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Abstract 

Background:  Transcriptome-wide association studies (TWASs) have shown great promise in interpreting the findings 
from genome-wide association studies (GWASs) and exploring the disease mechanisms, by integrating GWAS and 
eQTL mapping studies. Almost all TWAS methods only focus on one gene at a time, with exception of only two pub-
lished multiple-gene methods nevertheless failing to account for the inter-dependence as well as the network struc-
ture among multiple genes, which may lead to power loss in TWAS analysis as complex disease often owe to multiple 
genes that interact with each other as a biological network. We therefore developed a Network Regression method in 
a two-stage TWAS framework (NeRiT) to detect whether a given network is associated with the traits of interest. NeRiT 
adopts the flexible Bayesian Dirichlet process regression to obtain the gene expression prediction weights in the first 
stage, uses pointwise mutual information to represent the general between-node correlation in the second stage and 
can effectively take the network structure among different gene nodes into account.

Results:  Comprehensive and realistic simulations indicated NeRiT had calibrated type I error control for testing both 
the node effect and edge effect, and yields higher power than the existed methods, especially in testing the edge 
effect. The results were consistent regardless of the GWAS sample size, the gene expression prediction model in the 
first step of TWAS, the network structure as well as the correlation pattern among different gene nodes. Real data 
applications through analyzing systolic blood pressure and diastolic blood pressure from UK Biobank showed that 
NeRiT can simultaneously identify the trait-related nodes as well as the trait-related edges.

Conclusions:  NeRiT is a powerful and efficient network regression method in TWAS.
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Background
Transcriptome-wide association studies (TWASs) bridge 
genome-wide association studies (GWASs) and eQTL 
studies to make inference about the association between 
the genetically predicted gene expression and the phe-
notypes [1]. It has shown great promise in interpretation 
of the GWAS findings and revelation of the underlying 

mechanisms for disease susceptibility. It is typically done 
in a two-stage framework where genotype and expres-
sion data from an eQTL study are associated as the first 
stage to obtain the expression prediction weights, fol-
lowed by the association analysis between the predicted 
gene expression derived from the weights from the first 
stage and the outcome GWAS trait. So far many statisti-
cal methods have been developed involving both stages, 
including for the first stage appropriate modeling of 
SNP effects on gene expression to improve the imputa-
tion accuracy (sparse effect as in PrediXcan [2], Bayesian 
sparse linear model as in TWAS [1], polygenic mod-
eling as in PMR-Egger [3], moPMR-Egger [4], CoMM 
[5] and nonparametrics as in DPR [6] and TIGAR [7]), 
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constructing a composite instrumental variable [8], lev-
eraging trans-eQTLs [9] or omics mediators [10] and 
epigenetic annotations [11]; for the second stage using 
kernel-type method [12, 13], aggregating multiple expres-
sion prediction models [14], multiple tissues [15, 16]. In 
addition, some methods adopted a joint likelihood-based 
inference procedure to improve the power [3, 4].

Almost all current TWAS methods are univariate in 
nature with focus on one gene at a time, which may be 
suboptimal due to its failure to account for the correla-
tion among multiple gene expressions. To our knowl-
edge, there are only two multiple-gene TWAS methods, 
FOCUS [17] and FOGS [18]. FOCUS extends probabil-
istic SNP fine-mapping approaches and models the cor-
relation among TWAS signals to obtain risk region-based 
credible gene sets containing the causal gene at a given 
confidence level in a Bayesian framework [17]. FOGS 
conceptually transforms the gene-based fine-mapping 
into SNPs and performs conditional analysis of each spe-
cific cis-SNPs in one gene by adjusting the cis-SNPs of 
other genes in the same region [18]. Both FOCUS and 
FOGS exhibit the great advantage in modeling multiple 
genes over the TWAS method only modeling one gene at 
a time. Even so, they are unable to account for the inter-
dependence as well as the network structure among mul-
tiple genes, thus may leading to loss of power.

