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Abstract 

Background:  Circular RNAs (CircRNAs) play critical roles in gene expression regulation and disease development. 
Understanding the regulation mechanism of CircRNAs formation can help reveal the role of CircRNAs in various bio-
logical processes mentioned above. Back-splicing is important for CircRNAs formation. Back-splicing sites prediction 
helps uncover the mysteries of CircRNAs formation. Several methods were proposed for back-splicing sites prediction 
or circRNA-realted prediction tasks. Model performance was constrained by poor feature learning and using ability.

Results:  In this study, CircCNN was proposed to predict pre-mRNA back-splicing sites. Convolution neural network 
and batch normalization are the main parts of CircCNN. Experimental results on three datasets show that CircCNN 
outperforms other baseline models. Moreover, PPM (Position Probability Matrix) features extract by CircCNN were con-
verted as motifs. Further analysis reveals that some of motifs found by CircCNN match known motifs involved in gene 
expression regulation, the distribution of motif and special short sequence is important for pre-mRNA back-splicing.

Conclusions:  In general, the findings in this study provide a new direction for exploring CircRNA-related gene 
expression regulatory mechanism and identifying potential targets for complex malignant diseases. The datasets and 
source code of this study are freely available at: https://​github.​com/​szhh5​21/​CircC​NN.
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Background
Circular RNAs (CircRNAs) are special non-coding 
RNA molecules formed by precursor mRNA back-
splicing [1, 2]. These RNAs have single-stranded, cova-
lent, and closed-loop structures [1]. With the help of 
this special structures, CircRNAs can resist degrada-
tion from RNA exonuclease, and the expression level of 
CircRNAs in the cell is more stable [3]. CircRNAs play 
a critical role in various cellular processes in many ways 

[4], such as miRNA sponge [5], RNA-protein binding 
[6] and gene transcription regulation [7]. For example, 
the interaction between CircRNA LPAR3 and micro-
RNA-198 can facilitate esophageal cancer migration, 
invasion, and metastasis [8]. In addition to important 
genes for neurogenesis, Szabo et  al. found that the 
expression level of CircRNA and its isoform is higher 
in the developing brain [9]. circSKA3 induces invado-
podium formation by binding integrin β1, thus enhanc-
ing breast cancer invasion ability [10]. The interaction 
between EIciRNA–U1 snRNP complexes and Pol II 
transcription complex at the promoters of parental 
genes can enhance gene expression [11]. Most CircR-
NAs are non-coding RNA. However, a recent study 
found that some CircRNAs have translation ability like 
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mRNA [12, 13]. In addition, researchers have found 
traces of CircRNAs in various complex malignant dis-
eases [14, 15].

During CircRNA formation, narrowing the dis-
tance between a downstream splice-donor (SD) and 
an upstream splice-acceptor (SA) is a key step [1]. One 
way is with cis-element, SA flanking intron region and 
SD flanking intron region contain a ciselement (also be 
known as inverted repeat element, like Alu element), 
base pairing between cis-elements bring upstream SA 
and downstream SD closer, and then promote CircRNA 
formation [4]. On the other hand, some RBP (RNA Bind-
ing Protein) can play a role in linear RNA splicing and 
regulate pre-mRNA back-splicing. These RBPs first bind 
with motif sites in the flanking intron of SA and SD, RBPs 
dimerization can also bring upstream SA into proximity 
with downstream SD [1, 4]. During murine embryonic 
stem cell-derived motor neuron formation, RBP FUS reg-
ulates CircRNA expression by binding the intronic FUS-
binding motifs flanking the back-splicing junctions [16]. 
In summary, circRNA formation is a very complicated 
biological process, special function sites in the flanking 
exons or introns are important for CircRNA formation. 
However, there is still a lack of details about the back-
splicing regulation mechanism and the special function 
sites in the flanking introns and exons.

Identifying the sequence specificities of back-splicing 
sites is considered as a binary classification task, and 
some algorithms have been proposed. These algorithms 
use sequence features as input data and can find impor-
tant features for identifying the types of splicing events 
(linear splicing or back-splicing). In 2017, SVM (Sup-
port Vector Machine) and RF (Random Forest) were 
introduced as classifiers for predicting pre-mRNA back-
splicing sites [17]. Since short sequence features lack bio-
logical explanation, the application of these models was 
limited.

