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Abstract 

Background:  Promoters, non-coding DNA sequences located at upstream regions of the transcription start site of 
genes/gene clusters, are essential regulatory elements for the initiation and regulation of transcriptional processes. 
Furthermore, identifying promoters in DNA sequences and genomes significantly contributes to discovering entire 
structures of genes of interest. Therefore, exploration of promoter regions is one of the most imperative topics in 
molecular genetics and biology. Besides experimental techniques, computational methods have been developed 
to predict promoters. In this study, we propose iPromoter-Seqvec – an efficient computational model to predict 
TATA and non-TATA promoters in human and mouse genomes using  bidirectional long short-term memory neural 
networks in combination with sequence-embedded features extracted from input sequences. The promoter and 
non-promoter sequences were retrieved from the Eukaryotic Promoter database and then were refined to create four 
benchmark datasets.

Results:  The area under the receiver operating characteristic curve (AUCROC) and the area under the precision-
recall curve (AUCPR) were used as two key metrics to evaluate model performance. Results on independent test sets 
showed that iPromoter-Seqvec outperformed other state-of-the-art methods with AUCROC values ranging from 0.85 
to 0.99 and AUCPR values ranging from 0.86 to 0.99. Models predicting TATA promoters in both species had slightly 
higher predictive power compared to those predicting non-TATA promoters. With a novel idea of constructing artifi‑
cial non-promoter sequences based on promoter sequences, our models were able to learn highly specific character‑
istics discriminating promoters from non-promoters to improve predictive efficiency.

Conclusions:  iPromoter-Seqvec is a stable and robust model for predicting both TATA and non-TATA promoters in 
human and mouse genomes. Our proposed method was also deployed as an online web server with a user-friendly 
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Background
Promoters are DNA non-coding regions found near 
and upstream the transcription start site (TSS) of genes 
or gene clusters  [1]. As essential regulatory elements 
for the initiation and regulation of transcriptional pro-
cesses, promoters play an important role in determining 
the direction and pace of DNA transcription and com-
bining with RNA polymerase to facilitate proper initia-
tion of transcription  [2]. Understanding their molecular 
behaviors is also critical in investigating gene structures, 
assessing gene regulation methods, and annotating func-
tional genes [3]. Besides, the initial step in explaining the 
transcriptional processes and expression control of genes 
is to map promoters to genomes [4]. Furthermore, iden-
tifying promoters in DNA sequences and genomes sig-
nificantly contributes to discovering entire structures of 
genes of interest  [5–7]. These eukaryotic transcriptional 
elements have typical lengths from around 60-120bp to 
250bp, extending to downstream regions of the TSS [8]. 
For prokaryotes, the lengths of promoters extensively 
vary up to 1000bp  [9]. Promoters may be characterized 
by TSS-upstream regions called TATA-boxes, which 
can direct other transcriptional factors to recognize 
the TSS  [10]. The name ‘TATA-box’ comes from the 
nature of the region accumulating repetitive T and A 
base pairs (TATA). In human genomes, there are about 
25% of known genes having promoters regions contain-
ing TATA-boxes  [11]. In eukaryotic promoter regions, 
TATA-boxes are commonly ascertained at approximately 
25bp upstream regions of the TSS [12]. The recognition 
of TATA-boxes indicates not only transcriptional direc-
tions but also which DNA strands are for binding  [3]. 
Therefore, exploration of promoter regions is one of the 
most imperative topics in molecular genetics and biology.