A complex disease outcome is seldom the consequence 
of abnormality involving a single gene but often owing 
to multiple genes that interact with each other as a bio-
logical network whose identification can facilitate bet-
ter understanding of the pathways in disease etiology. 
Such a network is conveniently described as a graph in 
which the nodes and edges are used to represent genes, 
and physiological interactions between nodes, respec-
tively, so that both the node effects and edge effects can 
contribute to the diseases [19–22]. It is nontrivial to 
develop statistical methods in TWAS to detect whether 
a given biological network is associated with complex 
disease. One needs to summarize the information under-
lying the network, to determine a suitable measure to 
represent the link or connection between two nodes. It 
should be noted that the link may be nonlinear. We have 
previously proposed PMINR [22] for efficient network 
regression analysis, where pointwise mutual information 
(PMI) is used to measure the strength of the connection 
between a pair of nodes. PMINR has shown better per-
formance in capturing the general relationship among 
different nodes in a biological network than other meth-
ods including PMNR [22], DGCA [23] and RANK [24]. 
Specifically, PMNR uses the common linear correlation 
to represent the between-node connection strength for 
network regression [22], DGCA is differential gene cor-
relation analysis (i.e., edge effect) to assess the difference 

in gene regulatory relationships under multiple condi-
tions [23], while RANK can detect the whole pathway 
due to either correlation or mean changes [24]. However, 
the modeling framework of PMINR requires all the gene 
network nodes to be observed, thus cannot be directly 
implemented for network regression in TWAS analysis, 
where the gene expression are commonly unobserved in 
the GWAS.

In this investigation, we developed a Network Regres-
sion method in TWAS framework, NeRiT, to detect the 
association between a given network and phenotypes 
of interest. It builds upon the two-stage analysis frame-
work that is commonly used in TWAS, first adopts the 
nonparametric Bayesian Dirichlet process regression 
(DPR) model in the eQTL study to obtain the SNP effect 
size estimate on each gene within the network, given 
that DPR method is robust against the mis-specified dis-
tribution of SNP effect size [6]. In addition, we parallel-
ized with Bayesian sparse linear mixed model (BSLMM) 
model for sensitive analysis [25]. Then, NeRiT adopts 
PMI to represent the between-node correlation and 
performs the association analysis with both the node of 
predicted gene expression and the edge of their correla-
tion among these predicted values to be included in the 
model. In this case, it can effectively take the network 
structure into account, and simultaneously identify the 
trait-related nodes (e.g., genes) as well as the trait-related 
edges (e.g., gene–gene co-association).

With extensive realistic simulations, we showed that it 
provides calibrate type I error control for testing either 
the node effect or the edge effect, yields higher power, 
especially in testing the edge effect, than the method 
with product moment representing the between-node 
correlation. Finally, we applied NeRiT to analyze systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) 
from UK Biobank to demonstrate its benefits in real data 
analysis.

Results
Simulations
Shown in Fig. 1 are the estimated type I error rates and 
statistical power of NeRiT and PMNT with the data 
being simulated from renin secretion network and the 
gene expression prediction model being constructed 
from DPR model. Here, PMNT is developed by replac-
ing PMI with product moment in the proposed NeRiT 
framework (i.e. PM-based Network in TWAS, details in 
Methods). The type I error rates of both two methods 
were close to the given significance level ( α = 0.05 ) under 
the four simulation scenarios, regardless of the sample 
size, the linear or nonlinear (quadratic, sine or the com-
bination of quadratic and sine) pattern of correlation. As 
expected, the power of both two methods increased with 
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sample size under all simulation settings. In addition, 
both NeRiT and PMNT had comparable power to detect 
the effecting nodes in the settings when only node has 
the effect (Fig. 1A) or both node and edge have the effect 
(Fig. 1C and E). In detecting the effecting edge, the power 
of NeRiT was a little lower than that of PMNT when the 
inter-node correlation is linear, which was not surprising 
as the product moment is the gold standard to describe 
the inter-node relationship in this case. However, the 
power of NeRiT was much higher, or at least comparable, 
than that of PMNT when the inter-node relationship is 
nonlinear including quadratic, sine, as well as the com-
bination of quadratic and sine (Fig. 1B, D, F). All results 
were consistent when the effecting node or edges are ran-
domly selected (Figure S1), which illustrated that NeRiT 
can be reliable and robust against the specific network. 
In addition, similar conclusions could be drawn when the 
gene expression prediction model was constructed from 
BSLMM (Figure S2 and S3).