Deep learning not only solves the shortcomings of 
machine learning algorithms but also explores potential 
laws from huge amounts of raw data and has achieved 
excellent performance in computer vision (CV) [18], 
natural language processing (NLP) [19], speech recogni-
tion [20] and other fields. DeepBind was the first deep 
learning model for DNA/RNA motif site analysis [21]. 
Since then, many deep learning-based models had been 
proposed for genome sequence analysis [22, 23], like 
MSCGRU [24], iDeepS [25], DeepCirCode [26], PAS-
SION [27], circDeep [28]. CNN (Convolutional Neural 
Network) and RNN (Recurrent Neural Network) are the 
basic elements that make up these models. A convolution 
kernel can extract potential functional subsequence fea-
tures, combining the output and weights of the convolu-
tion layer can get visual motif site information. RNN can 

learn the mutual regulation features between different 
motif sites.

In this study, we proposed CircCNN to explore the spe-
cial function sites of back-splicing. For each circRNA, 
the SA and SD related to circRNA formation are unique. 
To avoid mutual interference, CircCNN uses a convolu-
tion layer to extract the specific features of SA sites and 
SD sites respectively. Experimental results showed that 
CircCNN outperforms other baseline models. Com-
pared with existing models, CircCNN can not only pre-
dict whether the input sequence contains back-splicing 
sites but also give the visual motif sites information. The 
research found that some human motifs are conserved in 
mouse and fruit fly [29, 30], motifs obtained by CircCNN 
from three datasets (human, mouse, and fruit fly) also 
proved this conclusion.

Results
Experimental settings
In this study, the parameters of CNN used to extract fea-
tures from input data are shown in Table  1. RMSProp is 
used to optimize model training. In addition to dropout, 
Early stopping is also used to avoid overfitting. The num-
ber of early stopping rounds is 20. About epochs, because 
of using early stopping in our model, we only set the max 
epoch to 100. The batch size is set to 1024. Unlike the cross-
validation strategy used in DeepCirCode, in CircCNN, all 
datasets may be involved in model training or testing with 
7-fold cross-validation (see Supplementary section “k-fold 
Cross-Validation”). We can obtain the parameter combi-
nation that meets our requirements by comparing model 

Table 1  Model parameter

Conv represents Convolution layer, Drop represents dropout layer, MP 
represents Max pooling layer

Layer Parameter

Conv1 Kernel 
number: 256, 
Kernel size: 
10,12,15
Padding 
mode: Valid, 
Stride win-
dow: 1

Conv2 Kernel 
number: 128, 
Kernel size: 
20,30,40
Padding 
mode: Same, 
Stride win-
dow: 1,2

Drop1 0.2,0.5,0.7
MP (5,5)

Drop2 0.2,0.5,0.7



Page 3 of 12Shen et al. BMC Genomics          (2022) 23:581 	

performance with different parameter combinations (See 
Supplementary Table S1). The bold and italic numbers in 
Table 1 represent the optimal parameters for our model.

Here, not only were the existing models introduced 
as comparison models, but we also compared CircCNN 
with the different combinations of encoding methods 
(one-hot or word2vec), CNN, LSTM (Long Short-Term 
Memory), and attention. For the model using word-
2vec, its input data was divided into kmer sequences 
(6-mer). All comparison models are shown as follows: 
①Onehot+CNN + LSTM,②Onehot+CNN + Attention, 
③Onehot+CNN + LSTM+Attention,④Word2vec + LS
TM, ⑤Word2vec + LSTM+Attention, ⑥ DeepCirCode, 
⑦CircCNN (CVLD),⑧CircCNN.