To identify promoters, experimental techniques have 
been developed to improve determination efficiency 
and accuracy. Mutational analysis  [13] and immunopre-
cipitation assays  [14, 15] have been known as the two 
most prevalent used techniques. These techniques, how-
ever, are not time- and cost-effective and require skilled 
and experienced workers. Recently, with the exten-
sive growth of the next-generation sequencing (NGS) 
technology  [16], a large number of genomes have been 
sequenced to provide a huge source of genome data for in 
silico discovery  [17–22]. This data availability has moti-
vated researchers to develop computational models to 
predict promoters besides experimental approaches. So 

far, computational models have been developed based 
on signals, contents, and GpG information of sequences. 
Signal-based models use features extracted from infor-
mation on RNA polymerase binding sites while neglect-
ing information about neighboring sites so that their 
performances are usually poor  [23–26]. Content-based 
models focus on features obtained from the calculation 
of k-mer frequencies and k-mer-derived features but 
pay less attention to the serial information of the nucleic 
acids in the sequence [27–29]. Unlike those two previous 
approaches, GpG-based models exploit locational infor-
mation of GpG islands; however, GpG-based features are 
indistinct if just over a half of promoters possess GpG 
islands  [30–32]. Besides, limited data sources for com-
putational modeling was one of major limitations at that 
time. In recent years, science and technology have made 
a big leap in improving computing platforms, data stor-
age, and computational methods to enhance computing 
efficiency and prediction power. Therefore, today in silico 
models have been developed with considerably elevated 
performances. Most of the recently developed models 
employ diverse types of sequence-based features [32–36]. 
These methods, however, mainly rely on selecting feature 
engineering techniques to extract sequence’s domain 
knowledge, and combining multiple encoding schemes 
may unnecessarily increase data dimensionality. Besides, 
developing models using traditional machine learning 
algorithms with high-dimensional data requires high 
computational costs. Deep learning, hence, can be an 
alternative method to construct prediction models with 
highly effective feature extraction integrated. Besides 
known successful applications in image  [37], voice  [38], 
and video  [39] processing and detection, deep learning 
has also been widely applied in drug discovery [40], bio-
informatics [41], and other scientific fields [42] to address 
existing shortcomings for a decade. For promoter iden-
tification, various studies have been conducted with dif-
ferent objectives  [43–46]. In 2018, iPromoter-2L  [43] 
was first developed for bacterial promoter prediction 
using random forest [47] and pseudo K-tuple nucleotide 
composition features  [48]. One year after, iPromoter-2L 
2.0  [44] (iPromoter-2L’s upgraded version), developed 
using support vector machines and k-mer incorporated 
with pseudo K-tuple nucleotide composition features, 
was released. In 2019, DeePromoter  [45] was devel-
oped using convolutional neural networks, a prevalently 
used deep learning architecture, and one-hot encoding 
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to predict promoters in human and mouse genomes. In 
the same year, Lai et al. introduced iProEP [46] for iden-
tifying promoters in multiple species, encompassing 
Homo sapiens, Drosophila melanogaster, Caenorhabdi-
tis elegans, Bacillus subtilis, and Escherichia coli, using 
support vector machines in combination with pseudo 
K-tuple nucleotide composition features. In 2021, Zhu et 
al. proposed a cross-species prediction framework called 
Depicter to determine three distinct types of promoters, 
including TATA, non-TATA, and unclassified promot-
ers [49]. Despite satisfactory performance obtained, there 
is still a large room for model improvement to achieve 
more effective models having higher predictive efficiency, 
robustness, and stability.

In this study, we introduce a more effective com-
putational model called iPromoter-Seqvec to predict 
TATA and non-TATA promoters in human (Homo sapi-
ens)  genome and mouse (Mus musculus) genome  using 
bidirectional long short-term memory (Bi-LSTM) incor-
porated with sequence-embedded features. Long short-
term memory, a deep learning architecture, belongs to 
a group of recurrent neural networks which are widely 
used in natural language processing and machine trans-
lation. For a decade, deep learning has been widely 
implemented to solve multiple issues in diverse fields, 
including biology [50], chemistry [51–53], and biochem-
istry [54–57]. Numerous computational approaches were 
developed using deep learning to address diverse bio-
logical issues  [58–64]. The application of the Bi-LSTM 
architecture on sequence-embedded features promotes 
effective learning of models in forward and reverse direc-
tions with accelerated training speed compared to tradi-
tional machine learning algorithms. Sequence-embedded 
features, inspired by the idea of word embedding, can 
efficiently represent serial information of biological 
sequences characterized by orders of the nucleic acids 
in each sequence. Sequence samples used in our experi-
ments were collected from the Eukaryotic Promoter 
database [65, 66] and carefully curated to create a train-
ing set, a validation set, and a test set. These datasets 
were controlled to be independent of each other without 
any repeated or highly similar sequences. To fairly assess 
the model performance, we compared iPromoter-Seqvec 
with two state-of-the-art methods: DeePromoter  [45] 
and iProEP  [46] that share common characteristics and 
are relevant to our study.

