied to each sample after ligation. 
While WGS libraries were completed, the WES librar-
ies went through additional steps, including SureSelect 
Human All Exon V8 capture, PCR amplification and 
purification.

WES library was split and loaded into GenoLab M 
and NextSeq 550 or NovaSeq 6000 for 150 bp paired-
end sequencing. And WGS library was sequenced on 

https://github.com/Sentieon/sentieon-dnascope-ml
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GenoLab M and Novaseq. For GenoLab M, the sequence 
process was referred to reference 15. Briefly, the library is 
denatured to single-stranded and surface-based amplified 
on the flow cell. Then, the amplified DNA colonies are 
hybridized to a sequencing primer. Next, Fluorescence-
dye labeled nucleotides and a polymerase are added to 
start the sequencing cycle. In each cycle, the nucleo-
tides’ terminator structure ensures only one nucleotide 
is incorporated. Four-color fluorescence signals from 
the labels are collected by a scanning optical system, 
and then the terminator structure is cleaved. Finally, the 
fluorescence image data are then combined and color-
corrected, sequencing quality score are assigned to each 
base to produce the final fastq file.

Reads mapping and bam processing
Secondary analysis was performed via Sentieon software 
v 202,112.01 [30], a complete suite of tools that can be 
used to process raw reads to variant calling result. Raw 
reads were aligned to the hg38 (https://​ftp-​trace.​ncbi.​
nlm.​nih.​gov/​giab/​ftp/​relea​se/​refer​ences/​GRCh38/) by 
“Sentieon BWA” and sorting was done by the “sort” utility 
tool. BAM files were then adjusted by Samtools v1.10 to 
the desired depth for later analysis and comparison, spe-
cifically 22X and 33X for the WGS dataset, and 100X for 
the WES dataset. Quality metrics were generated from 
these BAM files by Sentieon QC tools. Next, “LocusCol-
lector” and “Dedup” tools were used to mark duplicate 
reads, to prepare the BAM files for variant calling step.

Running DNAseq (GATK re‑implementation) 
and DNAscope
The Sentieon DNAseq pipeline is a re-implementation 
of the GATK best practice pipeline, returning identical 
results at a much higher speed [29]. DNAseq is typically 
five to ten fold faster than GATK pipeline on the same 
generic CPU platform. Therefore here in this study, we 
ran DNAseq pipeline and treated the result the same as 
the data from GATK pipeline. Deduped BAM files were 
firstly processed by “QualCal” tool to conduct base qual-
ity score recalibration, and variants were called by “Hap-
lotyper” tool to provide the matching result of GATK. 
VQSR was not performed because we do not believe this 
extra step will improve overall variant calling accuracy 
[31].

Deduped BAM files were directly input into DNAscope 
pipeline, as BQSR step is not needed here. DNAscope 
variant caller first generated candidate variants, filtered 
in the next step. GenoLab M ML model was applied on 
both variant generation and filtering steps. DNAscope is 
designed as a successor to GATK HaplotypeCaller, as it 
uniquely combines the well-validated methods from hap-
lotype-based variant callers with ML to achieve improved 

accuracy. The candidate variants calling comprises three 
parts: active region detection, local haplotype assembly, 
and read-likelihood calculation (Pair-HMM). Later the 
variant candidates with rich annotations are passed to a 
ML model for variant genotyping, leading to improve-
ments in both variant calling and genotyping accuracy.

The GenoLab M model for DNAscope was constructed 
during this project using several WGS and WES datasets 
sequenced from reference samples. Due to the limited 
training dataset, separated WGS and WES models were 
trained. The training was performed across all chromo-
somes with the exception of chromosome 20. It should be 
noted that none of the evaluated datasets was used dur-
ing training.

Variant accuracy evaluation
All VCF files generated from DNAseq or DNAscope 
pipelines were taken as input for accuracy evaluation. 
They were compared against the NIST truth set v4.2.1 
using hap.py v0.3.14 with RTGtools vcfeval v3.10.1 as the 
variant comparison engine [32] to calculate an F-score 
as a representation of accuracy. Stratification region files 
v2.0 were downloaded from GIAB project and used for 
stratification analysis [33]. We calculate Precision, Recall 
and F-score referred to [17], and the details were as 
follows:

	(1).	 Ture Positive (TP): variants called by a variant 
caller in high confident regions as the same geno-
type as the gold standard data.

	 (2).	 Ture Negative (TN): reference alleles in high con-
fident regions other than gold standard variants.

	 (3).	 False Positive (FP): variants called by a variant 
caller in high confident regions but not as the 
same genotype as the gold standard data.