It should be noted that the three datasets we used in this 
study are imbalanced. When choosing model evaluation 
metrics, we must consider the situation of data imbal-
ance. Based on the statistics of model prediction results 
provided by the confusion matrix (see Supplementary 

section “Confusion Matrix”), various metrics can be cal-
culated: ACC, AUC, Precision, Recall, and so on. Here, 
five metrics were used to evaluate model performance: 
ACC (Accuracy), Sensitivity (also known as True Positive 
Rate, TPR), Specificity, MCC (Matthews correlation coef-
ficient), and AUC (Area under the ROC curve).

Experimental results and analysis
In this study, CircCNN and all comparison models are 
performed on three datasets described in the “Data” sec-
tion. The average value of AUC and ACC of these models 
are shown in Table 2, and the other three metrics of these 
models are shown in Supplementary Table S2. Figure  1 
shows the best performance of CircCNN and other base-
line models in 7-fold cross-validation. As can be seen, 
CircCNN outperforms other baseline models. CircRNA 
is the product of pre-mRNA alternative back-splicing, 
which means that the association between different func-
tional sites in the pre-mRNA sequence is weakened. The 

Table 2  Comparison of CircCNN and other baseline models in cross-validation

CVLD represents the cross-validation strategy used in CircCNN training is same as DeepCirCode

Model Human Mouse Fruit Fly

AUC​ ACC​ AUC​ ACC​ AUC​ ACC​

Model① 0.8614 0.8019 0.8347 0.7669 0.8518 0.7755

Model② 0.7245 0.6744 0.7715 0.7054 0.7716 0.703

Model③ 0.8393 0.7793 0.82 0.7525 0.8415 0.7593

Model④ 0.8334 0.762 0.7915 0.7188 0.8231 0.7398

Model⑤ 0.7117 0.6647 0.7242 0.6637 0.743 0.676

DeepCircCode 0.8827 0.8232 0.8391 0.7653 0.8611 0.7796

CircCNN (CVLD) 0.9026 0.8348 0.8431 0.7572 0.8704 0.7807

CircCNN 0.9049 0.8421 0.8514 0.7705 0.8708 0.7869

Fig. 1  Best performance of circCNN and other baseline models
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functional sites in the CircRNA sequence are treated as a 
word in the text. Word2vec is not good at learning word 
features from disrupted text to generate word vectors. 
Therefore, the model using word2vec is not better than 
the one-hot method. Drawing on existing embedding 
methods, we can study a new embedding method suit-
able for CircRNA to improve model performance.

Explore the influence of batch normalization and dropout 
on model performance
Since its launch in 2015, batch normalization is widely 
used in CV, NLP, and other fields. To explore the influ-
ence of batch normalization (BN) on model performance, 
we perform CircCNN without BN (No BN) or use drop-
out to replace the batch-normalization (BN → Drop-
out) in CircCNN, and then compare it with the original 
CircCNN.

We found that model training time did not change sig-
nificantly during the experiment. As can be seen from 
Table  3, the performance difference between CircCNN 
(No BN) and CircCNN (BN → Dropout) is not obvious. 
In addition to Specificity, CircCNN outperforms other 
models on four metrics. Generally, dropout can only be 
used to deal with over-fitting problems during model 
training, while BN can reduce the impact of over-fitting 
and vanishing gradients on model performance. Whether 
BN is used and where BN is located in the model still 
needs to be determined by experiments.

Motif analysis
Motif found by CircCNN match the known motif in motif 
database
Accurate identification of back-splicing sites helps to 
explore the CircRNA-related regulation mechanism. 
In this study, we first convert the output of the first 

convolution layer to PPMs (Position Probability Matrix), 
and then use TOMTOM [31] to compare it with the 
known motifs. The whole process can be described as the 
following three steps.

1)	 Input data→CMEM: The output of the first convo-
lution layer can be called CMEM (Candidate Motif 
Evaluation Matrix) set. Each element in CMEM is a 
probability given by a convolution kernel, which rep-
resents whether the subsequence is a motif or not.

2)	 CMEM→PPM: Based on the evaluation score in 
CMEM, all positive samples provided a lot of sub-
sequences. Each PPM corresponds to a CMEM. To 
calculate a PPM, the first thing to do is to count the 
number of each nucleotide at a position, and then 
divide the count result by the total number of subse-
quences.