Such findings were also made when the data are simu-
lated from lipid and atherosclerosis network (Fig.  2). In 
addition, all the results were consistent either when the 
effecting node or edges are randomly selected (Figure S4) 
or when the gene expression prediction model was con-
structed from BSLMM (Figure S5 and S6). Therefore, all 
the simulation results illustrated that NeRiT was robust 
against both the network size and network structure.

Applications
Shown in Table 1 are the results of the network regres-
sion in detecting the association between renin secre-
tion network and the blood pressure traits in TWAS 
framework by integrating GEUVADIS data and UK 
Biobank GWAS. Consistent with simulations, both 
NeRiT and PMNT successfully detected the same 
node genes at a significance level of 0.05, including 
CREB1 ( p = 0.001 and 0.002 for NeRiT and PMNT, 
respectively) and ADRB1 ( p = 0.029 and 0.025 for 

Fig. 1  Simulation results of renin secretion network under fixed effecting nodes or edges. Type I error and power of both NeRiT and PMNT with 
data simulated based on renin secretion network under fixed effecting nodes or edges and four different between-node correlation patterns using 
DPR as the imputation model in TWAS. The red dotted line represents the significance level ( α = 0.05 ). A Only node has effect; (B) Only edge has 
effect; the results for effecting node (C) or for effecting edge (D) when both node and edge change with changing node hanging on the edge; the 
results for effecting node (E) or for effecting edge (F) when both node and edge change with changing node not hanging on the edge
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NeRiT and PMNT, respectively) for SBP and ADRB1 
( p = 2.540× 10

−5
and 2.565× 10

−5 for NeRiT and 
PMNT, respectively) for DBP. For SBP, PMNT suc-
cessfully identified an effecting edge GNAS-ADCY5 
( p = 0.025 ), which, to a lesser extent, has also been 
detected by NeRiT ( p = 0.055 ). For DBP, PMNT failed to 

detect any effecting edges, while NeRiT successfully iden-
tify the effecting edge GNAS-ADCY5 ( p = 0.024 ) and, to 
a lesser extent, GNAS-PTGER2 ( p = 0.049 ). The scatter 
plots describing the relationship between the expression 
of GNAS and ADCY5 in eQTL study, as well as GNAS 
and PTGER2, are displayed as supplementary Figure S7 
and S8, which indicates that there is no linear relation-
ship between these genes. This highlights the important 
feature of PMI in capturing the nonlinear relationship 
and the power advantage of NeRiT.

Shown in Table 2 are the results of the network regres-
sion in detecting the association between the aldos-
terone-regulated sodium reabsorption network and 
the blood pressure traits. Consistent with simulations, 
both NeRiT and PMNT successfully identified the same 
genes at a significance level of 0.05, including IGF1 
( p = 0.020 and 0.021 for NeRiT and PMNT, respec-
tively), MAPK1 ( p = 0.028 and 0.027 for NeRiT and 

Fig. 2  Simulation results of lipid and atherosclerosis network under fixed effecting nodes or edges. Type I error and power of both NeRiT and 
PMNT with data simulated based on lipid and atherosclerosis network under random effecting nodes or edges and four different between-node 
correlation patterns using DPR as the imputation model in TWAS. The red dotted line represents the significance level ( α = 0.05 ). A Only node has 
effect; (B) Only edge has effect; the results for effecting node (C) or for effecting edge (D) when both node and edge change with changing node 
hanging on the edge; the results for effect node (E) or for effecting edge (F) when both node and edge change with changing node not hanging 
on the edge

Table 1  Renin secretion network regression of both methods 
with p values in parenthesis

Trait NeRiT PMNT

SBP Nodes CREB1 ( 0.001)
ADRB1 ( 0.029)

CREB1 ( 0.002)
ADRB1 ( 0.025)

Edges GNAS-ADCY5 ( 0.055) GNAS-ADCY5 ( 0.025)

DBP Nodes ADRB1 ( 2.540× 10
−5) ADRB1 ( 2.565× 10

−5)

Edges GNAS-ADCY5 ( 0.024)
GNAS-PTGER2 ( 0.049)
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PMNT, respectively), SLC9A3R2 ( p = 0.039 and 0.040 
for NeRiT and PMNT, respectively) and IRS1 
( p = 0.047 and 0.048 for NeRiT and PMNT, respec-
tively) for SBP, and NEDD4L ( p = 0.013 for both NeRiT 
and PMNT) for DBP. For DBP, NeRiT successfully iden-
tified the effecting edge SGK1-NR3C2 ( p = 0.044 ), while 
PMNT failed to detect any effecting edges. Again, Figure 
S9 shows the scatter plot of gene expression relation-
ship between SGK1 and NR3C2 in eQTL study, which 
also shows the inter-node correlation is nonlinear. Again, 
all results were similar when using BSLMM as the gene 
expression prediction model (Table S1 and Table S2).