Results and discussion
Model evaluation
The model performance of iPromoter-Seqvec on the 
validation sets is provided in Table S1 (Supplementary 
Information). Since DeePromoter was also developed 
using ‘fake’ negative samples like ours, we reimplemented 

DeePromoter and evaluated its performance on the 
validation sets to compare the adaptivity of using ‘fake’ 
negative samples between iPromoter-Seqvec and Dee-
Promoter. The results show that variation in model per-
formance between the validation sets and the test sets 
for both methods is relatively small. The area under the 
receiver operating characteristic curve (AUCROC) and 
the area under the precision-recall curve (AUCPR) are 
two key metrics used for model evaluation. For identify-
ing promoters in human and mouse genomes, the mod-
els predicting TATA promoters perform better than the 
models predicting non-TATA promoters in terms of 
AUCROC and AUCPR. In the aspect of other metrics, 
the models predicting TATA promoters for both species 
achieve higher values compared to those predicting non-
TATA promoters. The distinct characteristics between 
promoters and non-promoters somehow can explain the 
slightly greater performance of models predicting TATA 
promoters in comparison with those predicting non-
TATA promoters. Generally, both methods show high 
adaptivity to using ‘fake’ negative samples in the training 
model.

Comparative analysis
Table  1 compares differences in model performance of 
iPromoter-Seqvec, iPro-EP, and DeePromoter. Since 
iPro-EP does not support predicting promoters in mouse 
genome, we compared the model performance based on 
the datasets for human genome only. To evaluate the per-
formance of iPro-EP and DeePromoter, the test sets were 
uploaded to their online web servers to perform predic-
tion tasks and retrieve predicted probabilities. For iden-
tifying promoters in human  genome, iPromoter-Seqvec 
obtains AUCROC values of 0.99 and 0.85 for predicting 
TATA promoters and non-TATA promoters, respectively. 
The AUCPR values of iPromoter-Seqvec are also higher 
over those of iPro-EP and DeePromoter with 0.99 and 
0.86 for predicting TATA promoters and non-TATA pro-
moters, respectively. For identifying TATA promoters in 
mouse genome, AUCROC and AUCPR values of iPro-
moter-Seqvec are also higher than those of DeePromoter. 
For models predicting non-TATA promoters in mouse 
genome, both AUCROC and AUCPR values also con-
firm that iPromoter-Seqvec outperformed DeePromoter. 
The other metrics were also computed to provide more 
detailed information on model performance.

iPromoter-Seqvec (our method), iPro-EP, and Dee-
Promoter were developed to predict promoter regions 
from long DNA sequences. Also, there are other compu-
tational tools have been proposed to identify promoter 
sequences from limited-length DNA sequences. While 
prediction models like ours can answer whether any pro-
moter region is present in DNA sequences of length up to 
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300bp, iPromoter-2L [43], as well as similar approaches, 
can only answer whether any promoter region is present 
in a DNA sequence of length at 81bp or lower. Neverthe-
less, iPromoter-2L can determine which type a promoter 
sequence belongs to. Hence, both approaches have their 
values and contributions in supporting different pur-
poses and users.