3)	 PPM → motif logo: In this step, PPM was uploaded 
to TOMTOM for motif comparison and motif logo 
generation.

Three known motif databases obtained from 
MEME Suite [32] were used in motif analysis: RNA/
Ray2013_rbp_Homo_sapiens.meme, RNA/Ray2013_
rbp_Mus_musculus.meme, RNA/Ray2013_rbp_Dros-
ophila_melanogaster.meme. It should be clear that 
motifs in this section and the next section are found 
by CircCNN, which has the best performance in 7-fold 
cross-validation. Part of the motif found by CircCNN is 
shown in Table 4 and Fig. 2, and the rest is shown in Sup-
plementary Table S3, S4, S5, S6, S7, and S8.

According to the records in UniProt, the proteins 
encoded by genes interacting with known motifs in 
Table  4 and the supplementary table are involved in 
gene expression regulation. For example, HuR/TIA1 

Table 3  CircCNN with BN outperforms other modified CircCNN

Each number represents the average metric value of model in cross-validation

AUC​ ACC​ MCC Sens Spec

Human CircCNN (No BN) 0.8963 0.8317 0.6613 0.8871 0.766
CircCNN
(BN → Dropout)

0.8979 0.8325 0.6632 0.8891 0.7655

CircCNN 0.9049 0.8421 0.6849 0.9147 0.7562

Mouse CircCNN (No BN) 0.8401 0.7629 0.5275 0.8003 0.7255
CircCNN
(BN → Dropout)

0.8407 0.7623 0.5263 0.8001 0.7246

CircCNN 0.8514 0.7705 0.5508 0.8614 0.6797

Fruit Fly CircCNN (No BN) 0.858 0.773 0.5483 0.8058 0.7402
CircCNN
(BN → Dropout)

0.86 0.7753 0.5527 0.8165 0.7341

CircCNN 0.8708 0.7869 0.5773 0.8374 0.7365
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is involved in alternative splicing regulation of SIRT1 
Pre-mRNA by promoting or inhibiting exon8 exclusion 
[33]. TIA1, which functions as an ARE-binding regula-
tory factor, is involved in cyclooxygenase-2 translational 

regulation by binding the AU-rich element (ARE) within 
the COX-2 mRNA 3′-untranslated region (3’UTR) [34].

By searching the literature and querying disease-
related databases, we confirmed that some motifs found 

Table 4  Three species motifs found by CircCNN match three known motif databases by TOMTOM

FilterID Motif found by CircCNN Known motif in database Known motif sequence Gene Annotation E-value

Human Input1 filter9 GAG​AAA​GUUA​ RNCMPT00090 AGA​GAA​A SRSF10 0.0638
filter16 AUU​UAU​UUUA​ RNCMPT00032 UUA​UUU​U HuR 0.0115
filter36 UCU​CUU​UUUG​ RNCMPT00012 CUU​UUU​U CPEB2 0.0205

Input2 filter2 CUU​GGU​UUCC​ RNCMPT00086 UUU​GUU​U ZC3H14 0.0766
filter15 AGU​ACC​UUAC​ RNCMPT00186 CCU​UUC​C PCBP1 0.0418
filter18 CCA​UUU​UCUU​ RNCMPT00269 ACU​UUC​U PTBP1 0.0133

Mouse Input1 filter0 AAC​AUU​UUCC​ RNCMPT00239 CCU​UUC​CC PCBP1 0.0072
filter41 ACA​AUU​CCCG​ RNCMPT00239 CCU​UUC​CC PCBP1 0.0498

ACA​AUU​CCCG​ RNCMPT00215 CUU​UCC​CU PCBP3 0.0956
Input2 filter1 AAA​AAA​AAAA​ RNCMPT00062 UAA​AAG​G KHDRBS1 0.0189

filter125 UUC​CCU​GUGA​ RNCMPT00215 CUU​UCC​CU PCBP3 0.0452
filter160 UGU​AUG​AGGA​ RNCMPT00051 GUG​UGU​G RBM38 0.0673

UGU​AUG​AGGA​ RNCMPT00062 UAA​AAG​G KHDRBS1 0.0972

Fly Input1 filter15 AUG​UCC​AUUC​ RNCMPT00123 GUG​CAU​GC A2BP1 0.0499
filter22 UUU​AAC​UAAA​ RNCMPT00147 AAC​UAA​G CG2931 0.023
filter32 GUU​GGG​UUUA​ RNCMPT00120 UUU​AGU​U FNE 0.0536