Discussion
We have presented NeRiT, a novel network regression 
method that detects the association between a given 
network and the phenotypes of interest in TWAS. It is 
a key step in TWAS analysis to choose the appropriate 
prior distribution of genotype effect size to predict gene 
expression, and it is often hard to determine the appro-
priate prior distribution of the genotype effect size since 
the real genetic structure is scarcely known. For network 
regression in TWAS, NeRiT relies on DPR to obtain the 
gene expression prediction weights with PMI to measure 
the between-node correlation and can simultaneously 
identify the specific gene nodes as well as edges related 
to the outcome traits. Comprehensive simulations illus-
trated that PMI can capture the general relationship 
among different gene nodes, and NeRiT has better per-
formance than other competing methods.

One may be tempting to first get the PMI estimates 
among the network nodes of gene expression in the 
eQTL study, rather than among the network nodes of 
predicted gene expression in GWAS, given that the gene 
expression data are available in the eQTL study. Then, 
the estimate of PMI can be considered as a new expo-
sure and the standard TWAS analysis can be conducted. 
However, there would be large prediction error due to 
the limited sample size in the eQTL study (e.g. only 465 
samples in the GEUVADIS data). In addition, different 

from traditional TWAS analysis naturally choosing the 
cis-SNPs of each gene as the genotypes, it is hard to 
determine, both biologically and statistically, which SNPs 
can be chosen for the PMI between two genes as the 
genotypes.

Findings in our real data analysis were consistent with 
previous work. Loss of CREB content and function is 
a common, pathogenic vascular smooth muscle cells 
response to cardiovascular risk factors [26]. Hyperten-
sion is a multifactorial disease with a substantial genetic 
component. ADRB1 is important in the regulation of 
blood pressure, cardiovascular function and lipid metab-
olism [27], and it was found that individuals with higher 
expression of the ADRB1 receptor gene are at increased 
risk of hypertension [28]. GNAS implicated in variable 
blood pressure lowering of drug therapy in cardiovas-
cular medicine [29]. Previous studies indicated that tar-
geted disruption of PTGER2 results in hypertension [30]. 
GNAS-ADCY5 plays a key role in a wide variety of inter-
connected pathways including PKA signaling and cAMP 
signaling, which have well-established roles in the control 
of blood pressure [31].
IGF1 implicated in essential hypertension [29]. MAPK1 

stimulates cardiac fibroblast and myofibroblast growth, 
thus contributing to the pathological actions of aldos-
terone in the myocardium [32]. SLC9A3R2 is associated 
with SBP and/or DBP and with consistent directions of 
effect for SBP and DBP [33]. NEDD4L controls blood 
pressure by downregulating renal epithelial sodium 
channel (ENaC) expression and inhibiting sodium reab-
sorption, and some genetic variations in NEDD4L could 
influence the ability of the NEDD4L protein, which is 
significantly associated with an increased risk for adverse 
cardiovascular outcomes [34]. Moreover, SGK1 phos-
phorylates and inactivates the ubiquitin ligase NEDD4L 
to reduce its interaction with the epithelial sodium chan-
nel. This consequently increases cell surface expression of 
the ENaC and thus sodium reabsorption across the api-
cal membrane, enabling regulation of blood pressure in 
response to aldosterone [35].