Conclusions
In this study, we proposed iPromoter-Seqvec, an efficient 
computational model using bidirectional long short-
term memory neural networks and sequence-embedding 
features to identify TATA promoters and non-TATA 
promoters in human and mouse genomes. Based on eval-
uation metrics recorded on independent test sets, iPro-
moter-Seqvec is a stable and robust computational model 
with high AUCROC and AUCPR values. In comparison 
with other state-of-the-art methods, iPromoter-Seqvec 
shows stronger prediction power in recognizing both 
TATA and non-TATA promoters. Our proposed method 
was also deployed as an online web server with a user-
friendly interface to support research communities.

Methods
Overview
Figure  1 summarizes major steps in developing iPro-
moter-Seqvec. First, the sequence data, including experi-
mentally verified (‘real’) promoter and non-promoter 
sequences, were collected from the Eukaryotic Promoter 
database  [65, 66]. Benchmark dataset Section explains 
how the datasets were collected and refined. To cre-
ate a validation set and an independent test set for each 
dataset, real promoter sequences and real non-promoter 
sequences were combined at an equal proportion. To 
create a training set, real promoter sequences were used 
as templates for building artificial promoter sequences. 
Each promoter sequence was split into smaller 

subsequences and then recombined to create one artifi-
cial non-promoter sequence. The detailed information 
on building artificial (‘fake’) non-promoter sequences 
is described in Construction of artificial non‑promoter 
sequences Section. The real promoter sequences and the 
fake non-promoter sequences of each dataset were com-
bined to create a training set. The training sets were used 
to train models while the validation sets were used for 
determining at which epoch the training process should 
be stopped. After obtaining optimal models, the inde-
pendent test sets were used to evaluate the model perfor-
mance. To be recognized as the model input, all sequence 
data were converted to their corresponding index vec-
tors. The index vectors stored indices of triplet sets of 
consecutive nucleic acids. Sequence‑embedded features 
Section describes the data transformation process.

Benchmark dataset
The sequence samples used for model development and 
testing were collected from the Eukaryotic Promoter 
database  [65, 66], a high-quality source of promoters. 
This database contains non-redundant eukaryotic POL 
II promoters whose TSSs have been experimentally 
verified. The length of all collected sequences is 300bp 
which were cut from a location of from -249 to +50bp 
(+1 refers to TSS) for promoter sequences and from -51 
to +350bp for non-promoter sequences. Sequence sam-
ples were collected from data sources of both human and 
mouse genomes with annotated distinguishing groups: 
TATA promoters and non-TATA promoters. Therefore, 
four separate datasets, including TATA-promoters of 
human (HS-TApro), TATA-promoters of human (HS-
nonTApro), TATA-promoters of mice (MM-TApro), 
and TATA-promoters of mice (MM-nonTApro) were 
obtained. High-similarity sequences in the four data-
sets were removed using the CD-HIT tool  [67] with a 
sequence identity cut-off of 0.8. The training set of each 

Table 1  Model performance on the independent test sets of iPromoter-Seqvec and other state-of-the-art methods

Dataset Method AUCROC AUCPR BA SN SP PR MCC F1

HS-TApro iPro-EP 0.89 0.87 0.81 0.84 0.78 0.79 0.62 0.81

DeePromoter - - 0.67 0.94 0.39 0.61 0.40 0.74

iPromoter-Seqvec (Ours) 0.99 0.99 0.94 0.90 0.99 0.99 0.89 0.94

HS-nonTApro iPro-EP 0.73 0.74 0.65 0.73 0.56 0.63 0.30 0.67

DeePromoter - - 0.51 0.90 0.12 0.51 0.04 0.65

iPromoter-Seqvec (Ours) 0.86 0.86 0.75 0.62 0.89 0.85 0.53 0.72

MM-TApro DeePromoter - - 0.59 0.84 0.34 0.56 0.21 0.67

iPromoter-Seqvec (Ours) 0.99 0.99 0.93 0.88 0.98 0.97 0.86  0.92

MM-nonTApro DeePromoter - - 0.64 0.87 0.40 0.59 0.31 0.71

iPromoter-Seqvec (Ours) 0.91 0.91 0.83 0.74 0.91 0.90 0.67 0.81
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dataset was designed with an equal number of promoter 
and artificial non-promoter samples. The reason and pro-
cessing steps of creating artificial non-promoter samples 
were described in the next section. The validation and 
test sets of each dataset contained an equal number of 
promoter and non-promoter sequences. Information on 

datasets used for model development and evaluation is 
provided in Table 2.