Input2 filter10 GCA​CUG​CACU​ RNCMPT00145 AUU​GCA​CA SNF 0.0465
filter19 UUA​CCA​CACG​ RNCMPT00124 CCG​CGC​GG LARK 0.0375
filter46 UAA​UAA​ACUU​ RNCMPT00142 AUA​AUA​A QKR58E-1 0.0377

Fig. 2  Sequence logos of three species matched motifs. From top to bottom, motif logos of three species are shown respectively, both sides of the 
red line are the motifs of input1 module and input2 module, respectively. The gene name is shown above each motif logos
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by CircCNN are associated with disease-related genes. 
Table 5 shows some of the associations we found. In lung 
cancer, RNA binding Protein QKI, whose binding motif 
RNCMPT00047 is matched with filter209, regulates the 
alternative splicing of NUMB by binding to two RNA ele-
ments in the pre-mRNA of NUMB, thereby inhibiting the 
proliferation and transformation of lung cancer cells [35]. 
HNRNPC is associated with cell proliferation and tumor 
growth in breast cancer, and its binding motif RNC-
MPT00025 matched with filter188 [36]. In Pancreatic 
ductal adenocarcinoma cells, the regulation of PTBP1 
on pyruvate kinase gene alternative splicing affects the 
therapeutic effect of gemcitabine [37]. RNA binding 
protein TIA1 can be targeted by mir-19a, thus affect-
ing cell proliferation and migration in colorectal cancer 
cells [38]. For HNRNPK, filter162 matches with its motif 
RNCMPT00026, it can affect the expression of splicing 
regulator SRSF1, thereby indirectly regulating CD44E 
alternative splicing, which in turn affects cancer cell pro-
liferation, migration, and invasion [39]. Taken together, 
CircCNN discovers protein binding sites associated with 
cancer.

In future research about biomedical, we have two 
directions. One is to collect more data related to circR-
NAs, proteins, genes, and diseases from existing data-
bases, literature, and other materials and use algorithms 
to discover disease-related regulatory information from 
these data. Another is to cooperate with hospitals to 
obtain and analyze disease-related sequence data, gene 
expression data, etc. with patients’ consent. By compar-
ing the conclusions of the two directions, we can confirm 
the known disease-related gene expression regulation 
information, and it is possible to discover new disease-
related gene expression regulation pathways and identify 
potential targets for cancer.

Motif distribution analysis
Motif-related features are important to identify whether 
the current sequence contains back-splicing sites. In this 
section, RNA motifs were obtained by CircCNN from 

positive samples (Supplementary Tables S9). We analyzed 
the positive and negative samples for RNA motif distri-
bution. The motif distribution pattern in three datasets 
is shown in supplementary Fig. S2 to S7. All RNA motifs 
found by CircCNN exist in positive and negative samples, 
and different motifs have different distribution patterns. 
For example, in human input1(SA input), the filter75 
motif often appears in the flanking exon in the positive 
samples, its density in the flanking exon in the negative 
samples is much lower than in the positive samples, and 
the situation is reversed in the upstream intron (Fig. 3A). 
For filter164 motif (mouse input1), it is enriched in the 
upstream intron in the positive samples (Fig. 3B). In fruit 
fly input2 (SD input), density of filter197 motif in the 
flanking exon is lower in the negative samples than in the 
positive samples (Fig. 3C).

Previous study indicated that RNA motifs related 
CircRNA formation were often found in the flanking 
introns [40, 41]. In this study, we count the distribution 
of RNA motifs found by CircCNN. The ratio of motifs in 
the flanking introns and the flanking exons is basically 
around 50%. Table 4 and Supplementary Table S3 to S8 
shows RNA motifs match known RNA motif database. 
From the density plot of these motifs, we found that it is 
often found in both the flanking introns and the flanking 
exons. Generally speaking, the flanking exons are also 
important for CircRNA formation.