NeRiT is not without limitations. First, the gene net-
work structure is assumed to be known. In fact, learning 
gene network structure requires determining every pos-
sible edge with the highest degree of data matching, and 
a joint probability distribution of gene network nodes can 
reflect more than one network structure. Indeed, most 
biologists can roughly describe the specific network for 
the corresponding biological process, and publicly avail-
able multiple databases (such as KEGG) can also be 
helpful to establish the network structure. Second, the 
inference of PMINR directly plugs the estimate of corre-
lation among different predicted gene expression into the 
regression model and fails to account for the uncertainty 

Table 2  Aldosterone-regulated sodium reabsorption network 
regression of both methods with p values in parenthesis

Trait NeRiT PMNT

SBP Nodes IGF1 ( 0.020)
MAPK1 ( 0.028)
SLC9A3R2 ( 0.039)
IRS1 ( 0.047)

IGF1 ( 0.021)
MAPK1 ( 0.027)
SLC9A3R2 ( 0.040)
IRS1 ( 0.048)

Edges
DBP Nodes NEDD4L ( 0.013) NEDD4L ( 0.013)

Edges SGK1-NR3C2 ( 0.044)
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during such correlation estimate, such inference pro-
cedure may lead to the biased estimate and power loss, 
especially in smaller sample size. Meanwhile, it ignores 
the direction of the link between gene codes. Third, we 
adjusted the p values in the real data application using 
Bonferroni correction as well as the FDR, but almost 
no significant node or edge can be detected (Tables 
S3, S4, S5, S6, S7, S8, S9 and S10). For network regres-
sion in TWAS, the node test and the edge test are often 
highly correlated, with further exacerbation since the 
gene expression are predicted using the cis-SNP of each 
gene, which are often in linkage disequilibrium. It is not 
straightforward to correct the p value or control the FDR. 
It is desirable to develop methods that can calculate the 
effective number of independent tests, to further address 
the multiple testing issue. In addition, caution should be 
made against the interpretation of the effect of individual 
node and edge, given the potential for mediation effects 
within the network.

Conclusions
In conclusion, NeRiT is a powerful and efficient network 
regression method in TWAS.

Methods
An overview
NeRiT concerns about network regression analysis in 
TWAS to identify the trait-associated biological net-
work involving multiple genes from a network medi-
cine perspective. Specifically, assume that we have 
a biological network with m nodes (the magnitude 
of each gene’s expression in the regulation network) 
and l edges (the strength of between-node connec-
tion). We denote X i(i = 1, 2, . . . ,m) as an n1-vector of 
gene expression measurements for the i-th gene, that 
is measured on n1 individuals in the gene expression 
study and denote g i as an n1 by pi matrix of genotypes 
for pi cis-SNPs of the i-th gene in the same study; ηi is 
a pi-vector of SNP effect sizes on the X i . We assume X i 
has been standardized with a mean of zero and a vari-
ance of one. We denote y =

(
y1, y2, . . . , yn2

)T as an n2
-vector of outcome variable (i.e. trait) that is measured 
on n2 individuals in the GWAS and denote Gi as an n2 
by pi matrix of genotypes for the same pi SNPs of the i
-th gene. Gki(k = 1, 2, . . . , n2; i = 1, 2, . . . ,m) denotes a 
1 by pi matrix of genotypes of the i-th gene for the k-th 
individual; Zks(s = 1, 2, . . . , S) denotes the s-th covari-
ate for the k-th individual; Ekij denotes the estimator of 
PMI between node Xi and node Xj for the k-th individual 
(details in below).

NeRiT considers two linear regressions to model the 
gene expression study and GWAS separately in TWAS,

for subject k(k = 1, 2, . . . , n2),

where

Equations  (1) and (2) are for the gene expression data 
and the GWAS data, respectively. Here, β0 is a constant 
of intercept,αks is the coefficients of the s-th covariates 
for the k-th individual; η̂i is the estimate of the SNP effect 
size on the i-th gene estimated by the prediction model; 
βi is the causal effect of the i-th gene; γij is the effect 
between the i-th gene and j-th gene. εX i is an n1-vector of 
residual error with each element independently and iden-
tically distributed from a normal distributionN

(
0, σ 2

X

)
 ; 

e = (e1, e2, . . . , en2) is an n2-vector of residual error with 
each element independently and identically distributed 
from a normal distributionN 0, σ 2

y  . Since gene expres-
sion data is unobserved in GWAS, we denote X̂ i = η̂iβi 
as an n2-vector of predicted gene expressions for the i-th 
gene, where the SNP effect η̂i needs to be obtained by the 
gene expression prediction model (details regarding the 
gene expression prediction model are provided below). A 
key feature of NeRiT is the integration of using gene 
expression prediction model in the first stage and using 
PMI in the second stage for network regression in TWAS. 
It should be noted that NeRiT decomposes the change of 
the whole biological network into the gene node and edge 
changes in TWAS framework, and naturally incorpo-
rated the network structure into the model. In addition, 
Wald test was used to identify the gene nodes or edges 
that are related to the outcome traits. The NeRiT is 
implemented in the R package NeRiT, freely available on 
GitHub (https://​github.​com/​Xiuyu​anJin/​NeRiT).