	 (4).	 False Negative (FN): gold standard variants in 
high confident that were not called by a variant 
caller.

	 (5).	 Precision: TP/(TP + FP), meaning positive pre-
dictive value, is the fraction of relevant instances 
among the retrieved instances.

	 (6).	 Recall: TP/(TP + FN), meaning sensitivity, is the 
fraction of relevant instances that were retrieved.

	(7).	 F-score: 2* Precision*Recall/(Precision+Recall), 
is the harmonic mean of the precision and recall.

Results
NGS datasets summary
To avoid biased results by different sample prep and 
library construction processes, we used the same WGS or 
WES library. In total, there are three WES and two WGS 
datasets obtained from GenoLab M, and NovaSeq 6000 

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/references/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/references/GRCh38/
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or NextSeq 550 (Fig.  1), and the dataset were subsam-
pled to an average of 100X in whole exome for WES and 
an average of 22X in whole genome for WGS to gener-
ate additional datasets for comparison. FASTQ and BAM 
quality statistics were calculated, as shown in Table 1. For 
the base quality (over Q20) base percentages, the Geno-
Lab M showed an average of 94.62%, slightly lower than 
NovaSeq’s performance at 96.97%. While the duplication 
rate of GenoLab M outperformed NovaSeq or NextSeq, 

which was only half of NovaSeq’s duplication rate at the 
same sequencing depth. A lower duplication rate usually 
leads to higher data usage and less waste.

The performance of 22× WGS data in GenoLab M
Subsequently, we compared the WGS SNP&InDel calling 
accuracy of GenoLab M and NovaSeq with analysis algo-
rithms adapted to each sequencer at 22X and 33X depth. 
As shown in Fig. 2A&B, the F-score, Recall, and Precision 

Fig. 1  The flowchart of combinations using three sequencers and two variant calling pipelines for germline variants. Key process for NGS data 
generation and analysis were shown on the left. Squares in the flowchart represent data files, and rhombus indicate processes. NovaSeq means 
NovaSeq 6000, NextSeq means NextSeq 550
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of SNP and InDel from 33X WGS were higher than 22X 
WGS from the same sequencing platform. At the same 
depth, GenoLab M showed higher recall and precision in 
SNP and InDel calling than NovaSeq. Interestingly, 22X 
WGS from GenoLab M had similar performance in SNP, 
and a slight advantage in InDel, compared to 33X WGS 
from NovaSeq. GenoLab M’s analysis ML model could be 
part of the reason. The characteristics of the sequencing 
data are also likely to contribute to the difference. In addi-
tion, stratification comparison was performed including 
Chromosome 20 (chr20), which was not included in any 
of DNAscope’s model training dataset; Segmental dupli-
cations region (SDR); and “Not in all Difficult Regions” 
(NIADR). As displayed in Fig. 2C&D, stratification com-
parison was similar to the whole genome, especially in 
SDR, 22X GenoLab M dataset reached better perfor-
mance (F-score of 0.941 and 0.923, respectively) in SNP 
and InDel calling compared to 33X NovaSeq dataset 
(F-scores 0.884 and 0.870, respectively).

The variant calling results of two platforms at 22X or 
33X depth were filtered using GIAB NA12878 truth vcf 

file. The distribution of the after-filter variants represent-
ing concordance of each dataset was shown in Venn dia-
grams (SNP, Fig. 3A and InDel, Fig. 3B). For common sets 
of variants, the proportion of SNP (96.27%, 3,133,010) 
was significantly higher than that of InDel (85.45%, 
399,648). Besides, 22X WGS from GenoLab M (98.24 
and 92.75%) showed indistinguishable SNP detection 
and slightly inferior InDel, compared with 33X data from 
NovaSeq (98.70 and 95.15%).

Variants calling performance in WES datasets
Three WES datasets at their raw sequencing depth and 
three more datasets subsampled to 100X were gener-
ated for WES performance assessment. As expected, SNP 
and InDel F-score, Recall, and Precision of the subsam-
pled datasets dropped from their original depth (Fig. 4). 
At 100X, the F-score and Precision in GenoLab M were 
higher than NovaSeq or NextSeq, while the Recall in 
GenoLab M was slightly lower.