In this study, CircCNN was also used to extract motifs 
from mouse and fruit fly CircRNA samples (Table 4 and 
Supplementary Table S3 to S8). We compared all RNA 
motifs found by CircCNN from human, mouse and 
fruit fly CircRNA samples. The comparison results were 
shown in Supplementary Tables S10 and S11. For input1 
(SA input), 25 of 256 human motifs were also found in 
mouse motifs, 20 human motifs were also found in fruit 
fly motifs. For input2(SD input), 25 of 256 human motifs 
were also found in mouse motifs, 19 human motifs were 
also found in fruit fly motifs. From Table  6 and Fig.  4, 
we found that five RNA motifs are present in three spe-
cies: human, mouse, and fruit fly. For human motifs, 

Table 5  Association between motif, gene and disease

FilterID Motif found by CircCNN Known motif in database Known motif 
sequence

Gene Annotation Disease

filter188 UAU​CUU​UUUA​ RNCMPT00025 AUU​UUU​U HNRNPC Breast Cancer

filter16 AUU​UAU​UUUA​ RNCMPT00032 UUA​UUU​U HUR Gastric Cancer

filter169 UAG​ACA​CACA​ RNCMPT00027 ACA​CAC​A HNRNPL Prostate Cancer

filter209 AAC​AAA​CAGG​ RNCMPT00047 ACU​AAC​A QKI Lung Cancer

filter28 UUU​UUU​CCGA​ RNCMPT00165 UUU​UUU​C TIA1 Colorectal Cancer

filter162 GAC​CCA​UCCA​ RNCMPT00026 CCA​ACC​C HNRNPK Gastric Cancer

filter34 AGA​CUU​UUUC​ RNCMPT00268 CUU​UUC​U PTBP1 Pancreatic Cancer
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filter105(input1) and filter120(input2) were enriched in 
the flanking introns. Filter118(input1), filter167(input1) 
and filter206(input1) were enriched in the flanking 
exons. For mouse and fruit flies, filter105(input1) and 
filter206(input1) were enriched in the flanking introns, 

filter118(input1), filter167(input1), and filter120(input2) 
were enriched in the flanking exons. These motifs may be 
important for the conserved CircRNA formation.

Conclusion
As special non-coding RNAs, Circular RNAs play a criti-
cal role in complex biological processes. Studying the 
regulation mechanism of CircRNA formation can reveal 
the function of CircRNAs in gene expression and disease 
development. Back-splicing is the key step in circRNA for-
mation. In this study, we propose circCNN to predict the 
back-splicing sites of CircRNA formation. Unlike existing 
prediction methods, CircCNN uses two feature learning 
modules to extract features from SA input and SD input 
respectively. Batch-normalization is also used in CircCNN 
to improve model performance. The features captured by 
the convolution layer can be converted as motifs logos.

Fig. 3  Distributions of RNA motifs found by CircCNN in the positive and negative samples. Two red bordered squares represents exon-enriched 
motif and its distribution, the purple bordered squares represents intron-enriched motif and its distributions. For the motif distribution plot, the red 
line represents splice acceptor site or splice donor site, blue line and orange line represents positive samples and negative samples respectively. For 
the red line in motif distribution plot (A and B), its left and right are intron and exon respectively. For the red line in motif distribution plot (C), its left 
and right are exon and intron respectively

Table 6  Several RNA motifs shared between human, mouse, and 
fruit fly

FilterID Human motif
sequence

Mouse motif
sequence

Fruit Fly motif
sequence

Input1 filter105 UAA​UUA​AGAA​ AAG​AUA​AGUC​ UAA​GAG​AGAU​

filter118 ACU​UUC​UCAC​ UGU​UCC​CUAC​ UCU​GUC​UCAU​

filter167 CCC​UGG​AUUA​ CCA​UUC​AUCU​ GUC​AGU​UUUA​

filter206 AGU​CUA​UCUC​ UGU​UAA​UGAC​ UGU​GAC​UGUC​

Input2 filter120 AAA​AAU​UCCA​ GAU​GUC​UCCA​ AUA​AAC​GUCA​
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We perform CircCNN on three datasets. Experimen-
tal results show that CircCNN achieves the best results 
compared with other baseline models. Further analysis 
indicated that pre-mRNA back-splicing is controlled by 
multiple sequence features, including the distributions of 
RNA motifs, special function short sequence, and com-
plementary sequences.