Gene expression prediction model in TWAS
As accuracy of prediction model of gene expression is 
quite important for the performance of TWAS, improve-
ment in the prediction can substantially increase the 
power of TWAS [36]. Different prediction models essen-
tially differ in their assumptions about the prior distri-
bution of the SNP effect size. In theory, the accuracy of 
prediction model depends on how close the prior dis-
tribution is to the real genetic structure, which is often 
unknown. Indeed, there are many differences in heritabil-
ity, minor allele frequency and effect size across different 

(1)X i = g iηi + εX i , (i = 1, 2, . . . ,m)

(2)

yk = β0 +

S∑

s=1

Zksαks +

m∑

i=1

Gkiη̂iβi +

m∑

i=1

m∑

j>i

IijEkijγij + ek

(3)

Iij =

{
1 X i and X j are connected in the network
0 otherwise

https://github.com/XiuyuanJin/NeRiT
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complex traits or diseases. Therefore, most of the exist-
ing parametric models (e.g., linear mixed model), which 
often use a prior effect size distribution represented by 
several parameters, are not sufficient to capture the true 
distribution of SNP effect size underlying the genetic 
data. In this study, we chose the non-parametric Dirichlet 
process regression (DPR), to construct gene expression 
prediction models.

DPR relies on the Dirichlet process to flexibly model 
the effect size distribution using infinitely many param-
eters and is therefore able to infer the effect size distri-
bution from the data at hand. In addition, to investigate 
whether the performance of NeRiT can be influenced 
by the gene expression models, we alternatively adopt 
the commonly used Bayesian sparse linear mixed model 
(BSLMM), which assumes the SNP effect size on gene 
expressions follows two mixture normal distributions, to 
construct the gene expression prediction model.

Pointwise mutual information with the kernel density 
estimator
PMI has been illustrated to have better performance than 
other metrics in capturing the general relationship (lin-
ear or nonlinear) among different nodes in a biological 
network. For any two random variables X and Y  , PMI is 
defined as follows [37]:

where p
(
x; y

)
 is the joint distribution of X and Y , 

p(x) and p
(
y
)
 are the marginal distributions of X and 

Y , respectively. Statistically, PMI can extract the general 
non-independency of two variables. We need to estimate 
the two-dimensional joint density function and mar-
ginal density function for a given sample to calculate the 
PMI between two network nodes. To guard against the 
misspecification of distribution, we chose the non-par-
ametric kernel density estimation to characterize the cor-
responding distribution based on the data at hand and to 
improve the robustness of the PMI estimator.

The two-dimensional kernel density estimation is 
defined as

w h e r e 
Xk = (Xki,Xkj), k = 1, 2, ..., n2, i �= j, i, j = 1, 2, ...,m is the 
k-th sample of the i-th and j-th node, respective; H  is a 
2 by 2 bandwidth matrix, which is symmetric and posi-
tive definite; K  is a bivariate kernel function and 

(4)PMI
(
x; y

)
= log

p
(
x; y

)

p(x)p
(
y
)

(5)f̂H (x) =
1

n2

n2∑

k=1

KH (Xk − x)

KH (x) = |H |−
1
2K

(
H− 1

2 x
)
 . Here we chose the com-

monly-used two-dimensional normal kernel as follows:

Simulation
Given that there are no statistical methods for network 
TWAS analysis yet, we performed comprehensive sim-
ulations to compare the performance of NeRiT with 
the method that replaces PMI with product moment 
in NeRiT framework (term as PM-based Network in 
TWAS (PMNT)). We chose this method for compari-
son as product moment (i.e. Pearson correlation) is 
commonly used to describe the dependence between 
two network nodes [38–41]. To make our simulation 
more realistic, we first mimicked a TWAS analysis by 
integrating the GEUVADIS [42] data with GWAS from 
UK Biobank [43] (details regarding these two datasets 
are provided below). We obtained genotype data and 
gene expression data from GEUVADIS and standard-
ized the genotype and expression vector of each SNP 
to have a zero mean and a unit standard deviation. We 
then applied DPR or BSLMM to obtain the estimate 
of the SNP effect size η̂i on gene expression, respec-
tively. Then, we obtained genotypes for the same SNPs 
from UK Biobank and standardized the genotype vec-
tor of each SNP to have a zero mean and a unit stand-
ard deviation. With the standardized genotype matrix 
and weights vectors η̂i from the previous step, we 
obtained the predicted gene expression. In addition, 
to avoid the risk of pre-specifying the network struc-
ture, we selected a realistic small network of renin 
secretion (Entry: hsa04924) with 13 gene nodes and 8 
edges (Fig. 3) and a large network of lipid and athero-
sclerosis (Entry: hsa05417) with 82 gene nodes and 87 
edges (Fig.  4) from Kyoto Encyclopedia of Genes and 
Genomes (KEGG, http://​www.​kegg.​jp/​kegg/​kegg1.​
html), respectively. Note that we overlapped these net-
work genes with those in the above mimicking TWAS 
framework to re-formulate the two biological networks.

We considered the following four scenarios for 
simulation:

(1) only nodes of network having the effect (e.g., node 
X1 in Fig. 3),
(2) only edges of network having the effect (e.g., 
edge E2,4 in Fig. 3),
(3) both nodes and edges of network having effect, 
with the nodes hanging on the edge (e.g., node X13 
and edge E5,13 in Fig. 3),

(6)KH (x) = (2π)−
d
2 |H |−

1
2 exp

(
−
1

2
xTH−1x

)

http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html


Page 8 of 12Jin et al. BMC Genomics  2022, 23(1):562

(4) both nodes and edges of network having effect, 
with the nodes not hanging on the edge (e.g., node 
X12 and edge E5,13 in Fig. 3).

In each scenario, we use four inter-node relationship 
patterns, including the linear correlation, the quad-
ratic relationship ( Xj = 0.5 · Xi

2
+ ε ), the sine rela-

tionship ( Xj = sinXi + ε ) as well as the combination 
of quadratic and sine relationship ( Xj = (sinXi)

2 + ε ), 
where ε is the residual error from a standard normal 
distribution ε ∼ N (0, 1) . For example, if we assign the 
quadratic relationship between node X5 and node X13 , 
then X13 = 0.5 · X5

2
+ ε . The nonlinear quadratic rela-

tionship between X5 and X13 can be transformed to 
the linear relationship between X5

2 and X13 , we then 
set E5,13 = 0.5 · X5

2
· X13 to represent the edge variable 

E5,13 to simulate the traits. The type I error rate was 
assessed under the null hypothesis, with all node and 
edge effects set to be 0(β = 0 , γ = 0 ), followed by the 
assessment of power with β = 0.03 , γ = 0.03.

We performed 1000 simulation replicates under dif-
ferent sample sizes (5000, 10,000, 20,000) for each 
simulation replicate above. Besides pre-specifying the 
effecting nodes and edges, we further consider addi-
tional cases under the same above settings but ran-
domly select the effecting nodes or edges, to eliminate 
the impact of network structures.

Application
We applied NeRiT through integrating gene expression 
data from GEUVADIS with GWASs from UK Biobank. 
Specifically, we obtained the GEUVADIS data as the gene 
expression data and examined two traits from the UK 
Biobank. The detailed data processing steps for the GEU-
VADIS data and UK Biobank data are described below.

The GEUVADIS data contains gene expression meas-
urements for 465 individuals collected from five different 
populations that include CEPH (CEU), Finns (FIN), Brit-
ish (GBR), Toscani (TSI), and Yoruba (YRI). It performed 
mRNA and small RNA sequencing on 465 Epstein-Barr-
virus-transformed lymphoblastoid cell line samples from 
five populations, and the genotype data was from the 
1000 Genomes project. In the expression data, we only 
focused on protein coding genes and lncRNAs that are 
annotated in GENCODE (release 12) [44, 45]. Among 
these genes, we removed low-expressed genes that have 
zero counts in at least half of the individuals to obtain 
a final set of 15,810. We, following Zeng and Zhou [6], 
first quantile normalized the gene expression across 
individuals in each population to a standard normal dis-
tribution, and then normalized the gene expression to a 
standard normal distribution across individuals from five 
populations. To further remove the technical variations 
and batch effects, we performed PEER normalization to 
remove latent confounding factors for samples from five 

Fig. 3  The network structure based on the renin secretion pathway from KEGG
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populations since the original gene expression measure-
ments were read counts.