Construction of artificial non‑promoter sequences
In many in silico studies on sequence analysis, nega-
tive samples were extracted from significantly different 
regions. Non-promoter or non-enhancer sequences, 
for instance, were collected by slicing sequences from 
distant locations which contain non-relevant nucleic 
acid contents. Since the nature of positive samples 
(sequences of interest) and negative samples are highly 
distinct, models can effortlessly learn to distinguish 
positives from negatives. The models, therefore, can 
achieve very high performance but practical applica-
tions in future prediction may be limited. As promoter 
sequences are characterized by highly specific regions, 
including TATA-box (-30 to -25bp), CAAT-box (-80 to 
-70bp), and GC-box (-110 to -80bp), non-promoters 

Fig. 1  Steps in developing iPromoter-Seqvec

Table 2  Datasets used for model training and evaluation

Dataset No. of sequences (Promoters: Non-
promoters = 1: 1)

Total

Training Validation Test Set

HS-TATApro 4958 400 500 5858

HS-nonTATApro 42800 4000 5000 51800

MM-TATApro 5272 400 500 6172

MM-nonTATApro 33892 4000 5000 42892
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having all these elements removed have no actual role 
but balancing the dataset. A large disparity between 
the promoters and non-promoters restricts models 
from learning decisive characteristics to accurately 
distinguish promoters from non-promoters. Mod-
els trained with bad or weak negatives find predic-
tion tasks on genomics sequences challenging because 
genomic sequences enriched with promoter motifs 
may not be promoter sequences. The appearance of 
more ‘TATA’ motifs along with the genome sequences 
can confuse models and cause misclassifications. 
Hence, to develop a stable and robust model, negatives 
should be rigorously chosen because their features will 
be learned by the model to decide which class should 
be assigned for an unknown sample. In 2014, Wei  et 
al.  have proved the influence of good negatives on 
classification tasks in their studies  [68]. Oubounyt  et 
al. applied Wei et al.’s idea in developing DeePromoter 
using non-promoters constructed from original pro-
moters [45]. The idea was to introduce small fragments 

of functional motifs from promoters to non-promoters 
to overcome the model’s dependency on these motifs.

Figure  2 describes key steps in constructing non-
promoter sequences based on their corresponding 
promoter sequences. For each promoter sequence, we 
constructed a non-promoter sequence by recombina-
tion of some promoter subsequences while keeping 
other promoter subsequences at their original posi-
tions. Promoter subsequences having their positions 
unchanged are termed ‘conservative’. Promoter subse-
quences having their original positions interchanged by 
another one are termed ‘substitutional’ subsequences. 
Initially, promoter sequences of 300bp were equally 
split into 20 subsequences of 15bp. For each promoter 
sequence, 8 in 20 subsequences were randomly selected 
for recombination while the rest were kept immobile. 
The picked substitutional subsequences were then ran-
domly filled in the gap positions until no gap remained. 
Finally, a new recombinant sequence was generated 
by joining all subsequences. Those artificial sequences 

Fig. 2  Construction of non-promoters (used in model training only) based on their corresponding promoters
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which share minor structural similarities compared 
to corresponding promoter sequences were treated as 
non-promoter sequences for model training only. For 
each present promoter sequence, a corresponding arti-
ficial non-promoter sequence was created so that the 
ratios of promoters to artificial non-promoters in all 
datasets were equal (Table 2).

Sequence‑embedded features
Figure 3 summarizes the steps involved in constructing 
index vectors for sequence samples in our study. Ini-
tially, an index table for triplet keys was created to store 
indices of triplet sets of consecutive nucleic acids. For 
a sequence, a window of 3 was used to read the whole 
sequence, starting at the first nucleic acid and termi-
nating when reaching the final one. Since the sequence 
length is 300bp, the maximum number of triplet keys 
extracted is 298. Each triplet key was then looked up 
with the index table to get its corresponding index. 
Subsequently, a list of indices was obtained with a spe-
cific order and then joined to create an index vector of 
1 ×298. The index vectors were inputs of our models.