Although CircCNN has good performance, the predic-
tion of back-splicing sites still faces the following chal-
lenges. Firstly, many CircRNAs have the same start or 
end locations in the genome sequence. The back-splicing 
pattern of these CircRNAs is resemblances. For a deep 
learning-based model, it is difficult to distinguish CircR-
NAs with similar back-splicing patterns. Secondly, unlike 
linear RNAs, sequence data about CircRNAs is not full 
enough. This is not only unfavorable for feature learning 
but also unfavorable for large-scale pre-training model 
training about data encoding. In the future, sequence 
data about CircRNA should be collected to help model 
training， build pre-trained encoding models, and so on. 
In addition, identifying the back-splicing patterns from 
nucleotide resolution is another direction. This is similar 
to using Fully Convolutional Networks (FCN) in image 
Semantic Segmentation [42]. This idea requires not only 
very reliable CircRNA sequence data but also requires us 
to modify existing models [43, 44]. There is a lot of work 
to be done in the future. We hope that CircCNN and our 
future work can provide useful information for studying 
the back-splicing regulation of CircRNA formation.

Materials and methods
CircCNN is a CNN-based model that extracts impor-
tant back-splicing site features for CircRNA forma-
tion. CircCNN’s workflow is shown in Fig.  5. After 
converting the input sequence into a one-hot matrix, a 

CNN-based feature learning module is introduced. In 
the feature learning module, the first CNN layer detects 
potential motif sites and provides relevant data for vis-
ual motif sites. The second CNN layer can extract high-
level abstract features. The most important features are 
selected by the max-pooling layer. After data concatenate 
and batch normalization, the final prediction result is 
obtained by the last dense layer.

Table 7 shows the feature shape output by each layer in 
CircCNN. Taking SA input as an example, for each input 
data, the shape of feature data extracted by the first conv 
layer in feature learning module is (89,256), which can be 
used to explore potential motif sites. The shape of feature 
data extracted by feature learning module is (1152). The 
shape of feature data extracted from SD input is con-
sistent with SA input. The final feature data with shape 
(2304) is obtained by concatenating SA feature data and 
SD feature data, and will be sent to Dense layer to iden-
tify whether the current input data contains motif sites.

Data
Three datasets we used in this paper are the same 
as DeepCirCode: human (GRCH37) [45, 46], mouse 
(GRCm38) [47], and fruit fly (BDGP5.4) [48]. CircRNA 
and back-splicing sites information of three datasets are 
shown in Table 8.

Take the human dataset as an example, CircRNA 
records were obtained from two databases CircRNADb 
and CircBase. The duplicated CircRNAs in the two data-
bases were removed to improve dataset quality. If a Cir-
cRNA is only identified by one independent public study, 
it would be removed. The flanking sequence of two back-
splicing sites was extracted by the genomic locations con-
tained in CircRNA records. Consider the fact that what 
we want to do in this paper is find the back-splicing sites 

Fig. 4  Sequence logos of several RNA motifs shared in three species. Here, three filters in three species are intron-enriched, exon-enriched and 
exon-enriched respectively. For filter 206(input1), it is exon-enriched motif in human and is intron-enriched motif in mouse and fruit fly. For 
filter120(input2), it is intron-enriched motif in human and is exon-enriched motif in mouse and fruit fly
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Fig. 5  Workflow of CircCNN

Table 7  The data output shape of each layer in CircCNN

“None” represents batch size

SA Input SD Input

Type Layer Output Shape Layer Output Shape

Input Layer input_1 (None, 100,4) input_2 (None, 100,4)

Conv1D conv1 (None, 89,256) conv3 (None, 89,256)