Besides the expression data, all individuals in GEU-
VADIS also have their genotypes sequenced in the 1000 
Genomes Projects. We obtained genotype data from the 
1000 Genomes Project phase 3. We filtered out SNPs 
that have a Hardy–Weinberg equilibrium (HWE) p value 
< 10−4 , a genotype call rate < 95% , or a minor allele fre-
quency (MAF) < 0.001 . We retained a total of 7,072,917 
SNPs for analysis.

The UK Biobank data consists of 487,298 individuals 
and 92,693,895 imputed SNPs [43]. We followed the same 
sample QC procedure in Neale lab (Web Resources) to 
retain a total of 337,129 individuals of European ances-
try. We filtered out SNPs with an HWE p value < 10−7 , 
a genotype call rate < 95% , or an MAF < 0.001 to obtain 
a total of 13,876,958 SNPs. For each trait in turn, we 
regressed the resulting standardized phenotypes on sex 
and top genotype principal components (PCs) to obtain 
the residuals, standardized the residuals to have a mean 
of zero and a standard deviation of one, and finally used 
these scaled residuals to conduct TWAS analysis.

We integrated the GEUVADIS data with GWAS from 
UK Biobank for TWAS analysis. For each gene in turn 
in the GEUVADIS data, we extracted cis-SNPs that are 
within either 100 kb upstream of the transcription start 
site (TSS) or 100  kb downstream of the transcription 
end site (TES). We overlapped these cis-SNPs of genes in 
GEUVADIS with the SNPs obtained from UK Biobank to 
obtain common sets of SNPs.

Here we focused on the UK Biobank GWAS of systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) 
to investigate the association between the blood pressure 
and two biological networks from KEGG, one is renin 
secretion network (Entry: hsa04924) with 13 gene nodes 
and 8 edges (Fig.  3), the other is aldosterone-regulated 
sodium reabsorption (Entry: hsa04960) network with 12 
gene nodes and 7 edges (Fig. 5). Note that we overlapped 
these network genes with those in the above mimicking 
TWAS framework to re-formulate the two biological 
networks. Cardiovascular diseases are a leading cause of 
death globally. The reason that we chose the blood pres-
sure traits is that elevated blood pressure is a major risk 
factor for cardiovascular morbidity and mortality [46]. 

Fig. 4  The network structure based on the lipid and atherosclerosis pathway from KEGG
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The SNP heritability of blood pressure was estimated in 
the range of 0.3–0.5 in previous studies [47]. In addition, 
the renin–angiotensin–aldosterone system (RAAS) is a 
critical regulator of blood volume and systemic vascular 
resistance. RASS is composed of renin, angiotensin and 
aldosterone, these three major compounds act together 
to elevate arterial pressure in response to decreased 
renal blood pressure, decreased salt delivery to the dis-
tal convoluted tubule, and/or beta-agonism. Through 
these mechanisms, the body can elevate blood pressure 
in a prolonged manner [48]. It should be noted that one 
important feature of NeRiT was that NeRiT can detect 
whether the whole network or gene or inter-gene correla-
tion is associated with the blood pressure traits.

Web Resources
KEGG, www.​kegg.​jp/​kegg/​kegg1.​html

GEUVADIS, http://​www.​geuva​dis.​org
UK Biobank, https://​www.​ukbio​bank.​ac.​uk/
Sample QC procedure in Neale lab, https://​github.​

com/​Neale​lab/​UK_​Bioba​nk_​GWAS/​tree/​master/​imput​
ed-​v2-​gwas
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aldosterone-regulated sodium reabsorption network regression on 
SBP using BSLMM as the imputation model. Table S10. Results of the 
aldosterone-regulated sodium reabsorption network regression on DBP 
using BSLMM as the imputation model.
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