Same as with WGS concordance analysis, the vari-
ant calling results of six WES datasets were filtered by 

Fig. 2  Comparison of variants calling performances in GenoLab M and NovaSeq 6000 from 33X and 22X coverage of the NA12878 sample. A SNP 
and B InDel on whole genome, C SNP and D InDel F-score on stratification region. Precision, positive predictive value, is the fraction of relevant 
instances among the retrieved instances, Recall, sensitivity is the fraction of relevant instances that were retrieved. F-score is the harmonic mean of 
the precision and recall, chr 20 means chromosome 20, NIADR means Not in all Difficult Regions, SDR means Segmental Duplications Regions
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reference truth, and concordance was shown in Fig. 5. All 
six datasets jointly identified 20,707 SNPs and 425 InDels, 
which were more than 97% of the truth variants’ amount, 
with the majority shared among all six datasets. For 
InDel, 100X depth in all platforms has no specific num-
ber, compared with raw data, while, for SNP, GenoLab 
M and NovaSeq have a small number of mutation detec-
tion. Overall, at 100X depth, GenoLab M (20,371) dis-
played comparable recall in SNP detection compared with 
NovaSeq (20,490) or NextSeq (20,388), and slightly inferior 
in InDel detection.

Discussion
In the past 10 years, with the development of NGS 
sequencers by companies such as Illumina, MGI, and 
Ion Torrent, the application of WES or WGS to identify 
variants of the human genome became accessible for 
the public and even individuals. To further expand the 
accessibility, various variants calling pipelines have been 
developed to adapt each of these sequencing platforms, 
introduced by published benchmark studies. For WGS, 
30-fold represents a “high quality” genome, and GATK is 
one popular bioinformatics analysis tool.

Fig. 3  Venn diagram of variants calling performances in WGS datasets. A SNP and B InDel
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In this study, WES and WGS datasets of the NA12878 
standard sample were generated from NextSeq 550, 
NovaSeq 6000, and GenoLab M. We measured the base 
quality (Q20&Q30), duplication rate, and the average 
sequencing depth of each dataset. Since GenoLab M is 
a new sequencing platform, GenoLab M’s ML model 
for DNAscope was constructed using several WGS and 
WES datasets generated from reference samples. For Illu-
mina platforms, GATK pipeline analysis was performed. 
For Q20 percentages, the GenoLab M showed an aver-
age of 94.62%, and the NovaSeq 6000 was 96.97%, with 
a slight preponderance towards better result. At the 
same time, the duplication rate of GenoLab M was only 
half of NovaSeq 6000 under the same sequencing depth 
(Table 1).

Analysis observed that 22X GenoLab M WGS showed 
higher accuracy than 22X NovaSeq accuracy and reached 
a similar performance of 33X NovaSeq (Fig. 2A&B). Both 
low duplication sequencing and GenoLab M analysis ML 
model contribute to the variant calling accuracy. Here 
we believe GenoLab M offers a cost-effective alternative 
to the NovaSeq 6000 platform with less depth (22X) and 
similar data quality for human resequencing applications. 

GenoLab M’s lower duplication rate may lead to bet-
ter data efficiency. The human genome shows a complex 
pattern of highly identical, interspersed segmental dupli-
cation, also known as SDR [34, 35]. This region poses 
particular challenges for gene annotation because:

1.	 Enriched in assembly gaps [36];
2.	 More prone to copy number polymorphism among 

individuals [37];
3.	 Different paralogs are difficult to distinguish because 

of their high sequence identity [38].

The existence of SDR predisposes humans to large-
scale rearrangements due to unequal crossing-over 
leading to genomic instability associated with neurode-
velopmental delay and autism [39]. The demonstrated 
accuracy advantages of GenoLab M sequencing platform 
in the SDR of the human genome may be suitable to NGS 
projects on neurodegeneration disease and autism.

In WES analysis, recall of GenoLab M was still lower 
than NovaSeq or NextSeq at the same sequencing depth, 
which serves as a development target for us. To improve 
overall variant calling accuracy, more GenoLab M 

Fig. 4  Comparison of variants calling performances in six WES datasets..A SNP and B InDel. Precision, positive predictive value, is the fraction of 
relevant instances among the retrieved instances, Recall, sensitivity is the fraction of relevant instances that were retrieved. F-score is the harmonic 
mean of the precision and recall
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Fig. 5  Upset diagram of variant Calling results of all combinations in WES datasets. A SNP and B InDel
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reference datasets are required to assemble a larger train-
ing set for future DNAscope model training. Also, the 
collection and sequencing of more clinical or scientific 
samples will further help GeneMind R&D to improve 
sequencing instruments’ performance, such as increasing 
the Quality value (Q20&Q30) and throughput.

Conclusions
For WGS, 22X in GeneMind sequencing platform 
showed a similar performance to 33X depth in Illumina 
NovaSeq 6000, which offers an effective alternative. And 
100X WES of GenoLab M showed similar or superior 
performance to Illumina platforms at the same depth, 
which also has application prospects in WES.
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