Dropout dropout_1 (None, 89,256) dropout_4 (None, 89,256)

Conv1D Conv2 (None, 45,128) conv4 (None, 45,128)

Dropout dropout_2 (None, 45,128) dropout_5 (None, 45,128)

MaxPooling
1D

max_pooling
1d_1

(None, 9128) max_pooling
1d_2

(None, 9128)

Dropout dropout_3 (None, 9128) dropout_6 (None, 9128)

Flatten flatten_1 (None, 1152) flatten_2 (None, 1152)

Concatenate cvout (None, 2304)

Batch
Normalization

batch
normalization_1

(None, 2304)



Page 10 of 12Shen et al. BMC Genomics          (2022) 23:581 

that are important to CircRNA formation, long flanking 
sequence may introduce interfering information, model 
efficiency is also reduced, and the input length of each 
input module (SA input and SD input) is fixed to 100. If 
the flanking intron (or exon) sequence length of SA or 
SD sites is less than 50 nt, this input sequence was not 
included in the final input data. Finally, 7964 human Cir-
cRNA sequences without any redundancy were obtained. 
To get the negative instance, one way is to randomly 
select a pair of canonical splicing sites covering 2–3 exons 
from the same transcript, and make sure this pair of 
splicing sites arenot in the positive sample. The method 
for processing human datasets is used for mouse data 
and fruit fly data. Using the same way already applied in 
the human dataset, 9953 mouse CircRNA instances and 
5743 fruit fly CircRNA instances were generated. Details 
about three experimental datasets are shown in xlsx file 
Supplementary_Data2, which contain six sheets: human_
positive, human_negative, mouse_positive, mouse_nega-
tive, fruit fly_positive, fruit fly_ negative (Supplementary 
Table S12 to S17), the training-to-test ratio is 4:1.

Model structural
Data encoding
CircCNN has two input modules, SA input and SD input, 
with a fixed length of 100. For each set of input data, the 
one-hot method is used to encode the input sequence. 
Four nucleotides are represented as follows: A(1, 0, 0, 0), 
C(0, 1, 0, 0), G(0, 0, 1, 0), U(0, 0, 0, 1). Finally, each set of 
input data was converted to two 4*100 matrixes as the 
input of the feature learning module.

Feature learning module
Consider the fact that SA input and SD input are two 
kinds of circRNA sequence data representing differ-
ent function, concatenating SA input and SD input and 
then using a convolution module to extract features, 
the feature information contained in SA input and 
SD input may interfere with each other, and affect the 
model prediction performance. Therefore, we use two 
feature learning modules. The internal structure of the 

feature learning module, which extracts features from SA 
sequence input and SD sequence input, is the same. Take 
the SA sequence inputs as an example.

Two convolution layers were introduced at first. The 
convolution kernel of the first convolution layer was used 
as a motif scanner to extract potential motif features 
from the input data. Its output and weights help us get 
visual motif sites. High-level abstract features extracted 
by the second convolution layer are important for identi-
fying back-splicing or not.

Where, SA represents input SA sequence data, ker1 
and ker2 represents the convolution kernel of Conv1 and 
Conv2 respectively, b _ 1 and b _ 2 represents the bias 
term of Conv1 and Conv2 respectively.

The max-pooling layer can reduce the dimensionality 
of convolution layer output and select important features 
from ConvOut. The role of flatten layer is to convert multi-
dimensional data into one vector. For example, if the input 
data dimension of flatten layer is: (none, 1,10,64), the out-
put of flatten layer is one vector: (none, 640).

SD _ outwas obtained by applying the above pro-
cess to SD input data. The next work we need to do is 
to concatenate SA _ out and SD _ out. The role of batch 
normalization (BN) in CircCNN is to keep input data in 
the same distribution and avoid vanishing gradient, and 
overfitting.

Identifying the back-splicing sites for CircRNA for-
mation could be treated as a binary classification. The 
output layer of CircCNN was a fully connected layer 
with a sigmoid function. BNOut was fed into this layer 
to calculate the probability, which represents whether 
the input data contain back-splicing sites or not.
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