Model architecture
Figure 4 describes the model architecture designed to 
identify human TATA promoters, human non-TATA 
promoters, mice’s TATA promoters, and mice’s non-
TATA promoters. The input data of the models are 
index vectors sized 1 ×298. The input data first enters 
the embedding layer with an embedding size of 64 to 
create embedding matrices sized 298× 64 before pass-
ing through the batch normalization (BatchNorm) 
layer. The embedding layer receives data in the form 
of index vectors storing a series of indices. These indi-
ces come from the triplet sets of consecutive nucleic 
acids. The normalized matrices are the inputs of bidi-
rectional long short-term memory (Bi-LSTM) layers 
designed with a hidden dimension of 128. Bi-LSTM 
activates a process of reading sequence information in 
both directions: forward and backward. Unlike regular 
LSTM models that use only one stream of input data, 
the Bi-LSTM model receives input streams in both 
directions. The Bi-LSTM layers transform normal-
ized matrices sized 298× 64 to matrices sized 298×256. 
These matrices are then flattened and passed through 
the first fully connected (FC1) layer activated by a 
Leaky Rectified Linear Unit (Leaky ReLU). After pass-
ing layer FC1, vectors sized 1 ×76288 are converted to 
vectors sized 1 ×128 which are gone through layer FC2 
and finally activated by the sigmoid function to return 
probabilities. The loss function used is the binary 
cross-entropy which is expressed as:

where y is the true label and ŷ is the predicted probabil-
ity. The prediction threshold was set at 0.5 by default. The 
validation sets were used to define the stopping epochs 
for four models. For each model, the stopping epoch was 
the epoch where the validation loss was minimum. The 
Adam optimization algorithm  [69] was used along with 
each minibatch of 64 samples. In our experiments, iPro-
moter-Seqvec was implemented using PyTorch 1.3.1 and 
trained on Google Colab equipped with 25 GB of RAM 
and one NVIDIA Tesla T4 GPU. iPromoter-Seqvec was 
trained over 50 epochs. It took about 15 seconds and 
60 seconds to complete one training epoch for mod-
els predicting TATA promoters and models predicting 
non-TATA promoters, respectively. iPromoter-Seqvec 
requires 0.5 seconds and 3 seconds to complete testing 
models that predict TATA promoters and models that 
predict non-TATA promoters, respectively.

Evaluation metrics
To assess the model performance, several metrics includ-
ing balanced accuracy (BA), sensitivity (SN), specific-
ity (SP), precision (PR), F1 score, Matthews’s correlation 
coefficient (MCC), the area under the receiver operat-
ing characteristic curve (AUCROC), and the area under 
the precision-recall curve (AUCPR) were measured. TP, 
FP, TN, and FN are abbreviated for True Positives, False 
Positives, True Negatives, and False Negatives, respec-
tively. The mathematical formulas of these metrics are 
expressed below.

(1)Loss =
n

i=1

yi × logŷi + (1− yi)× log(1− ŷi),

(2)BA = SN + SP

2

(3)SN = TP

TP + FN

(4)SP = TN

TN + FP

(5)PR = TP

TP + FP

(6)F1 = 2× PR× SN

PR+ SN

(7)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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Fig. 3  Conversion of sequences to index vectors
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Software availability
To support research communities to identify promoters, 
we deployed iPromoter-Seqvec as a user-friendly interface 
web server which can be accessed via https://​github.​com/​
mldlp​roject/​2022-​iProm​oter-​Seqvec. iPromoter-Seqvec 
supports identifying TATA and non-TATA promoters in 
human and mouse genomes. Users can follow simple steps 
described on the web server to perform their predictions 
task with iPromoter-Seqvec.
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